首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Cytochrome c oxidase (cytochrome aa3-type) [EC 1.9.3.1] was purified from Erythrobacter longus to homogeneity as judged by polyacrylamide gel electrophoresis, and some of its properties were studied. The spectral properties of the oxidase closely resembled those of mitochondrial and other bacterial cytochromes aa3. The enzyme showed absorption peaks at 430 and 598 nm in the oxidized form, and at 444 and 603 nm in the reduced form. The CO compound of the reduced enzyme showed peaks at 432 and 600 nm. The enzyme oxidized eukaryotic ferrocytochromes C more rapidly than E. longus ferrocytochrome c. The reactions catalyzed by the enzyme were 50% inhibited by 0.7 microM KCN. The enzyme contained 1 g atom of copper and 1 g atom of magnesium per mol of heme a. The enzyme molecule seemed to be composed of two identical subunits, each with a molecular weight of 43,000.  相似文献   

2.
The cell membrane of Micrococcus luteus (lysodeikticus) contains a respiratory chain composed of hemes a, b, and c, which contain 171, 457, and 407 pmol/mg protein, respectively. Cytochrome c oxidase, the heme a containing component, has been purified after solubilization in Triton X-100, by gel filtration on Sepharose 4B-CL ammonium sulfate precipitation and ion-exchange and affinity chromatographies on a yeast cytochrome c-Sepharose 4B column. The purified complex, which contains three polypeptides of apparent Mr 47,000, 31,000, and 19,000, has CN-sensitive ferrocytochrome c oxidase activity (Ki = 0.35 microM) and a characteristic absorption spectrum with maxima in the oxidized form at 595 and 426 nm and in the reduced form at 601 and 444 nm. The purified enzyme contains 17.4 nmol/mg protein and its copper content is 23.2 nmol/mg protein. The enzyme was purified about 100-fold with respect to its content in crude membranes. The total heme a yield, also with respect to crude membranes content, was 6.8%.  相似文献   

3.
Cytochrome c oxidase (cytochrome aa3-type) [EC 1.9.3.1] was purified from Pseudomonas AM 1 to an electrophoretically homogeneous state and some of its properties were studied. The oxidase showed absorption peaks at 428 and 598 nm in the oxidized form, and at 442 and 604 nm in the reduced form. The CO compound of the reduced enzyme showed peaks at 432 and 602 nm. The enzyme molecule was composed of two kinds of subunits with molecular weights of 50,000 and 30,000 and it contained equimolar amounts of heme a and copper atom. The enzyme rapidly oxidized Candida krusei and horse ferrocytochromes c as well as Pseudomonas AM 1 ferrocytochrome c. The reactions catalyzed by the enzyme were strongly inhibited by KCN.  相似文献   

4.
An a-type cytochrome was purified from Halobacterium halobium. The cytochrome showed an absorption spectrum similar to that of cytochrome aa3; it showed absorption peaks at 420 and 598 nm in the resting state, peaks at 441 and 602 nm in the reduced form, and its CO compound showed peaks at 430 and 600 nm. The cytochrome molecule was composed of only one kind of polypeptide with the molecular weight of 40,000. The cytochrome contained two heme a molecules in the molecule but no copper. The cytochrome did not show cytochrome c oxidase activity. Midpoint redox potential at pH 8.0 of the cytochrome was determined to be +0.31 V. The amino acid composition of the cytochrome resembled that of subunit I of mitochondrial cytochrome aa3. While two molecules of heme a were reduced with sodium dithionite, only one of two heme a molecules was reduced with ascorbate plus TMPD. The heme a reduced with ascorbate plus TMPD did not react with molecular oxygen or carbon monoxide, while one of two heme a molecules reduced with sodium dithionite was oxidized by molecular oxygen and combined with carbon monoxide.  相似文献   

5.
The minimal structural unit of cytochrome c oxidase purified from Thiobacillus novellus was composed of one molecule each of two subunits with molecular masses of 32 and 23 kDa, respectively, and the unit had one molecule of heme a and one atom of copper. In the presence of n-octyl-beta-D-thioglucoside, the oxidase existed as the monomeric form of the unit, while it occurred as the dimeric form of the unit in the presence of Tween 20. The monomeric form showed an active cytochrome c oxidizing activity and reduced molecular oxygen to water with ferrocytochrome c. Namely, it has been shown that the bacterial cytochrome c oxidase with one heme a molecule and one copper atom per molecule can catalyze oxidation of ferrocytochrome c with concomitant reduction of molecular oxygen to water.  相似文献   

6.
Cytochrome c oxidase (cytochrome aa3-type) [EC 1.9.3.1] was purified from Nitrobacter agilis to an electrophoretically homogeneous state and some of its properties were studied. The enzyme showed absorption peaks at 422, 598, and 840 nm in the oxidized form, and at 442 and 606 nm in the reduced form. The CO compound of the reduced enzyme showed peaks at 436 and 604 nm, and the latter peak had a shoulder at 599 nm. The enzyme possessed 1 mol of heme a and 1.6 g-atom of copper per 41,000 g, and was composed of two kinds of subunits of 51,000 and 31,000 daltons. These results show that the structurally minimal unit of the enzyme molecule is composed of one molecule each of the two subunits and contains 2 molecules of heme a and 2-3 atoms of copper. the enzyme rapidly oxidized ferrocytochromes c of several eukaryotes as well as N. agilis ferrocytochrome c-552. The reactions catalyzed by the enzyme were strongly inhibited by KCN. The reduction product of oxygen catalyzed by the enzyme was concluded to be water on the basis of the ratio of ferrocytochrome c oxidized to molecular oxygen consumed.  相似文献   

7.
The purpose of this study was to characterize the physical properties of cytochromec oxidase from rat liver. The enzyme was extracted from isolated mitochondria with nonionic detergents and further purified by ion-exchange chromatography on DEAE Bio-Gel A. The purified enzyme contained 9.64 nmol heme a/mg protein and one iron atom plus one copper atom for each heme a. The specific activity of the final preparation was 146 µmol of ferrocytochromec oxidized/min · mg protein, measured at pH 5.7. The spectral properties of the enzyme were characteristic of purified cytochrome oxidase and indicated that the preparation was free of cytochromesb, c, andc 1. In analytical ultracentrifugation studies, the enzyme sedimented as a single component with anS 20,w of5.35S. The Stokes radius of the enzyme was determined by gel filtration chromatography and was equal to 75 Å. The molecular weight of the oxidase calculated from its sedimentation coefficient and Stokes' radius was 180,000, indicating that the active enzyme contained two heme a groups. The purified cytochrome oxidase was also subjected to dodecyl sulfate-polyacrylamide gel electrophoresis in order to determine its components. The enzyme was resolved into five polypeptides with the molecular weights of I, 27,100; II, 15,000; III, 11,900; IV 9800; and V, 9000.  相似文献   

8.
A novel type of cytochrome c oxidase was purified to homogeneity from Pseudomonas aeruginosa which was grown aerobically. The purified oxidase contained two molecules of heme a, two atoms of copper, and one molecule of protoheme per molecule. One of the two heme a molecules in the oxidase reacted with carbon monoxide, so that the enzyme was of baa3-type. The oxidase molecule was composed of three subunits with molecular weights of 38,000, 57,000, and 82,000. Although the oxidase oxidized ferrocytochrome c-550 obtained from the bacterial cells grown aerobically, the oxidizing activity was not high. The "resting form" and the "pulsed form" of the oxidase were observed clearly with this enzyme, and the transition from the resting form to the pulsed form was accompanied by a distinct change of the enzymatic activity. The difference in the kinetics of the catalytic reactions between the two forms is discussed.  相似文献   

9.
Nitrite reductase [nitric-oxide : (acceptor) oxidoreductase,EC 1.7.2.1 [EC] ] from a denitrifying phototrophic bacterium, Rhodopseudomonassphaeroides forma sp. denitrificans, was purified. The molecularweight of the enzyme, estimated by gel-filtration, was 80,000.Sodium dodecyl sulfate polyacrylamide gel electrophoresis ofthe purified enzyme showed a single 39,000 molecular weightband, indicating that the enzyme was composed of two subunitsof identical molecular weight. The oxidized form of the enzymeexhibited maximum absorption at 280 nm, 450 nm and 590 nm, andthe reduced form only at 280 nm. The ESR spectrum of a frozensolution of the oxidized enzyme showed a typical spectrum patternof a copper protein, suggesting that two types of Cu2+ existedwithin the enzyme. Estimates with an atomic absorption spectrophotometer,revealed two copper atoms per molecule. The optimum pH of theenzyme was 7.0. Km for nitrite was estimated to be 51 µM,and the optimum temperature, 30?C. The enzyme was inhibitedby CO, potassium cyanide and diethyldithiocarbamate and activatedby monoiodoacetate. Phenazine methosulfate, 2,6-dichlorophenolindophenol,horse heart cytochrome c, and cytochrome c2 from this bacteriumwere suitable electron donors. The enzyme also showed cytochromec oxidase activity. (Received May 4, 1978; )  相似文献   

10.
Crude extract of Aspergillus niger AKU 3302 mycelia incubated with methylamine showed a single amine oxidase activity band in a developed polyacrylamide gel that weakly cross-reacted with the antibody against a copper/topa quinone-containing amine oxidase (AO-II) from the same strain induced by n-butylamine. Since the organism cannot grow on methylamine and the already known quinoprotein amine oxidases of the organism cannot catalyze oxidation of methylamine, the organism was forced to produce another enzyme that could oxidize methylamine when the mycelia were incubated with methylamine. The enzyme was separated and purified from the already known two quinoprotein amine oxidases formed in the same mycelia. The purified enzyme showed a sharp symmetric sedimentation peak in analytical ultracentrifugation showing S20,w0 of 6.5s. The molecular mass of 133 kDa estimated by gel chromatography and 66.6 kDa found by SDS-PAGE confirmed the dimeric structure of the enzyme. The purified enzyme was pink in color with an absorption maximum at 494 nm. The enzyme readily oxidized methylamine, n-hexylamine, and n-butylamine, but not benzylamine, histamine, or tyramine, favorite substrates for the already known two quinoprotein amine oxidases. Inactivation by carbonyl reagents and copper chelators suggested the presence of a copper/topa quinone cofactor. Spectrophotometric titration by p-nitrophenylhydrazine showed one reactive carbonyl group per subunit and redox-cyclic quinone staining confirmed the presence of a quinone cofactor. pH-dependent shift of the absorption spectrum of the enzyme-p-nitrophenylhydrazone (469 nm at neutral to 577 nm at alkaline pH) supported the identity of the cofactor with topaquinone. Nothern blot analysis indicated that the methylamine oxidase encoding gene is largely different from the already known amine oxidase in the organism.  相似文献   

11.
Cytochrome b562-o complex, a terminal oxidase in the respiratory chain of aerobically grown Escherichia coli K12, was isolated in a highly purified form. The purified oxidase is composed of equimolar amounts of two polypeptides, with Mr = 33,000 and 55,000, determined by gel electrophoresis in the presence of sodium dodecyl sulfate. It contains 19.5 nmol of heme and 16.8 nmol of copper/mg of protein, but no detectable nonheme iron, phospholipid, ubiquinone, or menaquinone. In the difference spectrum at room temperature, the oxidase shows a single alpha absorption peak at 560 nm and at 77 K it shows two alpha absorption peaks at 555 and 562 nm. This oxidase combines with CO and the CO difference spectrum at room temperature has a peak at 416 nm and a trough at 430 nm in the Soret region. Its oxidation-reduction potential is estimated to be 125 mV (pH 7.4) and it is pH-dependent (-60 mV/pH) in medium of pH 6.0 to 7.4. It catalyzes electron transport to oxygen via ubiquinol and ascorbate in the presence of phenazine methosulfate or N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride. This oxidase activity depends on phospholipids and is sensitive to respiratory inhibitors, such as 2-heptyl-4-hydroxyquinoline N-oxide, piericidin A, KCN and NaN3. The divalent cations Zn2+, Cd2+, and Co2+ inhibit the oxidase activity extensively. The oxidase activity of the cytochrome b562-o complex was inhibited by photoinactivation with rose bengal, suggesting that the inhibition by zinc ion results from modification of a histidine residue of cytochrome o.  相似文献   

12.
A novel aco-type cytochrome-c oxidase was highly purified from the facultative alkalophilic bacterium, Bacillus YN-2000, grown at pH 10. The enzyme contained 9.0 nmol heme a/mg protein. It contained 1.23 mol of protoheme, 1.06 mol of heme c, 2.0 g atoms of copper, 2.5 g atoms of iron, and 1.8 g atoms of magnesium per mol of heme a. The enzyme molecule seemed to be composed of two subunits with Mrs of 52,000 and 41,600. On the basis of these results, the enzyme seemed to contain one molecule each of heme a, protoheme, and heme c per minimal structural unit (Mr, 93,600). Only protoheme among the three kinds of hemes in the enzyme reacted with CO and CN-. Heme a did not react with CO; cytochrome a3 did not seem to be present in the enzyme. The enzyme oxidized 314 mol of horse ferrocytochrome c per heme a per sec at pH 6.5 and the catalytic activity was 50% inhibited by 7.65 microM KCN. The enzymatic activity was found to be optimal at pH 6.0.  相似文献   

13.
Coulometric and spectroscopic analyses were performed on the three cytochrome components (cytochrome d, cytochrome b558, and the cytochrome previously described as cytochrome a1) of the purified cytochrome d complex, a terminal oxidase of the Escherichia coli aerobic respiratory chain. On the basis of heme extraction, spectroscopic, and coulometric data, the "cytochrome a1" component was identified as a b-type cytochrome: cytochrome b595. The pyridine hemochromogen technique revealed the presence of two molecules of protoheme IX per cytochrome d complex. This quantity of protoheme IX fully accounted for the sum of the cytochrome b558 and cytochrome b595 components as determined coulometrically. The renaming of cytochrome a1 as cytochrome b595 was further indicated by the lack of any heme a in the complex and by its resolved reduced-minus-oxidized spectrum. The latter was found to be similar to that of cytochrome c peroxidase, which contains protoheme IX. Coulometric titrations and carbon monoxide binding titrations revealed that there are two molecules of cytochrome d per complex. A convenient measurement of the amount of cytochrome b558 was found to be the beta-band at 531 nm since cytochrome b558 was observed to be the only component of the cytochrome d complex with a peak at this wavelength. By use of this method and the extinction coefficient for the purified cytochrome b558, it was estimated that there is one molecule of cytochrome b595 and one of cytochrome b558 per cytochrome complex.  相似文献   

14.
When grown on methylamine as a sole carbon source, Paracoccus denitrificans synthesizes a Type I blue copper protein which mediates electron transfer between methylamine dehydrogenase and cytochrome c. This blue copper protein does not serve as an electron acceptor for methanol dehydrogenase and is not synthesized by cells grown on methanol or succinate. The blue copper protein and methylamine dehydrogenase were localized in the periplasm of P. denitrificans, whereas formate dehydrogenase was cytoplasmic. The copper protein can be purified to high yield in a single step from the periplasmic subcellular fraction prepared from P. denitrificans. The purified protein contains a single 15,000-Da polypeptide chain and one copper atom/molecule and exhibits a pI of 4.8. The oxidized form of the protein absorbs strongly at 595 nm and weakly at 464 nm. The physical and physiological properties of this protein indicate that it is not an azurin, but representative of another class of blue copper proteins.  相似文献   

15.
From Pseudomonas AM 1 grown in a medium deficient in Cu, aa3-type cytochrome c oxidase was purified which contained 2 molecules of haem a and one atom of Cu per molecule. The enzyme showed absorption peaks at 428 and 595 nm in the oxidized form and at 442 and 604 nm in the reduced form, and its CO complex showed peaks at 432 and 602 nm. The enzyme in the oxidized state showed an obscure absorption peak around 800 nm instead of a peak at 820 nm. One mol of the enzyme oxidized maximally 76, 75, and 98 mol of the ferrocytochromes c of Candida krusei, horse and Pseudomonas AM 1 per sec, respectively. These reactions were 50% inhibited by 7 microM KCN. The product of reduction of O2 catalyzed by the enzyme was concluded to be H2O on the basis of the ratio of ferrocytochrome c oxidized to O2 consumed.  相似文献   

16.
The isolation of an azurin type Cu protein from Paracoccus denitrificans (ATCC 13543) is described and some properties are reported. The purified protein has a molecular weight of 13,790 in a single polypeptide chain and contains one Cu atom per molecule. Its spectrum is typical of Type I, “blue” Cu proteins in showing an intense band at 595 nm; but it also shows a weaker absorption band at 448 nm. Its standard reduction potential has been measured to be +230 mV, which is the lowest potential observed to date for azurins isolated from bacterial sources. The purified protein shows fivefold greater electron transport activity with membrane fragments than with the soluble nitrite reductase of Paracoccus. This argues against the latter as the primary physiological oxidase system for azurin.  相似文献   

17.
The last step of (+)-geodin biosynthesis is a phenol oxidative coupling, which is one of the most important reactions in biosynthesis of natural products. The enzyme named dihydrogeodin oxidase catalyzes the regio- and stereospecific phenol oxidative coupling reaction to form (+)-geodin from dihydrogeodin. The enzyme was purified from the cell-free extract of Aspergillus terreus, a (+)-geodin producer, by ammonium sulfate fractionation, acid treatment, and column chromatographies on DEAE-cellulose, Hydroxyapatite, chromatofocusing, and Toyopearl HW-55S. The purified enzyme was homogeneous as judged by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The molecular weight of the enzyme was estimated to be 153,000 by gel filtration on a Toyopearl HW-55S column and 76,000 by SDS-polyacrylamide gel electrophoresis, indicating that the enzyme is a dimer. The purified enzyme showed an intense blue color and had absorption maxima at 280 and 600 nm, which suggested it to be a blue copper protein. The copper content was found to be 8 atoms per subunit by atomic absorption analysis and no significant amount of other metals was detected by ICP emission spectrometry. The electron paramagnetic resonance spectrum showed the presence of type 1 and type 2 copper atoms in the enzyme molecule. Sodium azide and ethylxanthate inhibited the enzyme activity, but potassium cyanide and diethyldithiocarbamate, both known as potent copper enzyme inhibitors, were not inhibitory.  相似文献   

18.
The aa3-type cytochrome c oxidases purified from Nitrobacter agilis, Thiobacillus novellus, Nitrosomonas europaea, and Pseudomonas AM 1 were compared. They have haem a and copper atom as the prosthertic groups and show alpha and gamma absorption peaks at around 600 and 440 nm, respectively. Each oxidase molecule is composed of two kinds of subunits. The N. agilis oxidase has 2 moles of haem a and 2 atoms of copper in the minimal structural unit composed of one molecule each of the two kinds of subunits, while the T. novellus enzyme seems to contain one molecule of the haem and one atom of the metal in the unit. The N. europaea oxidase shows very low affinity for carbon monoxide. Each oxidase reacts rapidly with some eukaryotic cytochromes c as well as with its native cytochrome c. The cytochrome c oxidase activity of the N. agilis oxidase is 50% inhibited by 1 microM KCN, while 50% inhibition of the activity requires 100 microM KCN in the case of the N. europaea enzyme.  相似文献   

19.
Electron transfer process in cytochrome oxidase after pulse radiolysis   总被引:3,自引:0,他引:3  
The reduction of bovine heart cytochrome oxidase by the 1-methylnicotinamide (MNA) radical was investigated by the use of pulse radiolysis. With the decay of the MNA radical, the absorption at 445 and 605 nm, a characteristic to ferrous heme a of the oxidase, increased. The kinetic difference spectrum obtained was similar to that of the fully reduced minus the fully oxidized form of the oxidase, and was not different from that obtained in the reaction of the MNA radical with the mixed valence CO complex of the oxidase, where heme a3 is the CO-bound reduced form with heme a oxidized. This suggests that the absorption changes at 445 and 605 nm arise from the reduction of heme a, not heme a3. In order to elucidate the contribution of "visible" copper in this reaction, the absorption of the oxidase in the near-infrared region was measured. A decrease of the 830 nm band due to the reduction of visible copper was detected with a half-life of 5 microseconds. This absorption change obeyed pseudo-first order kinetics and its rate constant increased with the concentration of the oxidase. This suggests that the absorption change at 830 nm is followed by a bimolecular reaction of the MNA radical with visible copper of the oxidase. After the first phase of the reduction, the return of the 830 nm band corresponding to oxidation of the copper was observed with a half-life of 100 microseconds. Concomitantly, the absorption at 605 and 445 nm due to the reduction of heme a increased. The rates of oxidation of the copper were identical to those of the reduction of heme a and independent of the oxidase concentration. This suggests that the MNA radical reacts with visible copper of the oxidase with a second order rate constant of 1.5 X 10(9) m-1 s-1 and subsequently the electron flows to heme a by intramolecular electron migration with a first order rate constant of 1.8 X 10(4) s-1. An activation energy of the intramolecular electron transfer was calculated to be 2.8 kcal/mol in the range 4-33 degrees C.  相似文献   

20.
Structural and catalytic properties of copper in lysyl oxidase   总被引:3,自引:0,他引:3  
The spectral and catalytic properties of the copper cofactor in highly purified bovine aortic lysyl oxidase have been examined. As isolated, various preparations of purified lysyl oxidase are associated with 5-9 loosely bound copper atoms per molecule of enzyme which are removed by dialysis against EDTA. The enzyme also contains 0.99 +/- 0.10 g atom of tightly bound copper per 32-kDa monomer which is not removed by this treatment. The copper-free apoenzyme, prepared by dialysis of lysyl oxidase against alpha,alpha'-dipyridyl in 6 M urea, catalyzed neither the oxidative turnover of amine substrates nor the anaerobic production of aldehyde at levels stoichiometric with enzyme active site content, thus contrasting with the ping pong metalloenzyme. Moreover, the spectrum of the apoenzyme was not measurably perturbed upon anaerobic incubation with n-butylamine, while difference absorption bands were generated at 250 and 308 nm in the spectrum of the metalloenzyme incubated under the same conditions. A difference absorption band also developed at 300-310 nm upon anaerobic incubation of pyrroloquinoline quinone, the putative carbonyl cofactor of lysyl oxidase, with n-butylamine. Full restoration of catalytic activity occurred upon the reconstitution of the apoenzyme with 1 g atom of copper/32-kDa monomer, whereas identical treatment of the apoenzyme with divalent salts of zinc, cobalt, iron, mercury, magnesium, or cadmium failed to restore catalytic activity. The EPR spectrum of copper in lysyl oxidase is typical of the tetragonally distorted, octahedrally coordinated Cu(II) sites observed in other amine oxidases and indicates coordination by at least three nitrogen ligands. The single copper atom in the lysyl oxidase monomer is thus essential at least for the catalytic and possibly for the structural integrity of this protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号