首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The functional relationship between ganglioside GM(3) and two tyrosine-kinase receptors, the normal protein p185(c-neu) and the mutant oncogenic protein p185(neu), was examined in HC11 cells and in MG1361 cells, respectively. In the former, p185(c-neu) expression and activation are controlled by EGF addition to the culture medium and by epidermal growth factor receptor (EGFR) activity, whereas the latter express unchangingly high levels of constitutively activated p185(neu). Studies were carried out using (+/-)-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol hydrochloride ([D]-PDMP), which inhibits ganglioside biosynthesis resulting in ganglioside depletion, and addition of exogenous GM(3) to the culture medium. In HC11 cells treated with only [D]-PDMP, p185(c-neu) levels remain similar to control cells, whereas levels of tyrosine-phosphorylated p185(c-neu) increase after treatment with [D]-PDMP in combination with EGF. When exogenous GM(3) is added in combination with [D]-PDMP and EGF, the enhanced phosphorylated-p185(c-neu) returns to control levels. Interestingly, EGFR levels also vary and, analogously to phosphorylated-p185(c-neu), the increase of EGFR content consequent to the [D]-PDMP and EGF addition is reversed by exogenous GM(3). In contrast, the addition of neither [D]-PDMP nor exogenous GM(3) modifies expression and tyrosine-phosphorylation levels of p185(neu) in MG1361 cells. These findings indicate that changes in GM(3) content modulate the tyrosine-phosphorylated p185(c-neu) levels in a reversible manner, but this is not specific for p185(c-neu) because EGFR levels are also modified. Furthermore, these data suggest that GM(3) may play a functional role by affecting the internalisation pathway of p185(c-neu)/EGFR heterodimers, but not of p185(neu) homodimers.  相似文献   

2.
Gangliosides are well-known regulators of cell differentiation through specific interactions with growth factor receptors. Previously, our group provided the first evidence about stable association of ganglioside GM3 to EGFR/ErbB2 heterodimers in mammary epithelial cells. Goals of the present study were to better define the role of gangliosides in EGFR/ErbB2 heterodimerization and receptor phosphorylation events and to analyze their involvement in mammary cell differentiation. Experiments have been conducted using the ceramide analogue (+/−)-treo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol hydrochloride ([D]-PDMP), which inhibits ceramide glucosyltransferase resulting in the endogenous ganglioside depletion, and the lactogenic hormone mix DIP (dexamethasone, insulin, prolactin), which induces cell differentiation and β-casein mRNA synthesis. In addition, treatments of ganglioside-depleted cells with exogenous GM3 have been carried out to ascertain the specific involvement of this ganglioside. Results from co-immunoprecipitation and Western blot experiments have shown that the endogenous ganglioside depletion resulted in the disappearance of SDS-stable EGFR/ErbB2 heterodimers and in the appearance of tyrosine-phosphorylated EGFR also in the absence of EGF stimulation; exogenous GM3 added in combination with [D]-PDMP reversed both these effects. In contrast, the tyrosine phosphorylation of ErbB2 in ganglioside-depleted cells occurred only after EGF stimulation. Moreover, when ganglioside-depleted cells were treated with DIP in absence of EGF, β-casein gene expression appeared strongly down-regulated, and β-casein mRNA levels were partially restored by exogenous GM3 treatment. Altogether, although the involvement of other ganglioside species cannot be excluded, these findings sustain the ganglioside GM3 as an essential molecule for EGFR/ErbB2 heterodimer stability and important regulator of EGFR tyrosine phosphorylation, but it is not crucial for tyrosine phosphorylation of the heterodimerization partner ErbB2. Moreover, modulation of EGFR phosphorylation may explain how gangliosides contribute to regulate the lactogenic hormone-induced mammary cell differentiation.  相似文献   

3.
Previously it was reported (Bremer, E.G., Schlessinger, J., and Hakomori, S.-I. (1986) J. Biol. Chem. 261, 2434-2440) that ganglioside GM3 inhibited epidermal growth factor (EGF)-stimulated phosphorylation of the EGF receptor in Triton X-100-treated preparations of human epidermoid carcinoma (A431) cell membranes. In addition, these authors reported that GM3 inhibited the growth of A431 cells. In contrast, a modified ganglioside, de-N-acetyl GM3, enhanced the EGF-dependent tyrosine kinase activity of the EGF receptor. In this work and in subsequent studies (Hanai, N., Dohi, T., Nores, G. A., and Hakomori, S.-I. (1988) J. Biol. Chem. 263, 6296-6301), the tyrosine kinase activity of the receptor from A431 cell membranes was assayed in the presence of Triton X-100. In this report, we confirm that GM3 inhibited and de-N-acetyl GM3 stimulated EGF receptor autophosphorylation in the presence of Triton X-100. However, in the absence of detergents, ganglioside GM3 inhibited EGF-stimulated receptor autophosphorylation, whereas de-N-acetyl GM3 had no effect on EGF-stimulated receptor autophosphorylation. The effects of these gangliosides on receptor autophosphorylation were measured in both A431 cell plasma membranes and in 3T3 cell membranes permeabilized to [32P]ATP by a freeze-thaw procedure, in intact A431 cells permeabilized with alamethicin, and in intact A431 cells grown in the presence of [32P]orthophosphate. Thus, the inhibitory effect of GM3 on receptor autophosphorylation was demonstrated in the presence and in the absence of detergent; the stimulatory effect of de-N-acetyl GM3 was observed only in the presence of detergent. We also demonstrate that ganglioside GM3 inhibited EGF-stimulated growth of transfected murine fibroblasts (3T3) that express the gene for human EGF receptor (Velu, T. J., Beguinot, L., Vass, W. C., Zhang, K., Pastan, I., and Lowy, D. R. (1989) J. Cell. Biochem. 39, 153-166). De-N-acetyl ganglioside GM3 had no effect on the growth of these cells. Growth of control fibroblasts, which lack endogenous EGF receptors (Pruss, R. M., and Herschman, H. R. (1977) Proc. Natl. Acad. Sci. U.S.A. 74, 3918-3921), was not affected by the presence of either ganglioside. Similarly, ganglioside GM3, but not de-N-acetyl ganglioside GM3, inhibited the EGF-dependent incorporation of [3H]thymidine into DNA by transfected fibroblasts. Incorporation of labeled thymidine into DNA of control fibroblasts was not affected by the presence of either ganglioside. These studies indicate that ganglioside GM3, but not its deacetylated analogue, can affect EGF receptor kinase activity in intact membranes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Ganglioside GM3 inhibits epidermal growth factor (EGF)-dependent cell proliferation in a variety of cell lines. Both in vitro and in vivo, this glycosphingolipid inhibits the kinase activity of the EGF receptor (EGFR). Furthermore, membrane preparations containing EGFR can bind to GM3-coated surfaces. These data suggest that GM3 may interact directly with the EGFR. In this study, the interaction of gangliosides with the extracellular domain (ECD) of the EGFR was investigated. The purified human recombinant ECD from insect cells bound directly to ganglioside GM3. The ganglioside interaction site appears to be distinct from the EGF-binding site. In agreement with previous reports on the effects of specific gangliosides on EGFR kinase activity, the ECD preferentially interacted with GM3. The order of relative binding of other gangliosides investigated was as follows: GM3 GM2, GD3, GM4 > GM1, GD1a, GD1b, GT1b, GD2, GQ1b > lactosylceramide. These data suggest that NeuAc-lactose is essential for binding and that any sugar substitution reduces binding. In agreement with the specificity of soluble ECD binding to gangliosides, GM3 specifically inhibited EGFR autophosphorylation. Identification of a ganglioside interaction site on the ECD of the EGFR is consistent with the hypothesis that endogenous GM3 may function as a direct modulator of EGFR activity.  相似文献   

5.
Although caveolin-1 is thought to facilitate the interaction of receptors and signaling components, its role in epidermal growth factor receptor (EGFR) signaling remains poorly understood. Ganglioside GM3 inhibits EGFR autophosphorylation and may thus affect the interaction of caveolin-1 and the EGFR. We report here that endogenous overexpression of GM3 leads to the clustering of GM3 on the cell membrane of the keratinocyte-derived SCC12 cell line and promotes co-immunoprecipitation of caveolin-1 and GM3 with the EGFR. Overexpression of GM3 does not affect EGFR distribution but shifts caveolin-1 to the detergent-soluble, EGFR-containing region; consistently, caveolin-1 is retained in the detergent-insoluble membrane when ganglioside is depleted. GM3 overexpression inhibits EGFR tyrosine phosphorylation and receptor dimerization and concurrently increases both the content and tyrosine phosphorylation of EGFR-associated caveolin-1, providing evidence that tyrosine phosphorylation of caveolin-1 inhibits EGFR signaling. Consistently, depletion of ganglioside both increases EGFR phosphorylation and prevents the EGF-induced tyrosine phosphorylation of caveolin-1. GM3 also induces delayed serine phosphorylation of EGFR-unassociated caveolin-1, suggesting a role for serine phosphorylation of caveolin-1 in regulating EGFR signaling. These studies suggest that GM3 modulates the caveolin-1/EGFR association and is critical for the EGF-induced tyrosine phosphorylation of caveolin-1 that is associated with its inhibition of EGFR activation.  相似文献   

6.
We analyzed the role of gangliosides in the association of the ErbB2 receptor tyrosine-kinase (RTK) with lipid rafts in mammary epithelial HC11 cells. Scanning confocal microscopy experiments revealed a strict ErbB2-GM3 colocalization in wild-type cells. In addition, analysis of membrane fractions obtained using a linear sucrose gradient showed that ErbB2, epidermal growth factor receptor (EGFR) and Shc-p66 (proteins correlated with the ErbB2 signal transduction pathway) were preferentially enriched in lipid rafts together with gangliosides. Blocking of endogenous ganglioside synthesis by (+/-)-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol hydrochloride ([D]-PDMP) induced a drastic cell-surface redistribution of ErbB2, EGFR and Shc-p66, within the Triton-soluble fractions, as revealed by linear sucrose-gradient analysis. This redistribution was partially reverted when exogenous GM3 was added to ganglioside-depleted HC11 cells. The results point out the key role of ganglioside GM3 in retaining ErbB2 and signal-transduction-correlated proteins in lipid rafts.  相似文献   

7.
Gangliosides are shed by tumor cells and can bind to normal cells in the tumor microenvironment and affect their function. Exposure of fibroblasts to exogenous gangliosides increases epidermal growth factor (EGF)-induced fibroblast proliferation and enhances EGF receptor (EGFR)-mediated activation of the mitogen-activated protein kinase signaling pathway (Li, R., Liu, Y., and Ladisch, S. (2001) J. Biol. Chem. 276, 42782-42792). Here we report that the EGFR itself is the target of this ganglioside effect: Preincubation of normal human dermal fibroblasts with G(D1a) ganglioside enhanced both EGF-induced EGFR autophosphorylation and receptor-tyrosine kinase activity. The enhancement was rapid (within 30 min), not due to alteration of time kinetics of the EGFR response to EGF, and reproduced in purified G(D1a)-enriched cell membranes isolated from ganglioside-preincubated fibroblasts. Evaluating the initial steps underlying activation, EGF binding, and EGFR dimerization, we found that G(D1a) enrichment of the cell membrane increased EGFR dimerization and the effective number of high affinity EGFR without increasing total receptor protein. Unexpectedly, G(D1a) enrichment also triggered increased EGFR dimerization in the absence of growth factor. This resulted in enhanced activation of the EGFR signal transduction cascade when EGF was added. We conclude that membrane ganglioside enrichment of normal fibroblasts (such as by tumor cell ganglioside shedding) facilitates receptor-receptor interactions (possibly by altering membrane topology), causing ligand-independent EGFR dimerization and, in turn, enhanced EGF signaling.  相似文献   

8.
Gangliosides are known to modulate the activation of receptor tyrosine-kinases (RTKs). Recently, we demonstrated the functional relationship between ErbB2 and ganglioside GM(3) in HC11 epithelial cell line. In the present study we investigated, in the same cells, the ErbB2 activation state and its tendency to form stable molecular complexes with the epidermal growth factor receptor (EGFR) and with ganglioside GM(3) upon EGF stimulation. Results from co-immunoprecipitation experiments and western blot analyses indicate that tyrosine-phosphorylated ErbB2 and EGFR monomers and stable ErbB2/EGFR high molecular complexes (heterodimers) are formed following EGF stimulation, even if the receptors co-immunoprecipitates also in the absence of the ligand; these data suggest the existence of pre-dimerization inactive receptor clusters on the cell surface. High performance-thin layer chromatography (HP-TLC) and TLC-immunostaining analyses of the ganglioside fractions extracted from the immunoprecipitates demonstrate that GM(3), but not other gangliosides, is tightly associated to the tyrosine-phosphorylated receptors. Furthermore, we show that GM(3) is preferentially and in a SDS-resistant manner associated to the activated ErbB2/EGFR complexes and EGFR monomer, but not to ErbB2. Altogether our data support the hypothesis that the modulating effects produced by GM(3) on ErbB2 activation are mediated by EGFR.  相似文献   

9.
The epidermal growth factor receptor (EGFR) can be activated by both direct ligand binding and cross-talk with other molecules, such as integrins. This integrin-mediated cross-talk with growth factor receptors participates in regulating cell proliferation, survival, migration, and invasion. Previous studies have shown that ligand-dependent EGFR activation is inhibited by GM3, the predominant ganglioside of epithelial cells, but the effect of GM3 on ligand-independent, integrin-EGFR cross-talk is unknown. Using a squamous carcinoma cell line we show that endogenous accumulation of GM3 disrupts the ligand-independent association of the integrin beta1 subunit with EGFR and results in inhibition of cell proliferation. Consistently, endogenous depletion of GM3 markedly increases the association of EGFR with tyrosine-phosphorylated integrin beta1 and promotes cell proliferation. The ligand-independent stimulation of EGFR does not require focal adhesion kinase phosphorylation or cytoskeletal rearrangement. Stimulation of EGFR and mitogen-activated protein kinase signaling by GM3 depletion involves the phosphorylation of EGFR at tyrosine residues 845, 1068, and 1148 but not 1086 or 1173. The specific blockade of phosphorylation at Tyr-845 with Src family kinase inhibition and at Tyr-1148 with phosphatidylinositol 3-kinase inhibition suggests that GM3 inhibits integrin-induced, ligand-independent EGFR phosphorylation (cross-talk) through suppression of Src family kinase and phosphatidylinositol 3-kinase signaling.  相似文献   

10.
The inhibitory action of gangliosides GT1B, GD1A, GM3 and GM1 on cell proliferation and epidermal growth factor receptor (EGFR) phosphorylation was determined in the N-myc amplified human neuroblastoma cell line NBL-W. The IC50 of each ganglioside was estimated from concentration-response regressions generated by incubating NBL-W cells with incremental concentrations (5-1000 microm) of GT1B, GD1A, GM3 or GM1 for 4 days. Cell proliferation was quantitatively determined by a colourimetric assay using tetrazolium dye and spectrophotometric analysis, and EGFR phosphorylation by densitometry of Western blots. All gangliosides assayed, with the exception of GM1, inhibited NBL-W cell proliferation in a concentration-dependent manner. The IC50s for gangliosides GT1B [molecular weight (MW) 2129], GM3 (MW 1236), and GD1A (MW 1838) were (mean +/- SEM) 117 +/- 26, 255 +/- 29, and 425 +/- 44 m, respectively. In contrast, the IC50 for GM1 (MW 1547) could not be determined. Incubation of NBL-W cells with epidermal growth factor (EGF) concentrations ranging from 0.1 to 1000 ng/ml progressively increased cell proliferation rate, but it plateaued at concentrations above 10 ng/ml. EGFR tyrosine phosphorylation, however, was incrementally stimulated by EGF concentrations from 1 to 100 ng/ml. The suppression of EGF-induced EGFR phosphorylation differed for each ganglioside, and their respective inhibitory potencies were as follows: EGFR phosphorylation [area under curve (+ EGF)/area under curve (- EGF)]: control (no ganglioside added) = 8.2; GM1 = 8.3; GD1A = 6.7; GM3 = 4.87, and GT1B = 4.09. The lower the ratio, the greater the inhibitory activity of the ganglioside. Gangliosides GD1A and GT1B, which have terminal N-acetyl neuraminic acid moieties, as well as one and two N-acetyl neuraminic acid residues linked to the internal galactose, respectively, both inhibited cell proliferation and EGFR phosphorylation. However, GD1A was a more potent suppressor of cell proliferation and GT1B most effective against EGFR phosphorylation. GM3, which only has a terminal N-acetyl neuraminic acid, inhibited cell proliferation and EGFR phosphorylation almost equivalently. These data suggest that gangliosides differ in their potency as inhibitors of NBL-W neuroblastoma cell proliferation and EGFR tyrosine phosphorylation, and that perturbations in the differential expression of membrane glycosphingolipids may play a role in modulating neuroblastoma growth.  相似文献   

11.
Ganglioside GM3 inhibition of EGF receptor mediated signal transduction   总被引:3,自引:2,他引:1  
Ganglioside GM3 is a membrane component that has been describedto modulate cell growth through inhibition of EGF receptor associatedtyrosine kinase. In order to determine if the inhibition ofcell growth by this ganglioside is specifically mediated throughEGF receptor signaling, the effects of GM3 on key enzymes implicatedin EGF signaling were determined and compared to another inhibitorof the EGF receptor kinase. Treatment of A1S cells in cultureby GM3 or a tyrosine kinase inhibitor, leflunomide, led to theinhibition of MAP kinase and PI3 kinase activities. There wasno detectable effect on phosphotyrosine phosphatases. In a cellfree system, however, GM3 had no effect on the activity of thesesignaling intermediates. Leflunomide was able to directly inhibitMAP kinase activity. GM3 and leflunomide were also found toact differently on the expression of the early immediate genes.The expression of c-fos and c-jun was inhibited by both GM3and leflunomide. The expression of c-myc, however, was onlyinhibited by leflunomide. These findings suggest that the actionof GM3 on cell growth and signaling is specifically mediatedby EGF receptor and that this ganglioside does not act directlyon the intracellular intermediates of EGF receptor signaling.In addition, soluble small molecule tyrosine kinase inhibitorssuch as leflunomide can directly affect the activity of MAPkinases and possibly other signaling intermediates. The directeffects of leflunomide on signaling intermediates may explainthe differential effects of leflunomide and GM3 on gene expressionand cell growth. cell growth epidermal growth factor gangliosides GM3 signal transduction  相似文献   

12.
Growth of epidermoid carcinoma cell lines, A431 and KB, has been known to be controlled by the interaction of epidermal growth factor (EGF) and its receptor (EGFR) with tyrosine kinase. Ganglioside GM3 was previously found to interact with EGFR and to inhibit EGFR tyrosine kinase. However, motility of these cells, controlled by EGFR and ganglioside, was not studied. The present study is focused on the control mechanism of the motility of these cells through interaction of ganglioside, tetraspanin (TSP), and EGFR. Key results are as follows: (i) The level of EGFR expressed in A431 cells is 6 times higher than that expressed in KB cells, and motility of A431 cells is also much higher than that of KB cells, yet growth of A431 cells is either not affected or is inhibited by EGF. In contrast, growth of KB cells is enhanced by EGF. (ii) Levels of TSPs (CD9, CD82, and CD81) expressed in A431 cells are much higher than those expressed in KB cells, and TSPs expressed in A431 cells are reduced by treatment of cells with EtDO-P4, which inhibits the synthesis of glycosphingolipids (GSLs) and gangliosides. (iii) These TSPs are co-immunoprecipitated with EGFR in both A431 and KB cells, indicating that TSPs are closely associated with EGFR. (iv) High motility of A431 cells is greatly reduced, while low motility of KB cells is not affected, by treatment of cells with EtDO-P4. These results, taken together, suggest that there is a close correlation between high motility of A431 cells and high expression of EGFR and TSPs, and between ganglioside GM3/GM2 and TSP. A similar correlation was suggested between the low motility of KB cells and low levels of EGFR and TSP. The correlation between high motility and high level of EGFR with the ganglioside–TSP complex in A431 cells is unique. This is in contrast to our previous studies that indicate that motility of many types of tumor cells is inhibited by a high level of CD9 or CD82, together with growth factor receptors and integrins.  相似文献   

13.
Gangliosides are able to bind to the epidermal growth factor receptor and inhibit its activation, but the mechanism of this inhibition is unknown. To address the role of receptor carbohydrates in facilitating interaction with gangliosides, we examined the ability of GM3 to bind the deglycosylated receptor and inhibit its autophosphorylation. Flow cytometry studies demonstrated that deglycosylation of the receptor did not affect its ability to be transported to the cell membrane. In contrast with the native (fully glycosylated) receptor, GM3 did not coimmunoprecipitate with the deglycosylated receptor. Using a novel colorimetric bead binding assay, GM3 was shown to bind well to the immunoprecipitated native receptor but not at all to the deglycosylated receptor. Finally, the addition of GM3 to cells with deglycosylated epidermal growth factor receptors did not result in significant further inhibition of autophosphorylation of the receptor, despite a 10-fold decrease in phosphorylation of the native epidermal growth factor receptor by 200 microM GM3. These studies suggest that ganglioside affects epidermal growth factor receptor activity through a direct interaction that requires receptor glycosylation, and contribute to our understanding of the role of gangliosides in cell membrane function.  相似文献   

14.
Recognition of important roles of gangliosides in normal and abnormal cell function has motivated pharmacological modification of cellular ganglioside content. However, constitutive depletion of gangliosides in untransformed human cells has not been reported. In this context, the recent identification of a kindred carrying a point mutation in the GM3 synthase [ST3Gal5, Siat9] gene (Simpson MA, Cross H, Proukakis C, Priestman DA, Neville DC, Reinkensmeier G, Wang H, Wiznitzer M, Gurtz K, Verganelaki A, Pryde A, Patton MA, Dwek RA, Butters TD, Platt FM, Crosby AH. 2004. Infantile-onset symptomatic epilepsy syndrome caused by a homozygous loss-of-function mutation of GM3 synthase. Nat Genet. 36:1225-1229) provided an opportunity to explore this possibility. We established primary cultures of skin fibroblasts of three patients homozygous for this autosomal recessive defect. They exhibited a 93% reduction in ganglioside content (0.8 +/- 0.2 nmol lipid-bound sialic acid per 10(7) cells versus 12.7 +/- 1.3 nmol per 10(7) normal fibroblasts). Importantly, this marked reduction was not compensated by the activation of an alternate pathway of ganglioside synthesis, as occurs in murine GM3 synthase knockout fibroblasts. Cell morphology appeared unaffected, but under stringent conditions EGF-induced proliferation and migration of the mutant fibroblasts were reduced by 80% and 60%, respectively. Probing potential explanations, we found that EGF binding (effective membrane EGF receptor (EGFR) number) was reduced by 52% (to 6.2 +/- 1.9 from 12.8 +/- 2.0 pmol/10(8) normal fibroblasts, P < 0.01), despite normal total EGFR protein. EGFR activation was likewise reduced as was EGF-induced Rho/Rac1 phosphorylation, which is associated with cell migration. We conclude that this GM3 synthase point mutation almost completely depletes human fibroblast cellular gangliosides, dampens membrane EGFR activation, and modulates related critical cell functions such as proliferation and migration. These cells offer a valuable model for the study of ganglioside modulation of cell function.  相似文献   

15.
Glycosphingolipids added exogenously to 3T3 cells in culture were shown to inhibit cell growth, alter the membrane affinity to platelet-derived growth factor binding, and reduce platelet-derived growth factor-stimulated membrane phosphorylation (Bremer, E., Hakomori, S., Bowen-Pope, D. F., Raines, E., and Ross, R. (1984) J. Biol. Chem. 259, 6818-6825). This approach has been extended to the epidermal growth factor (EGF) receptor of human epidermoid carcinoma cell lines KB and A431. GM3 and GM1 gangliosides inhibited both KB cell and A431 cell growth, although GM3 was a much stronger inhibitor of both KB and A431 cell growth. Neither GM3 nor GM1 had any affect on the binding of 125I-EGF to its cell surface receptor. However, GM3 and, to a much lower extent, GM1 were capable of inhibiting EGF-stimulated phosphorylation of the EGF receptor in membrane preparations of both KB and A431 cells. Further characterization of GM3-sensitive receptor phosphorylation was performed in A431 cells, which had a higher content of the EGF receptor. The following results were of particular interest. (i) EGF-dependent tyrosine phosphorylation of the EGF receptor and its inhibition by GM3 were also demonstrated on isolated EGF receptor after adsorption on the anti-receptor antibody-Sepharose complex, and the receptor phosphorylation was enhanced on addition of phosphatidylethanolamine. (ii) Phosphoamino acid analysis of the EGF receptor indicated that the reduction of phosphorylation induced by GM3 was entirely in the phosphotyrosine and not in the phosphoserine nor phosphothreonine content. (iii) The inhibitory effect of GM3 on EGF-dependent receptor phosphorylation could be reproduced in membranes isolated from A431 cells that had been cultured in medium containing 50 nmol/ml GM3 to effect cell growth inhibition. The membrane fraction isolated from such growth-arrested cells was found to be less responsive to EGF-stimulated receptor phosphorylation. These results suggest that membrane lipids, especially GM3, can modulate EGF receptor phosphorylation in vitro as well as in situ.  相似文献   

16.
Amiloride directly inhibits growth factor receptor tyrosine kinase activity   总被引:7,自引:0,他引:7  
Addition of amiloride to A431 human epidermoid carcinoma cell membranes inhibited autophosphorylation of the epidermal growth factor (EGF) receptor. The tyrosine phosphorylation of histone H2B catalyzed by an affinity-purified preparation of EGF receptor was also inhibited by amiloride. The inhibition was noncompetitive with respect to histone but competitive with ATP, suggesting that amiloride may act as an ATP analogue which causes the formation of nonproductive enzyme-substrate complexes. The tyrosine phosphorylation of histone H2B catalyzed by the purified EGF receptor was inhibited by amiloride at concentrations identical to those previously reported to block EGF action on cell proliferation (Ki = 350 microM). Amiloride similarly inhibited the tyrosine phosphorylation of the human placental insulin receptor and the platelet-derived growth factor receptor of Swiss 3T3 cells. Immunoprecipitation of the EGF receptor from A431 cells labeled for 24 h with [32P]phosphate demonstrated that amiloride decreased the phosphorylation of the EGF receptor on serine and threonine residues and blocked the effect of EGF to cause phosphorylation of the receptor on tyrosine residues. Phosphoamino acid analysis of total cell proteins indicated that amiloride inhibited the increase in phosphotyrosine levels caused by EGF. We conclude that amiloride directly inhibits the tyrosine kinase activity of the receptors for EGF, insulin, and platelet-derived growth factor in in vitro and can mediate such actions in vivo. This effect of amiloride demonstrates that it is unsuitable as a drug to test the hypothesis that the stimulation of the Na+/H+ antiporter is essential for mitogenic signaling by growth factor receptors.  相似文献   

17.
Gangliosides are sialic acid-conjugated glycosphingolipids that are believed to regulate cell differentiation as well as the signals of several signal molecules, including epidermal growth factor receptors (EGFR). These compounds are localized in a glycosphingolipid-enriched microdomain on the cell surface and regulated by the glycosphingolipid composition. However, the role that gangliosides play in osteoblastogenesis is not yet clearly understood, therefore, in this study, the relationship between gangliosides and EGFR activation was investigated during osteoblast differentiation in human mesenchymal stem cells (hMSCs). The results of high-performance thin-layer chromatography (HPTLC) showed that ganglioside GM3 expression was decreased, whereas ganglioside GD1a expression was increased during the differentiation of hMSCs into osteoblasts. In addition, an increase in the activation of alkaline phosphatase (ALP) was observed in response to treatment with EGF (5 ng/ml) and GD1a (1 μM) (p < 0.05). The activation of ALP was significantly elevated in response to treatment of ganglioside GD1a with EGF when compared to control cells (p < 0.01). However, treatment with GM3 (1 μM) resulted in decreased ALP activation (p < 0.01), and treatment of hMSCs with a chemical inhibitor of EGFR, AG1478, removed the differential effect of the two gangliosides. Moreover, incubation of the differentiating cells with GD1a enhanced the phosphorylation of EGFR, whereas treatment with GM3 reduced the EGFR phosphorylation. However, AG1478 treatment inhibited the effect of ganglioside GD1a elicitation on EGFR phosphorylation. Taken together, these results indicate that GD1a promotes osteoblast differentiation through the enhancement of EGFR phosphorylation, but that GM3 inhibits osteoblast differentiation through reduced EGFR phosphorylation, suggesting that GM3 and GD1a are essential molecules for regulating osteoblast differentiation in hMSCs.  相似文献   

18.
The biological activity of epidermal growth factor (EGF) is mediated through the intrinsic tyrosine kinase activity of the EGF receptor (EGFR). In numerous cell types, binding of EGF to the EGFR stimulates the tyrosine kinase activity of the receptor eventually leading to cell proliferation. In tumor-derived cell lines, which overexpress the EGFR, however, growth inhibition is often seen in response to EGF. The mechanism for growth inhibition is unclear. To study the relationship between growth inhibition and EGFR kinase activity, we have used a cell line (PC-10) derived from a human squamous cell carcinoma that overexpresses EGFR. When exposed to 25 ng/ml EGF at low cell densities (1,300 cells/cm2), PC-10 cells exhibit cell death. In contrast, if EGF is added to high density cultures, no EGF mediated cell death is seen. When PC-10 cells were maintained at confluency in the presence of 25 ng/ml EGF for a period of 1 month, they were subsequently found competent to proliferate at low density in the presence of EGF. We designate these cells APC-10. The APC-10 cells exhibited a unique response to EGF, and no concentration of EGF tested could produce cell death. By 125I-EGF binding analysis and [35S]methionine labeling of EGFR, it was found that the total number of EGFR on the cell surface of APC-10 was not decreased relative to PC-10. No difference between PC-10 and APC-10 was seen in EGF binding affinity to the EGFR. Significantly, EGF stimulated autophosphorylation of the EGFR of APC-10 was 8–10-fold lower than that of PC-10. This reduced kinase activity was also seen in vitro in membrane preparations for EGFR autophosphorylation as well as phosphorylation of an exogenously added substrate. No difference between PC-10 and APC-10 in the overall pattern of EGFR phosphorylation in the presence or absence of EGF was detectable. However, the serine and threonine phosphorylation of the EGFR of APC-10 cells was consistently 2–3-fold lower than that seen in PC-10 cells. These results suggest a novel mechanism for EGFR overexpressing cells to survive EGF exposure, one that involves an attenuation of the tyrosine kinase activity of the EGFR in the absence of a change in receptor levels or receptor affinity. © 1994 Wiley-Liss, Inc.  相似文献   

19.
20.
Epidermal growth factor receptor localization in the rat and monkey testes   总被引:5,自引:0,他引:5  
Epidermal growth factors receptor (EGFR) was localized immunocytochemically in the testes of mature and immature rats and immature monkeys. One polyclonal antibody, recognizing the intracellular domain (RK2) of the receptor, was used to carry out the EGFR immunodetection. The RK2 antibody revealed the presence of the EGFR predominantly in Sertoli cells of mature and immature rats and of immature monkeys, although limited interstitial localization of the EGFR was also discerned in the mature rat. In cultured Sertoli cells of immature rats, grown in the absence of epidermal growth factor (EGF), the EGFR was randomly distributed at the cell surface, whereas after the addition of EGF the receptor became aggregated into distinct focal regions. In addition, EGFR of cultured Sertoli cells exhibited autophosphorylation activity upon stimulation with EGF, but failed to transcytose iodinated EGF across a permeability barrier formed by the cultured cells. Instead, all of the added iodinated EGF was internalized and degraded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号