首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chi EY  Ege C  Winans A  Majewski J  Wu G  Kjaer K  Lee KY 《Proteins》2008,72(1):1-24
The lipid membrane has been shown to mediate the fibrillogenesis and toxicity of Alzheimer's disease (AD) amyloid-beta (Abeta) peptide. Electrostatic interactions between Abeta40 and the phospholipid headgroup have been found to control the association and insertion of monomeric Abeta into lipid monolayers, where Abeta exhibited enhanced interactions with charged lipids compared with zwitterionic lipids. To elucidate the molecular-scale structural details of Abeta-membrane association, we have used complementary X-ray and neutron scattering techniques (grazing-incidence X-ray diffraction, X-ray reflectivity, and neutron reflectivity) in this study to investigate in situ the association of Abeta with lipid monolayers composed of either the anionic lipid 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DPPG), the zwitterionic lipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), or the cationic lipid 1,2-dipalmitoyl 3-trimethylammonium propane (DPTAP) at the air-buffer interface. We found that the anionic lipid DPPG uniquely induced crystalline ordering of Abeta at the membrane surface that closely mimicked the beta-sheet structure in fibrils, revealing an intriguing templated ordering effect of DPPG on Abeta. Furthermore, incubating Abeta with lipid vesicles containing the anionic lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPG) induced the formation of amyloid fibrils, confirming that the templated ordering of Abeta at the membrane surface seeded fibril formation. This study provides a detailed molecular-scale characterization of the early structural fluctuation and assembly events that may trigger the misfolding and aggregation of Abeta in vivo. Our results implicate that the adsorption of Abeta to anionic lipids, which could become exposed to the outer membrane leaflet by cell injury, may serve as an in vivo mechanism of templated-aggregation and drive the pathogenesis of AD.  相似文献   

2.
One of the major pathological features of Alzheimer's disease (AD) is the presence of extracellular amyloid plaques that are composed predominantly of the amyloid-beta peptide (Abeta). Diffuse plaques associated with AD are composed predominantly of Abeta42, whereas senile plaques contain both Abeta40 and Abeta42. Recently, it has been suggested that diffuse plaque formation is initiated as a plasma membrane-bound Abeta species and that Abeta42 is the critical component. In order to investigate this hypothesis, we have examined Abeta42-membrane interactions using in situ atomic force microscopy and fluorescence spectroscopy. Our studies demonstrate the association of Abeta42 with planar bilayers composed of total brain lipids, which results initially in peptide aggregation and then fibre formation. Modulation of the cholesterol content is correlated with the extent of Abeta42-assembly on the bilayer surface. Although Abeta42 was not visualized directly on cholesterol-depleted bilayers, fluorescence anisotropy and fluorimetry demonstrate Abeta42-induced membrane changes. Our results demonstrate that the composition of the lipid bilayer governs the outcome of Abeta interactions.  相似文献   

3.
In order to investigate the influence of cholesterol (Ch) and monosialoganglioside (GM1) on the release and subsequent deposition/aggregation of amyloid beta peptide (Abeta)-(1-40) and Abeta-(1-42), we have examined Abeta peptide model membrane interactions by circular dichroism, turbidity measurements, and transmission electron microscopy (TEM). Model liposomes containing Abeta peptide and a lipid mixture composition similar to that found in the cerebral cortex membranes (CCM-lipid) have been prepared. In all, four Abeta-containing liposomes were investigated: CCM-lipid; liposomes with no GM1 (GM1-free lipid); those with no cholesterol (Ch-free lipid); liposomes with neither cholesterol nor GM1 (Ch-GM1-free lipid). In CCM liposomes, Abeta was rapidly released from membranes to form a well defined fibril structure. However, for the GM1-free lipid, Abeta was first released to yield a fibril structure about the membrane surface, then the membrane became disrupted resulting in the formation of small vesicles. In Ch-free lipid, a fibril structure with a phospholipid membrane-like shadow formed, but this differed from the well defined fibril structure seen for CCM-lipid. In Ch-GM1-free lipid, no fibril structure formed, possibly because of membrane solubilization by Abeta. The absence of fibril structure was noted at physiological extracellular pH (7.4) and also at liposomal/endosomal pH (5.5). Our results suggest a possible role for both Ch and GM1 in the membrane release of Abeta from brain lipid bilayers.  相似文献   

4.
The 39-42 amino acid long, amphipathic amyloid-beta peptide (Abeta) is one of the key components involved in Alzheimer's disease (AD). In the neuropathology of AD, Abeta presumably exerts its neurotoxic action via interactions with neuronal membranes. In our studies a combination of 31P MAS NMR (magic angle spinning nuclear magnetic resonance) and CD (circular dichroism) spectroscopy suggest fundamental differences in the functional organization of supramolecular Abeta(1-40) membrane assemblies for two different scenarios with potential implication in AD: Abeta peptide can either be firmly anchored in a membrane upon proteolytic cleavage, thereby being prevented against release and aggregation, or it can have fundamentally adverse effects when bound to membrane surfaces by undergoing accelerated aggregation, causing neuronal apoptotic cell death. Acidic lipids can prevent release of membrane inserted Abeta(1-40) by stabilizing its hydrophobic transmembrane C-terminal part (residue 29-40) in an alpha-helical conformation via an electrostatic anchor between its basic Lys28 residue and the negatively charged membrane interface. However, if Abeta(1-40) is released as a soluble monomer, charged membranes act as two-dimensional aggregation-templates where an increasing amount of charged lipids (possible pathological degradation products) causes a dramatic accumulation of surface-associated Abeta(1-40) peptide followed by accelerated aggregation into toxic structures. These results suggest that two different molecular mechanisms of peptide-membrane assemblies are involved in Abeta's pathophysiology with the finely balanced type of Abeta-lipid interactions against release of Abeta from neuronal membranes being overcompensated by an Abeta-membrane assembly which causes toxic beta-structured aggregates in AD. Therefore, pathological interactions of Abeta peptide with neuronal membranes might not only depend on the oligomerization state of the peptide, but also the type and nature of the supramolecular Abeta-membrane assemblies inherited from Abeta's origin.  相似文献   

5.
Abeta(1-42) peptide, found as aggregated species in Alzheimer's disease brain, is linked to the onset of Alzheimer's disease. Many reports have linked metals to inducing Abeta aggregation and amyloid plaque formation. Abeta(25-35), a fragment from the C-terminal end of Abeta(1-42), lacks the metal coordinating sites found in the full-length peptide and is neurotoxic to cortical cortex cell cultures. We report solid-state NMR studies of Abeta(25-35) in model lipid membrane systems of anionic phospholipids and cholesterol, and compare structural changes to those of Abeta(1-42). When added after vesicle formation, Abeta(25-35) was found to interact with the lipid headgroups and slightly perturb the lipid acyl-chain region; when Abeta(25-35) was included during vesicle formation, it inserted deeper into the bilayer. While Abeta(25-35) retained the same beta-sheet structure irrespective of the mode of addition, the longer Abeta(1-42) appeared to have an increase in beta-sheet structure at the C-terminus when added to phospholipid liposomes after vesicle formation. Since the Abeta(25-35) fragment is also neurotoxic, the full-length peptide may have more than one pathway for toxicity.  相似文献   

6.
Beta-amyloid peptide (Abeta), which is cleaved from the larger trans-membrane amyloid precursor protein, is found deposited in the brain of patients suffering from Alzheimer's disease and is linked with neurotoxicity. We report the results of studies of Abeta1-42 and the effect of metal ions (Cu2+ and Zn2+) on model membranes using 31P and 2H solid-state NMR, fluorescence and Langmuir Blodgett monolayer methods. Both the peptide and metal ions interact with the phospholipid headgroups and the effects on the lipid bilayer and the peptide structure were different for membrane incorporated or associated peptides. Copper ions alone destabilise the lipid bilayer and induced formation of smaller vesicles but when Abeta1-42 was associated with the bilayer membrane copper did not have this effect. Circular dichroism spectroscopy indicated that Abeta1-42 adopted more beta-sheet structure when incorporated in a lipid bilayer in comparison to the associated peptide, which was largely unstructured. Incorporated peptides appear to disrupt the membrane more severely than associated peptides, which may have implications for the role of Abeta in disease states.  相似文献   

7.
Peptide-membrane interactions have been implicated in both the toxicity and aggregation of beta-amyloid (Abeta) peptides. Recent studies have provided evidence for the involvement of liquid-ordered membrane domains known as lipid rafts in the formation and aggregation of Abeta. As a model, we have examined the interaction of Abeta(1-42) with phase separated DOPC/DPPC lipid bilayers using a combination of atomic force microscopy (AFM) and total internal reflection fluorescence microscopy (TIRF). AFM images show that addition of Abeta to preformed supported bilayers leads to accumulation of small peptide aggregates exclusively on the gel phase DPPC domains. Initial aggregates are observed approximately 90 min after peptide addition and increase in diameter to 45-150 nm within 24 h. TIRF studies with a mixture of Abeta and Abeta-Fl demonstrate that accumulation of the peptide on the gel phase domains occurs as early as 15 min after Abeta addition and is maintained for over 24 h. By contrast, Abeta is randomly distributed throughout both fluid and gel phases when the peptide is reconstituted into DOPC/DPPC vesicles prior to formation of a supported bilayer. The preferential accumulation of Abeta on DPPC domains suggests that rigid domains may act as platforms to concentrate peptide and enhance its aggregation and may be relevant to the postulated involvement of lipid rafts in modulating Abeta activity in vivo.  相似文献   

8.
A number of findings suggest that lipophilic monomeric Abeta peptides can interact with the cellular lipid membranes. These interactions can affect the membrane integrity and result in the initiation of apoptotic cell death. The secondary structure of C-terminal Abeta peptides (29-40) and the longer (29-42) variant have been investigated in solution by circular dichroism measurements. The secondary structure of lipid bound Abeta (29-40) and (29-42) peptides prepared at different lipid/peptide ratio's, was investigated by ATR-FTIR spectroscopy. Finally, the changes in secondary structure (i.e. the transition of alpha-helix to beta-sheet) of the lipid bound peptides were correlated with the induction of neurotoxic and apoptotic effects in neuronal cells. The data suggest that the C-terminal fragments of the Abeta peptide induce a significant apoptotic cell death, as demonstrated by caspase-3 measurements and DNA laddering, with consistently a stronger effect of the longer Abeta (29-42) variant. Moreover, the induction of apoptotic death induced by these peptides can be correlated with the secondary structure of the lipid bound amyloid beta peptides. Based on these observations, it is proposed that membrane bound aggregated Abeta peptides (produced locally as the result of gamma-secretase cleavage) can accumulate and aggregate in the membrane. These membrane bound beta-sheet aggregated amyloid peptides induce neuronal apoptotic cell death.  相似文献   

9.
A hallmark of Alzheimer's disease is the deposition of plaques of amyloid beta peptide (Abeta) in the brain. Abeta is thought to be formed from the amyloid precursor protein (APP) in cholesterol-enriched membrane rafts, and cellular cholesterol depletion decreases Abeta formation. The liver X receptors (LXR) play a key role in regulating genes that control cellular cholesterol efflux and membrane composition and are widely expressed in cells of the central nervous system. We show that treatment of APP-expressing cells with LXR activators reduces the formation of Abeta. LXR activation resulted in increased levels of the ATP-binding cassette transporter A1 (ABCA1) and stearoyl CoA desaturase, and expression of these genes individually decreased formation of Abeta. Expression of ABCA1 led to both decreased beta-cleavage product of APPSw (i.e. C99 peptide) and reduced gamma-secretase-cleavage of C99 peptide. Remarkably, these effects of ABCA1 on APP processing were independent of cellular lipid efflux. LXR and ABCA1-induced changes in membrane lipid organization had favorable effects on processing of APP, suggesting a new approach to the treatment of Alzheimer's disease.  相似文献   

10.
Lin MC  Kagan BL 《Peptides》2002,23(7):1215-1228
Abeta25-35, a fragment of the neurotoxic amyloid beta protein Abeta1-42 found in the brain of Alzheimer patients, possesses amyloidogenic, neurotoxins and channel forming abilities similar to that of Abeta1-42. We have previously reported that Abeta25-35 formed voltage-dependent, relatively nonselective, ion-permeable channels in planar lipid bilayers. Here, we show that Abeta25-35 formed channels in both solvent-containing and solvent-free bilayers. We also report that for Abeta25-35, channel forming activity was dependent on ionic strength, membrane lipid composition, and peptide concentration, but not on pH. Lower ionic strength and negatively charged lipids increased channel formation activity, while cholesterol decreased activity. The nonlinear function relating [Abeta25-35] and membrane activity suggests that aggregation of at least three monomers is required for channel formation.  相似文献   

11.
On the nucleation of amyloid beta-protein monomer folding   总被引:1,自引:0,他引:1  
Neurotoxic assemblies of the amyloid beta-protein (Abeta) have been linked strongly to the pathogenesis of Alzheimer's disease (AD). Here, we sought to monitor the earliest step in Abeta assembly, the creation of a folding nucleus, from which oligomeric and fibrillar assemblies emanate. To do so, limited proteolysis/mass spectrometry was used to identify protease-resistant segments within monomeric Abeta(1-40) and Abeta(1-42). The results revealed a 10-residue, protease-resistant segment, Ala21-Ala30, in both peptides. Remarkably, the homologous decapeptide, Abeta(21-30), displayed identical protease resistance, making it amenable to detailed structural study using solution-state NMR. Structure calculations revealed a turn formed by residues Val24-Lys28. Three factors contribute to the stability of the turn, the intrinsic propensities of the Val-Gly-Ser-Asn and Gly-Ser-Asn-Lys sequences to form a beta-turn, long-range Coulombic interactions between Lys28 and either Glu22 or Asp23, and hydrophobic interaction between the isopropyl and butyl side chains of Val24 and Lys28, respectively. We postulate that turn formation within the Val24-Lys28 region of Abeta nucleates the intramolecular folding of Abeta monomer, and from this step, subsequent assembly proceeds. This model provides a mechanistic basis for the pathologic effects of amino acid substitutions at Glu22 and Asp23 that are linked to familial forms of AD or cerebral amyloid angiopathy. Our studies also revealed that common C-terminal peptide segments within Abeta(1-40) and Abeta(1-42) have distinct structures, an observation of relevance for understanding the strong disease association of increased Abeta(1-42) production. Our results suggest that therapeutic approaches targeting the Val24-Lys28 turn or the Abeta(1-42)-specific C-terminal fold may hold promise.  相似文献   

12.
Matsuzaki K  Horikiri C 《Biochemistry》1999,38(13):4137-4142
Interactions between amyloid beta-peptides (Abeta) and neuronal membranes have been postulated to play an important role in the neuropathology of Alzheimer's disease. To gain insight into the molecular details of this association, we investigated the interactions of Abeta (1-40) with ganglioside-containing membranes by circular dichroism (CD) and Fourier transform infrared-polarized attenuated total reflection (FTIR-PATR) spectroscopy. The CD study revealed that at physiological ionic strength Abeta (1-40) specifically binds to ganglioside-containing membranes inducing a two-state, unordered --> beta-sheet transition above a threshold intramembrane ganglioside concentration, which depends on the host lipid bilayers used. Furthermore, differences in the number and position of sialic acid residues of the carbohydrate backbone significantly affected the conformational transition of the peptide. FTIR-PATR spectroscopy experiments demonstrated that Abeta (1-40) forms an antiparallel beta-sheet, the plane of which lies parallel to the membrane surface, inducing dehydration of lipid interfacial groups and perturbation of acyl chain orientation. These results suggest that Abeta (1-40) imposes negative curvature strain on ganglioside-containing lipid bilayers, disturbing the structure and function of the membranes.  相似文献   

13.
Formation of toxic oligomeric and fibrillar structures by the amyloid beta-protein (Abeta) is linked to Alzheimer's disease (AD). To facilitate the targeting and design of assembly inhibitors, intrinsic fluorescence was used to probe assembly-dependent changes in Abeta conformation. To do so, Tyr was substituted in Abeta40 or Abeta42 at position 1, 10 (wild type), 20, 30, 40, or 42. Fluorescence then was monitored periodically during peptide monomer folding and assembly. Electron microscopy revealed that all peptides assembled readily into amyloid fibrils. Conformational differences between Abeta40 and Abeta42 were observed in the central hydrophobic cluster (CHC) region, Leu17-Ala21. Tyr20 was partially quenched in unassembled Abeta40 but displayed a significant and rapid increase in intensity coincident with the maturation of an oligomeric, alpha-helix-containing intermediate into amyloid fibrils. This process was not observed during Abeta42 assembly, during which small decreases in fluorescence intensity were observed in the CHC. These data suggest that the structure of the CHC in Abeta42 is relatively constant within unassembled peptide and during the self-association process. Solvent accessibility of the Tyr ring was studied using a mixed solvent (dimethyl sulfoxide/water) system. [Tyr40]Abeta40, [Tyr30]Abeta42, and [Tyr42]Abeta42 all were relatively shielded from solvent. Analysis of the assembly dependence of the site-specific intrinsic fluorescence data suggests that the CHC is particularly important in controlling Abeta40 assembly, whereas the C-terminus plays the more significant role in Abeta42 assembly.  相似文献   

14.
Aggregation and fibril formation of amyloid-beta (Abeta) peptides Abeta40 and Abeta42 are central events in the pathogenesis of Alzheimer disease. Previous studies have established the ratio of Abeta40 to Abeta42 as an important factor in determining the fibrillogenesis, toxicity, and pathological distribution of Abeta. To better understand the molecular basis underlying the pathologic consequences associated with alterations in the ratio of Abeta40 to Abeta42, we probed the concentration- and ratio-dependent interactions between well defined states of the two peptides at different stages of aggregation along the amyloid formation pathway. We report that monomeric Abeta40 alters the kinetic stability, solubility, and morphological properties of Abeta42 aggregates and prevents their conversion into mature fibrils. Abeta40, at approximately equimolar ratios (Abeta40/Abeta42 approximately 0.5-1), inhibits (> 50%) fibril formation by monomeric Abeta42, whereas inhibition of protofibrillar Abeta42 fibrillogenesis is achieved at lower, substoichiometric ratios (Abeta40/Abeta42 approximately 0.1). The inhibitory effect of Abeta40 on Abeta42 fibrillogenesis is reversed by the introduction of excess Abeta42 monomer. Additionally, monomeric Abeta42 and Abeta40 are constantly recycled and compete for binding to the ends of protofibrillar and fibrillar Abeta aggregates. Whereas the fibrillogenesis of both monomeric species can be seeded by fibrils composed of either peptide, Abeta42 protofibrils selectively seed the fibrillogenesis of monomeric Abeta42 but not monomeric Abeta40. Finally, we also show that the amyloidogenic propensities of different individual and mixed Abeta species correlates with their relative neuronal toxicities. These findings, which highlight specific points in the amyloid peptide equilibrium that are highly sensitive to the ratio of Abeta40 to Abeta42, carry important implications for the pathogenesis and current therapeutic strategies of Alzheimer disease.  相似文献   

15.
Accumulation of the amyloid protein (Abeta) in the brain is an important step in the pathogenesis of Alzheimer's disease. However, the mechanism by which Abeta exerts its neurotoxic effect is largely unknown. It has been suggested that the peptide can bind to the alpha7 nicotinic acetylcholine receptor (alpha7nAChR). In this study, we examined the binding of Abeta1-42 to endogenous and recombinantly expressed alpha7nAChRs. Abeta1-42 did neither inhibit the specific binding of alpha7nAChR ligands to rat brain homogenate or slice preparations, nor did it influence the activity of alpha7nAChRs expressed in Xenopus oocytes. Similarly, Abeta1-42 did not compete for alpha-bungarotoxin-binding sites on SH-SY5Y cells stably expressing alpha7nAChRs. The effect of the Abeta1-42 on tau phosphorylation was also examined. Although Abeta1-42 altered tau phosphorylation in alpha7nAChR-transfected SH-SY5Y cells, the effect of the peptide was unrelated to alpha7nAChR expression or activity. Binding studies using surface plasmon resonance indicated that the majority of the Abeta bound to membrane lipid, rather than to a protein component. Fluorescence anisotropy experiments indicated that Abeta may disrupt membrane lipid structure or fluidity. We conclude that the effects of Abeta are unlikely to be mediated by direct binding to the alpha7nAChR. Instead, we speculate that Abeta may exert its effects by altering the packing of lipids within the plasma membrane, which could, in turn, influence the function of a variety of receptors and channels on the cell surface.  相似文献   

16.
Recent experiments with amyloid beta (Abeta) peptide indicate that formation of toxic oligomers may be an important contribution to the onset of Alzheimer's disease. The toxicity of Abeta oligomers depends on their structure, which is governed by assembly dynamics. Due to limitations of current experimental techniques, a detailed knowledge of oligomer structure at the atomic level is missing. We introduce a molecular dynamics approach to study Abeta dimer formation. 1), We use discrete molecular dynamics simulations of a coarse-grained model to identify a variety of dimer conformations; and 2), we employ all-atom molecular mechanics simulations to estimate thermodynamic stability of all dimer conformations. Our simulations of a coarse-grained Abeta peptide model predicts 10 different planar beta-strand dimer conformations. We then estimate the free energies of all dimer conformations in all-atom molecular mechanics simulations with explicit water. We compare the free energies of Abeta(1-42) and Abeta(1-40) dimers. We find that 1), dimer conformations have higher free energies compared to their corresponding monomeric states; and 2), the free-energy difference between the Abeta(1-42) and the corresponding Abeta(1-40) dimer conformation is not significant. Our results suggest that Abeta oligomerization is not accompanied by the formation of thermodynamically stable planar beta-strand dimers.  相似文献   

17.
Recent studies show that quantitative and qualitative differences in amyloid beta (Abeta ) peptides may be implicated in the development of Alzheimer's disease. New evidence seems to support the existence of a dynamic equilibrium between Abeta peptide in the brain and peripheral blood circulation. The quantitation of Abeta in the blood may allow the development of the potential value of Abeta peptides as a biomarker in the development of Alzheimer's disease. In this communication, quantitation of Abeta peptides using high-performance liquid chromatography coupled with tandem mass spectrometry in a linear ion trap mode is presented. RP-HPLC was performed using a Waters Xterra MS C8 column (3.0 mm x 150 mm). Abeta(1-40) peptide was eluted using a gradient elution program. Eluate from the RP-HPLC column was split to both the UV detector and electrospray ionization MS source. The product ion scan was performed in a linear ion trap mode utilizing the transition of a multiply charged molecular ion of Abeta(1-40) to a singly charged product ion. The detection limit of 31.25 ng in column load using a 3.0-mm-diameter conventional C8 column was achieved. The Abeta(1-40) standard calibration curves show excellent linearity from 34 ng to 2500 ng Abeta(1-40) of column sample load. The product ion scan enhances sensitivity 10 times compared with the best previously achieved by a single-quadrupole instrument in the selective ion monitoring mode. Moreover, the product ion scan of Abeta(1-40) provides superior selectivity and specificity, which is very important in the quantitation of Abeta(1-40) in a complex biological matrix.  相似文献   

18.
Protein-protein interactions are frequently mediated by stable, intermolecular beta-sheets. A number of cytokines and the HIV Protease, for example, dimerize through beta-sheet motifs. Evidence also suggests that the macromolecular assemblies of peptides and proteins in amyloid fibrils are stabilized by intermolecular beta-sheets. In this paper, we report that interfering with the backbone hydrogen bonding of an amyloidgenic peptide (Abeta16-20) by replacing amide bonds with ester bonds prevents the aggregation of the peptide. The ester bonds were incorporated in an alternating fashion so that the peptide presents two unique hydrogen bonding faces when arrayed in an extended, beta-strand conformation; one face of the peptide has normal hydrogen bonding capabilities, but the other face is missing amide protons and its ability to hydrogen bond is severely limited. Analytical ultracentrifugation experiments demonstrate that this ester peptide, Abeta16-20e, is predominantly monomeric under solution conditions, unlike the fibril-forming Abeta16-20 peptide. Abeta16-20e also inhibits the aggregation of the Abeta1-40 peptide and disassembles preformed Abeta1-40 fibrils. These results suggest that backbone hydrogen bonding is critical for the assembly of amyloid fibrils.  相似文献   

19.
The beta-amyloid peptide (Abeta) is a normal product of the proteolytic processing of its precursor (beta-APP). Normally, it elicits a very low humoral immune response; however, the aggregation of monomeric Abeta to form fibrillar Abeta amyloid creates a neo-epitope, to which antibodies are generated. Rabbits were injected with fibrillar human Abeta(1-42), and the resultant antibodies were purified and their binding properties characterized. The antibodies bound to an epitope in the first eight residues of Abeta and required a free amino terminus. Additional residues did not affect the affinity of the epitope as long as the peptide was unaggregated; the antibody bound Abeta residues 1-8, 1-11, 1-16, 1-28, 1-40, and 1-42 with similar affinities. In contrast, the antibodies bound approximately 1000-fold more tightly to fibrillar Abeta(1-42). Their enhanced affinity did not result from their bivalent nature: monovalent Fab fragments exhibited a similar affinity for the fibrils. Nor did it result from the particulate nature of the epitope: monomeric Abeta(1-16) immobilized on agarose and soluble Abeta(1-16) exhibited similar affinities for the antifibrillar antibodies. In addition, antibodies raised to four nonfibrillar peptides corresponding to internal Abeta sequences did not exhibit enhanced affinity for fibrillar Abeta(1-42). Antibodies directed to the C-terminus of Abeta bound poorly to fibrillar Abeta(1-42), which is consistent with models where the carboxyl terminus is buried in the interior of the fibril and the amino terminus is on the surface. When used as an immunohistochemical probe, the antifibrillar Abeta(1-42) IgG exhibited enhanced affinity for amyloid deposits in the cerebrovasculature. We hypothesize either that the antibodies recognize a specific conformation of the eight amino-terminal residues of Abeta, which is at least 1000-fold more favored in the fibril than in monomeric peptides, or that affinity maturation of the antibodies produces an additional binding site for the amino-terminal residues of an adjacent Abeta monomer. In vivo this specificity would direct the antibody primarily to fibrillar vascular amyloid deposits even in the presence of a large excess of monomeric Abeta or its precursor. This observation may explain the vascular meningeal inflammation that developed in Alzheimer's disease patients immunized with fibrillar Abeta. Passive immunization with an antibody directed to an epitope hidden in fibrillar Abeta and in the transmembrane region of APP might be a better choice in the search for an intervention to remove Abeta monomers without provoking an inflammatory response.  相似文献   

20.
Oxidative lipid membrane damage is known to promote the misfolding of Abeta42 into pathological beta structure. In fully developed senile plaques of Alzheimer's disease, however, it is the shorter and more soluble amyloid beta protein, Abeta40, that predominates. To investigate the role of oxidative membrane damage in the misfolding of Abeta40, we have examined its interaction with supported lipid monolayer membranes using internal reflection infrared spectroscopy. Oxidatively damaged lipids modestly increased Abeta40 accumulation, with adsorption kinetics and a conformation that are distinct from that of Abeta42. In stark contrast, pretreatment of oxidatively damaged monolayer membranes with Abeta42 vigorously promoted Abeta40 accumulation and misfolding. Pretreatment of saturated or undamaged membranes with Abeta42 had no such effect. Parallel studies of lipid bilayer vesicles using a dye binding assay to detect fibril formation and electron microscopy to examine morphology demonstrated that Abeta42 pretreatment of oxidatively damaged membranes promoted the formation of mature Abeta40 amyloid fibrils. We conclude that oxidative membrane damage and Abeta42 act synergistically at an early stage to promote fibril formation by Abeta40. This synergy could be detected within minutes using internal reflection spectroscopy, whereas a dye-binding assay required several days and much higher protein concentrations to demonstrate this synergy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号