首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study we characterized 47 food-borne isolates of Bacillus cereus using multilocus sequence typing (MLST). Newly determined sequences were combined with sequences available in public data banks in order to produce the largest data set possible. Phylogenetic analysis was performed on a total of 296 strains for which MLST sequence information is available, and three main lineages—I, II, and III—within the B. cereus complex were identified. With few exceptions, all food-borne isolates were in group I. The occurrence of horizontal gene transfer (HGT) among various strains was analyzed by several statistical methods, providing evidence of widespread lateral gene transfer within B. cereus. We also investigated the occurrence of toxin-encoding genes, focusing on their evolutionary history within B. cereus. Several patterns were identified, indicating a pivotal role of HGT in the evolution of toxin-encoding genes. Our results indicate that HGT is an important element in shaping the population structure of the B. cereus complex. The results presented here also provide strong evidence of reticulate evolution within the B. cereus complex.  相似文献   

2.
Many strains of Bacillus cereus cause gastrointestinal diseases, and the closely related insect pathogen B. thuringiensis has also been involved in outbreaks of diarrhea. The diarrheal types of diseases are attributed to enterotoxins. Two different enterotoxic protein complexes, hemolysin BL (HBL) and nonhemolytic enterotoxin (NHE), and an enterotoxic protein, enterotoxin T, have been characterized, and the genes have been sequenced. PCR primers for the detection of these genes were deduced and used to detect the genes in 22 B. cereus and 41 B. thuringiensis strains. At least one gene of each of the two protein complexes HBL and NHE was detected in all of the B. thuringiensis strains, while six B. cereus strains were devoid of all three HBL genes, three lacked at least two of the three NHE genes, and one lacked all three. Five different sets of primers were used for detection of the gene (bceT) encoding enterotoxin T. The results obtained with these primer sets indicate that bceT is widely distributed among B. cereus and B. thuringiensis strains and that the gene varies in sequence among different strains. PCR with the two primer sets BCET1-BCET3 and BCET1-BCET4 unambiguously detected the bceT gene, as confirmed by Southern analysis. The occurrence of the genes within the two complexes is significantly associated, while neither the occurrence of the two complexes nor the occurrence of the bceT gene is significantly associated in the 63 strains. We suggest an approach for detection of enterotoxin-encoding genes in B. cereus and B. thuringiensis based on PCR analysis with the six primer sets for the detection of genes in the HBL and NHE operons and with the BCET1, BCET3, and BCET4 primers for the detection of bceT. PCR analysis of the 16S-23S rRNA gene internal transcribed spacer region revealed identical patterns for all strains studied.  相似文献   

3.
Twenty-four strains of Bacillus cereus were analyzed by pulsed-field gel electrophoresis (PFGE) and compared with 12 Bacillus thuringiensis strains. In addition, the 36 strains were examined for variation in 15 chromosomal genes encoding enzymes (by multilocus enzyme electrophoresis [MEE]). The genome of each strain had a distinct NotI restriction enzyme digestion profile by PFGE, and the 36 strains could be assigned to 27 multilocus genotypes by MEE. However, neither PFGE nor MEE analysis could distinguish between the two species. Two of the B. cereus strains contained extrachromosomal DNA that hybridized to a cryIA insecticidal toxin probe, and seven strains contained DNA with homology to a Tn4430 transposon probe derived from B. thuringiensis. The results strongly indicate that B. cereus and B. thuringiensis should be regarded as one species.  相似文献   

4.
Bacillus cereus strains that are genetically closely related to B. anthracis can display anthrax-like virulence traits (A. R. Hoffmaster et al., Proc. Natl. Acad. Sci. USA 101:8449-8454, 2004). Hence, approaches that rapidly identify these “near neighbors” are of great interest for the study of B. anthracis virulence mechanisms, as well as to prevent the use of such strains for B. anthracis-based bioweapon development. Here, a strategy is proposed for the identification of near neighbors of B. anthracis based on single nucleotide polymorphisms (SNP) in the 16S-23S rRNA intergenic spacer (ITS) containing tRNA genes, characteristic of B. anthracis. By using restriction site insertion-PCR (RSI-PCR) the presence of two SNP typical of B. anthracis was screened in 126 B. cereus group strains of different origin. Two B. cereus strains and one B. thuringiensis strain showed RSI-PCR profiles identical to that of B. anthracis. The sequencing of the entire ITS containing tRNA genes revealed two of the strains to be identical to B. anthracis. The strict relationship with B. anthracis was confirmed by multilocus sequence typing (MLST) of four other independent loci: cerA, plcR, AC-390, and SG-749. The relationship to B. anthracis of the three strains described by MLST was comparable and even higher to that of four B. cereus strains associated with periodontitis in humans and previously reported as the closest known strains to B. anthracis. SNP in ITS containing tRNA genes combined with RSI-PCR provide a very efficient tool for the identification of strains closely related to B. anthracis.  相似文献   

5.
In this study we developed a multilocus sequence typing (MLST) scheme for bacteria of the Bacillus cereus group. This group, which includes the species B. cereus, B. thuringiensis, B. weihenstephanensis, and B. anthracis, is known to be genetically very diverse. It is also very important because it comprises pathogenic organisms as well as bacteria with industrial applications. The MLST system was established by using 77 strains having various origins, including humans, animals, food, and soil. A total of 67 of these strains had been analyzed previously by multilocus enzyme electrophoresis, and they were selected to represent the genetic diversity of this group of bacteria. Primers were designed for conserved regions of housekeeping genes, and 330- to 504-bp internal fragments of seven such genes, adk, ccpA, ftsA, glpT, pyrE, recF, and sucC, were sequenced for all strains. The number of alleles at individual loci ranged from 25 to 40, and a total of 53 allelic profiles or sequence types (STs) were distinguished. Analysis of the sequence data showed that the population structure of the B. cereus group is weakly clonal. In particular, all five B. anthracis isolates analyzed had the same ST. The MLST scheme which we developed has a high level of resolution and should be an excellent tool for studying the population structure and epidemiology of the B. cereus group.  相似文献   

6.
Robust genotyping methods for Lactobacillus casei are needed for strain tracking and collection management, as well as for population biology research. A collection of 52 strains initially labeled L. casei or Lactobacillus paracasei was first subjected to rplB gene sequencing together with reference strains of Lactobacillus zeae, Lactobacillus rhamnosus, and other species. Phylogenetic analysis showed that all 52 strains belonged to a single compact L. casei-L. paracasei sequence cluster, together with strain CIP107868 (= ATCC 334) but clearly distinct from L. rhamnosus and from a cluster with L. zeae and CIP103137T (= ATCC 393T). The strains were genotyped using amplified fragment length polymorphism, multilocus sequence typing based on internal portions of the seven housekeeping genes fusA, ileS, lepA, leuS, pyrG, recA, and recG, and tandem repeat variation (multilocus variable-number tandem repeats analysis [MLVA] using nine loci). Very high concordance was found between the three methods. Although amounts of nucleotide variation were low for the seven genes (π ranging from 0.0038 to 0.0109), 3 to 12 alleles were distinguished, resulting in 31 sequence types. One sequence type (ST1) was frequent (17 strains), but most others were represented by a single strain. Attempts to subtype ST1 strains by MLVA, ribotyping, clustered regularly interspaced short palindromic repeat characterization, and single nucleotide repeat variation were unsuccessful. We found clear evidence for homologous recombination during the diversification of L. casei clones, including a putative intragenic import of DNA into one strain. Nucleotides were estimated to change four times more frequently by recombination than by mutation. However, statistical congruence between individual gene trees was retained, indicating that recombination is not frequent enough to disrupt the phylogenetic signal. The developed multilocus sequence typing scheme should be useful for future studies of L. casei strain diversity and evolution.  相似文献   

7.
One hundred and thirty-seven strains of Bacillus thuringiensis and 35 strains of Bacillus cereus were tested for the presence or absence of 99 traits. An analysis of these data indicated that strains of B. thuringiensis were indistinguishable from B. cereus, except for their ability to produce parasporal crystals. This conclusion was based on a comparison of the phenotypic properties of B. thuringiensis and B. cereus, as well as on the results of numerical analyses of the data which grouped strains into clusters on the basis of phenotypic similarity. In the resulting dendrograms, strains of B. thuringiensis and B. cereus were interspersed, exhibiting no tendency to segregate. In addition, with the exception of serovar israelensis, strains on B. thuringiensis belonging to the same flagellar serovar showed little or no tendency to group in different clusters. A comparison of the phenotypic differences between serovars indicated that the greater the number of strains in the serovars, the fewer, if any, phenotypic traits separating them. This suggests that the properties reported to differentiate serovars can be attributed to the internal phenotypic diversity of the species. Characterization of 10 mosquitocidal strains of Bacillus sphaericus indicated that the traits employed in this study readily distinguished these highly related organisms from strains of B. thuringiensis and B. cereus.  相似文献   

8.
A total of 119 Bacillus thuringiensis strains (83 type strains and 26 native isolates), as well as five B. cereus group species, were analyzed by repetitive extragenic palindromic sequence-based PCR analysis (Rep-PCR) fingerprinting. Primers Bc-REP-1 and Bc-REP-2 were specifically designed according to an extragenic 26-bp repeated sequence found in the six B. cereus group genomes reported. A total of 47 polymorphic bands were detected, and the patterns varied from 5 to 13 bands in number and from 0.2 to 3.8 kb in size. Virtually each type strain showed a distinctive B. cereus (Bc)-Rep-PCR pattern, except for B. thuringiensis serovars dakota (H serotype 15 [H15]) and sotto (H4a,4b), as well as serovars amagiensis (H29) and seoulensis (H35), which shared the same patterns. As expected, serovar entomocidus (H6) and its biovar subtoxicus showed an identical pattern; similarly, serovars sumiyoshiensis (H3a,3d) and fukuokaensis (H3a,3d,3e), which share two antigenic determinants, also showed identical Bc-Rep-PCR patterns. Interestingly, serovars israelensis (H14) and malaysiensis (H36), which share several phenotypic attributes, also showed identical Bc-Rep-PCR patterns. Native, coleopteran-active strains, including the self-agglutinated LBIT-74 strain, showed Bc-Rep-PCR patterns identical or very similar to that of the tenebrionis strain. Likewise, native mosquitocidal strains (including some self-agglutinated strains) also showed patterns identical or very similar to that of the serovar israelensis IPS-82 strain. Additionally, native β-exotoxin-producing strains from serovar thuringiensis showed patterns identical to that of the B. thuringiensis type strain. The B. cereus group-specific Bc-Rep-PCR fingerprinting technique was shown to be highly discriminative, fast, easy, and able to identify B. thuringiensis serotypes, including nonflagellar and self-agglutinated strains.  相似文献   

9.
Abstract Flagellar antigen of Bacillus cereus H.1 was purified and tested for serodiagnostic antigen by ELISA. The antibody against the flagellar antigen of B. cereus H.1 reacted not only with the homologous specific antigen but also reacted with the flagellar antigens of 23 strains of B. cereus . This common flagellar antigen of B. cereus was found to be due to 61-kDa protein by SDS-PAGE and immunoblot assay. Monoclonal antibody H15A5 against common antigenic epitope of B. cereus also reacted with flagellar antigens of 21 strains of Bacillus thuringiensis by ELISA. This monoclonal antibody reacted with the 61-kDa protein of the flagella of B. cereus H.1 and H.2 and B. thuringiensis Kurstaki HD1, Alesti and Aizawai juroi by immunoblot analysis. These results indicated that the common antigenic epitope of the 61-kDa protein existed in the flagella both of B. cereus and B. thuringiensis .  相似文献   

10.
Anaplasma phagocytophilum is a Gram-negative obligate intracellular bacterium that replicates in neutrophils. It is transmitted via tick-bite and causes febrile disease in humans and animals. Human granulocytic anaplasmosis is regarded as an emerging infectious disease in North America, Europe and Asia. However, although increasingly detected, it is still rare in Europe. Clinically apparent A. phagocytophilum infections in animals are mainly found in horses, dogs, cats, sheep and cattle. Evidence from cross-infection experiments that A. phagocytophilum isolates of distinct host origin are not uniformly infectious for heterologous hosts has led to several approaches of molecular strain characterization. Unfortunately, the results of these studies are not always easily comparable, because different gene regions and fragment lengths were investigated. Multilocus sequence typing is a widely accepted method for molecular characterization of bacteria. We here provide for the first time a universal typing method that is easily transferable between different laboratories. We validated our approach on an unprecedented large data set of almost 400 A. phagocytophilum strains from humans and animals mostly from Europe. The typability was 74% (284/383). One major clonal complex containing 177 strains was detected. However, 54% (49/90) of the sequence types were not part of a clonal complex indicating that the population structure of A. phagocytophilum is probably semiclonal. All strains from humans, dogs and horses from Europe belonged to the same clonal complex. As canine and equine granulocytic anaplasmosis occurs frequently in Europe, human granulocytic anaplasmosis is likely to be underdiagnosed in Europe. Further, wild boars and hedgehogs may serve as reservoir hosts of the disease in humans and domestic animals in Europe, because their strains belonged to the same clonal complex. In contrast, as they were only distantly related, roe deer, voles and shrews are unlikely to harbor A. phagocytophilum strains infectious for humans, domestic or farm animals.  相似文献   

11.
用MLVA技术和多重PCR对犬种布氏菌基因分型   总被引:2,自引:0,他引:2  
目的:对犬种布氏菌的遗传关系进行不同分子分型方法的对比研究,为犬布病分子流行病溯源提供有效方法。方法:采用多重PCR和多位点可变数量串联重复序列分析(MLVA)方法对24株犬种布氏菌的遗传关系进行比较研究。结果:多重PCR只鉴定出1株犬种布氏菌,其余23株均鉴定为猪种鲁氏菌,但不能鉴定型别;MLVA方法对已鉴定为猪种的布氏菌仍可再细分为型,87%(20/23)为猪3型,13%(3/20)为猪1型。结论:MLVA可以对布氏菌种(生物型)进行基因分型鉴定,可以作为传统表型鉴定方法的补充。  相似文献   

12.
During investigation of a gastroenteritis outbreak in a chronic care institution, Norwalk virus was found in stool specimens from two individuals and bacterial isolates presumptively identified as Bacillus cereus were isolated from four individuals (including one with Norwalk virus) and spice. Phage typing confirmed all Bacillus clinical isolates were phage type 2. All clinical isolates were subsequently identified as B. thuringiensis when tested as a result of a related study (L. Leroux, personal communication). Eight of 10 spice isolates were phage type 4. All B. cereus and B. thuringiensis isolates showed cytotoxic effects characteristic of enterotoxin-producing B. cereus . An additional 20 isolates each of B. cereus and B. thuringiensis from other sources were tested for cytotoxicity. With the exception of one B. cereus , all showed characteristic cytotoxic patterns.  相似文献   

13.
Three Bacillus anthracis Sterne strains (USAMRIID, 7702, and 34F2) and Bacillus cereus ATCC 14579 excrete two catecholate siderophores, petrobactin (which contains 3,4-dihydroxybenzoyl moieties) and bacillibactin (which contains 2,3-dihydroxybenzoyl moieties). However, the insecticidal organism Bacillus thuringiensis ATCC 33679 makes only bacillibactin. Analyses of siderophore production by previously isolated [Cendrowski et al., Mol. Microbiol. 52 (2004) 407-417] B. anthracis mutant strains revealed that the B. anthracis bacACEBF operon codes for bacillibactin production and the asbAB gene region is required for petrobactin assembly. The two catecholate moieties also were synthesized by separate routes. PCR amplification identified both asbA and asbB genes in the petrobactin producing strains whereas B. thuringiensis ATCC 33679 retained only asbA. Petrobactin synthesis is not limited to the cluster of B. anthracis strains within the B. cereus sensu lato group (in which B. cereus, B. anthracis, and B. thuringiensis are classified), although petrobactin might be prevalent in strains with pathogenic potential for vertebrates.  相似文献   

14.
A hemolysin (Bt-hemolysin) produced by Bacillus thuringiensis var. kurstaki HD-1 producing crystalline toxin(s) was purified by successive treatments of ammonium sulfate (45-65%) and column chromatography using DEAE-cellulose, Sephadex G-75 and KB-002 (a hydroxyapatite column for fast protein liquid chromatography). A hemolysin (Bc-hemolysin) produced by B. cereus HG-6A was also purified by the same procedure. The purified Bt-hemolysin and Bc-hemolysin, both of which are thiol-activated hemolysins, were biologically, physicochemically and immunologically identical. These findings provide further evidence of the similarity of B. thuringiensis, which is being used as a biological insecticide, to B. cereus, a toxigenic organism of food poisoning.  相似文献   

15.
Detection of psychrotrophic strains (those able to grow at or below 7°C) of the Bacillus cereus group (Bacillus cereus, Bacillus thuringiensis, and Bacillus mycoides) in food products is at present extremely slow with conventional microbiology. This is due to an inability to discriminate these cold-adapted strains from their mesophilic counterparts (those able to grow only above 7°C) by means other than growth at low temperature, which takes 5 to 10 days for detection. Here we report the development of a single PCR assay that, using major cold shock protein-specific primers and appropriate annealing temperatures, is capable of both rapidly identifying bacteria of the B. cereus group and discriminating between psychrotrophic and mesophilic strains. It is intended that this development help to more accurately predict the shelf life of refrigerated pasteurized food and dairy products and to reduce the incidence of food poisoning by psychrotrophic strains of the B. cereus group.  相似文献   

16.
  • 1.1. Spore coat extracts from Bacillus thuringiensis subspecies kurstaki and israelensis and Bacillus cereus T and B. cereus NRRL 569 were characterized by polyacrylamide gel electrophoresis in sodium dodecyl sulfate and by amino acid analysis.
  • 2.2. Both B. cereus spore coats had similar electrophoretic profiles.
  • 3.3. The B. thuringiensis spore coats contained crystal proteins as major components as well as lower mol. wt proteins.
  • 4.4. B. thuringiensis subsp. israelensis had a unique coat protein profile which was different from B. cereus and B. thuringiensis subsp. kurstaki coats.
  • 5.5. Insecticidal activity of spores against the tobacco hornworm, Manduca sexta, and the mosquito, Aedes aegypti, also was determined.
  • 6.6. B. thuringiensis subsp. kurstaki spores were lethally toxic to the tobacco hornworm (Lepidoptera) larvae, whereas spores of the other subspecies were not.
  • 7.7. Except for subspecies israelensis, none of the spores was effective against the mosquito (Diptera) larvae.
  相似文献   

17.
Little is known about genetic exchanges in natural populations of bacteria of the spore-forming Bacillus cereus group, because no population genetics studies have been performed with local sympatric populations. We isolated strains of Bacillus thuringiensis and B. cereus from small samples of soil collected at the same time from two separate geographical sites, one within the forest and the other at the edge of the forest. A total of 100 B. cereus and 98 B. thuringiensis strains were isolated and characterized by electrophoresis to determine allelic composition at nine enzymatic loci. We observed genetic differentiation between populations of B. cereus and B. thuringiensis. Populations of a given Bacillus species—B. thuringiensis or B. cereus—were genetically more similar to each other than to populations of the other Bacillus species. Hemolytic activity provided further evidence of this genetic divergence, which remained evident even if putative clones were removed from the data set. Our results suggest that the rate of gene flow was higher between strains of the same species, but that exchanges between B. cereus and B. thuringiensis were nonetheless possible. Linkage disequilibrium analysis revealed sufficient recombination for B. cereus populations to be considered panmictic units. In B. thuringiensis, the balance between clonal proliferation and recombination seemed to depend on location. Overall, our data indicate that it is not important for risk assessment purposes to determine whether B. cereus and B. thuringiensis belong to a single or two species. Assessment of the biosafety of pest control based on B. thuringiensis requires evaluation of the extent of genetic exchange between strains in realistic natural conditions.  相似文献   

18.
Little is known about genetic exchanges in natural populations of bacteria of the spore-forming Bacillus cereus group, because no population genetics studies have been performed with local sympatric populations. We isolated strains of Bacillus thuringiensis and B. cereus from small samples of soil collected at the same time from two separate geographical sites, one within the forest and the other at the edge of the forest. A total of 100 B. cereus and 98 B. thuringiensis strains were isolated and characterized by electrophoresis to determine allelic composition at nine enzymatic loci. We observed genetic differentiation between populations of B. cereus and B. thuringiensis. Populations of a given Bacillus species--B. thuringiensis or B. cereus--were genetically more similar to each other than to populations of the other Bacillus species. Hemolytic activity provided further evidence of this genetic divergence, which remained evident even if putative clones were removed from the data set. Our results suggest that the rate of gene flow was higher between strains of the same species, but that exchanges between B. cereus and B. thuringiensis were nonetheless possible. Linkage disequilibrium analysis revealed sufficient recombination for B. cereus populations to be considered panmictic units. In B. thuringiensis, the balance between clonal proliferation and recombination seemed to depend on location. Overall, our data indicate that it is not important for risk assessment purposes to determine whether B. cereus and B. thuringiensis belong to a single or two species. Assessment of the biosafety of pest control based on B. thuringiensis requires evaluation of the extent of genetic exchange between strains in realistic natural conditions.  相似文献   

19.
Three species of the Bacillus cereus group (Bacillus cereus, Bacillus anthracis, and Bacillus thuringiensis) have a marked impact on human activity. Bacillus cereus and B. anthracis are important pathogens of mammals, including humans, and B. thuringiensis is extensively used in the biological control of insects. The microbiological, biochemical, and genetic characteristics of these three species are reviewed, together with a discussion of several genomic studies conducted on strains of B. cereus group. Using bacterial systematic concepts, we speculate that to understand the taxonomic relationship within this group of bacteria, special attention should be devoted also to the ecology and the population genetics of these species.  相似文献   

20.
We examined 154 Norwegian B. cereus and B. thuringiensis soil isolates (collected from five different locations), 8 B. cereus and 2 B. thuringiensis reference strains, and 2 Bacillus anthracis strains by using fluorescent amplified fragment length polymorphism (AFLP). We employed a novel fragment identification approach based on a hierarchical agglomerative clustering routine that identifies fragments in an automated fashion. No method is free of error, and we identified the major sources so that experiments can be designed to minimize its effect. Phylogenetic analysis of the fluorescent AFLP results reveals five genetic groups in these group 1 bacilli. The ATCC reference strains were restricted to two of the genetic groups, clearly not representative of the diversity in these bacteria. Both B. anthracis strains analyzed were closely related and affiliated with a B. cereus milk isolate (ATCC 4342) and a B. cereus human pathogenic strain (periodontitis). Across the entire study, pathogenic strains, including B. anthracis, were more closely related to one another than to the environmental isolates. Eight strains representing the five distinct phylogenetic clusters were further analyzed by comparison of their 16S rRNA gene sequences to confirm the phylogenetic status of these groups. This analysis was consistent with the AFLP analysis, although of much lower resolution. The innovation of automated genotype analysis by using a replicated and statistical approach to fragment identification will allow very large sample analyses in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号