首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Inhibitors of cytoplasmic polyribosome function and chloroplastpolyribosome function were used to study the site of synthesisof the five subunits of coupling factor I (CF1) in Pisum sativum.The results of these in vivo experiments are presented as evidencefor the cytoplasmic synthesis of two subunits, C and D, andthe synthesis in the chloroplast of the other three, A, B andE. 1 Supported in part by grant PCM-74-13534 from the NationalScience Foundation. (Received April 17, 1978; )  相似文献   

2.
3.
4.
An analysis of interspecific hybrids of Nicotiana spp. in which one of the parents was sensitive to tentoxin showed that this sensitivity was transmitted only through the female parent. Since tentoxin acts by selectively binding to the alpha,beta subunit complex of chloroplast coupling factor 1, the gene(s) specifying either one or both of these subunits is located in the cytoplasm.  相似文献   

5.
1. Incubation of soluble spinach Coupling Factor 1 (CF1) with dicyclohexylcarbodiimide (DCCD) results in the inactivation of the ATPase. The DCCD inactivation is time- and concentration-dependent. Complete inactivation of the CF1-ATPase activity requires the binding of 2 mol of DCCD/mol of CF1. The binding sites of DCCD are located on the beta subunit of CF1. 2. DCCD modification of soluble CF1 eliminates one adenine nucleotide binding site which is exposed by dithiothreitol activation or by incubation with tentoxin. The inactivation of both the ATPase activity and the adenine nucleotide binding site are pH-dependent. The inactivation of both the ATPase activity and the adenine nucleotide binding site are pH-dependent. Half-maximal inhibition occurs at about pH 7.5. 3. The DCCD-modified CF1, reconstituted with EDTA-treated chloroplasts, is fully active is restoring proton uptake but not in restoring ATP synthesis or light-dependent adenine nucleotide exchange.  相似文献   

6.
The ATP synthase of chloroplasts consists of a proton-conducting portion, CF0, and a catalytic portion, CF1. The smaller subunits of CF1, in particular delta, may play a key role in the coupling of proton transport to ATP synthesis. Purified subunit delta, when added to partially CF1-depleted thylakoid membranes, can restore photophosphorylation (Engelbrecht, S., and Junge, W. (1987) Eur. J. Biochem. 172, 213-218). We report here that it does so by blocking proton conduction through CF0. Thylakoids were CF1-depleted by incubation in hypoosmolar NaCl/EDTA solutions. Variation of the NaCl concentrations and of the incubation times not only changed the overall degree of CF1 depletion but also the subunit composition of solubilized CF1, namely CF1 containing delta and CF1(-delta). This was quantified by immunoelectrophoresis and by fast protein liquid chromatography. Proton conduction was measured by flash spectrophotometry by using standard electrochromic and pH-indicating absorption changes. The removal of integral CF1 was correlated with high electric conductance of thylakoid membranes, an increased extent of rapid proton leakage, and loss of ATP synthesis activity, which exceeded the percentual loss of CF1. The removal of predominantly CF1(-delta) resulted in comparatively lesser effects on the loss of ATP synthesis and on the extent and velocity of proton leakage. On the same line, addition of integral CF1 and of purified delta diminished the electric leak in CF1-depleted thylakoids. Both approaches, the controlled removal of CF1 and CF1(-delta), respectively, and addition of delta and CF1 showed that delta can act as a "stopcock" to the exposed proton channel CF0.  相似文献   

7.
The irreversible inhibition of chloroplast phosphorylation by either sulfate anions, or N-ethylmaleimide, is energy dependent. Chloroplasts must first be illuminated in the presence of the inhibitors and a mediator of electron flow, for the subsequent phosphorylation to show any inhibition. Both inhibitors affect the chloroplast coupling factor 1.Electron transport only through Photosystem I can be used to activate either of these inhibitions. The subsequent inhibition in a second light reaction is the same whether ATP synthesis is supported by Photosystem I, or by Photosystem II electron transport. The reverse experiment, activating inhibition by electron transport only through Photosystem II, is possible in the case of sulfate. Again, the inhibition is expressed whether Photosystem II or Photosystem I electron flow supports ATP synthesis. We conclude that the two electron transport regions probably generate the same high energy state which is able to activate all members of a functionally uniform coupling factor population. These enzyme molecules must catalyze phosphorylation coupled to electron transport through either region of the chain. The results tend to discredit models requiring a separate group of coupling factor molecules unique to each part of the chain.  相似文献   

8.
Interaction between F(1)-ATPase activity stimulating oxyanions and noncatalytic sites of coupling factor CF(1) was studied. Carbonate, borate and sulfite anions were shown to inhibit tight binding of [14C]ATP and [14C]ADP to CF(1) noncatalytic sites. The demonstrated change of their inhibitory efficiency in carbonate-borate-sulfite order coincides with the previously found change in efficiency of these anions as stimulators of CF(1)-ATPase activity [Biochemistry (Mosc.) 43 (1978) 1206-1211]. Inhibition of tight nucleotide binding to noncatalytic sites was accompanied by stimulation of nucleotide binding to catalytic sites. This suggests that stimulation of CF(1)-ATPase activity is caused by interaction between oxyanions and noncatalytic sites. A most efficient stimulator of CF(1)-ATPase activity, sulfite oxyanion, appeared to be a competitive inhibitor with respect to ATP and a partial noncompetitive inhibitor with respect to ADP. The inhibition weakened with increasing time of CF(1) incubation with sulfite and nucleotides. Sulfite is believed to inhibit fast reversible interaction between nucleotides and noncatalytic sites and to produce no effect on subsequent tight binding of nucleotides. A possible mechanism of the oxyanion-stimulating effect is discussed.  相似文献   

9.
Cross-linking reagents have been used to link covalently adjacent subunits of solubilized spinach chloroplast coupling factor 1, which is a latent ATPase. 1,5-Difluoro-2,4-dinitrobenzene, dimethyl-3,3'-dithiobispropionimidate, and dimethylsuberimidate are able to form bridges of 3 to 11 A between amino groups, and hydrogen peroxide and the o-phenanthroline-cupric ion complex catalyze the oxidation of intrinsic sulfhydryl groups. The five individual subunit bands (alpha, beta, gamma, delta, and epsilon) and several new aggregate bands can be separated by means of sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The same four fastest moving aggregate bands, as characterized by their mobilities, migrate more slowly than the heaviest subunit band and appear with all of the cross-linkers employed. The subunit composition of the aggregate bands has been determined through the use of the reversible cross-linkers, dimethyldithiobispropionimidate, (o-phenanthroline)2Cu(II), and H2O2, and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis in which aggregates are separated in the first dimension, the disulfide cross-links are cleaved, and the individual subunits present in the aggregates are separated in the second dimension. The subunits are detected by Coomassie brilliant blue staining and by labeling some of the sulfhydryl groups of the gamma and epsilon subunits with radioactive N-ethylmaleimide. The results obtained indicate that the alpha and beta subunits can cross-link directly with each of the other subunits, that two beta subunits are adjacent, and that gamma epsilon, gamma epsilon 2, alpha delta, and beta delta aggregates are present. A minimal subunit stoichiometry consistent with these results is alpha 2 beta 2 gamma delta epsilon 2. A possible structural model of the coupling factor is derived from the data. Similar, but less extensive, experiments have been carried out with the heat-activated coupling factor (which is an ATPase); no differences in the spatial arrangement of subunits are detected from the two-dimensional gel electrophoresis analysis of the cross-linked aggregates.  相似文献   

10.
11.
K M Musier  G G Hammes 《Biochemistry》1987,26(19):5982-5988
New heterobifunctional photoaffinity cross-linking reagents, 6-maleimido-N-(4-benzoylphenyl)hexanamide, 12-maleimido-N-(4-benzoylphenyl)dodecanamide, and 12-[14C]maleimido-N-(4-benzoylphenyl)dodecanamide, were synthesized to investigate the mechanism of ATP hydrolysis by chloroplast coupling factor 1. These reagents react with sulfhydryl groups on the gamma-polypeptide. Subsequent photolysis cross-links the gamma-polypeptide covalently to alpha- and beta-polypeptides. The cross-linkers prevent major movements of the gamma-polypeptide with respect to the alpha- and beta-polypeptides but are sufficiently long to permit some flexibility in the enzyme structure. When approximately 50% of the gamma-polypeptide was cross-linked to alpha- and beta-polypeptides, a 7% loss in ATPase activity was observed for the longer cross-linker and a 12% loss for the shorter. These results indicate that large movements of alpha- and beta-polypeptides with respect to the gamma-polypeptide are not essential for catalysis. In particular, rotation of the polypeptide chains to create structurally equivalent sites during catalysis is not a required feature of the enzyme mechanism.  相似文献   

12.
13.
The activation of the ATPase activity of coupling factor 1 (CF1) from chloroplasts by several detergents was studied. Further evidence that detergent micelles are important in the activation of Ca2+-ATPase was obtained. Maximal activation of CA2+-ATPase was achieved with short-chain alkyl-beta-D-glucopyranoside (alkylglucosides) detergents. Treatment of CF1 with hexylglucoside or heptylglucoside followed by hydroxylapatite chromatography caused nearly total removal of the epsilon subunit of the enzyme, whereas treatment with decylglucoside caused less ATPase activation and less loss of the epsilon subunit. The ATPase activity of detergent-activated CF1 was inhibited by purified epsilon subunit. Detergents that form small micelles appear to be most effective in removing the epsilon subunit and in activating the Ca2+-ATPase of CF1. When present during assay, the alkylglucosides also induce a Mg2+-ATPase activity in CF1. Octyl- and nonylglucoside are most effective in promoting this reaction. If, however, CF1 deficient in the epsilon subunit was used, even decylglucoside elicited rapid Mg2+-ATPase hydrolysis. It is concluded that removal of the epsilon subunit, although necessary for the expression of Mg2+-ATPase, is not sufficient. The detergents that cause maximal displacement of the epsilon subunit are less effective in inducing Mg2+-ATPase activity. The selective removal of subunits from CF1 by specific detergents points to potential problems with the use of these detergents in the solubilization of oligomeric membrane proteins.  相似文献   

14.
The rate of inhibition of cyclic photophosphorylation in chloroplast thylakoids by the arginine reagent phenylglyoxal was enhanced in the light, i.e., under conditions where membrane energization occurred. Uncouplers, but not energy-transfer inhibitors, prevented the effect of light. Chemical modification of chloroplast thylakoids by phenylglyoxal under dark or in light conditions affected differently the light-induced exchange of tightly bound ADP. In both cases the exchange was less inhibited than photophosphorylation. Complete inhibition of ATPase activity of soluble CF1 was correlated with the incorporation of 8 mol [14C]phenylglyoxal per mol enzyme. About 50% of the incorporated radioactivity was lost at different rates depending on the buffer present and suggesting a change in the stoichiometry of the adduct from 2:1 to 1:1. Inhibition of ATPase and photophosphorylating activities of chloroplasts by modification with [14C]phenylglyoxal in the dark was associated with the incorporation of 1 and 2 mol reagent per mol membrane-bound CF1, respectively. In the light the rate of incorporation was enhanced and both reactions were inactivated when 2 mol [14C]phenylglyoxalCF1 were bound. In all the labelling experiments the radioactivity was mainly recovered from the α- and β-subunits.  相似文献   

15.
F Haraux 《Biochimie》1986,68(3):435-449
This review is focused on some functional characteristics of the chloroplast coupling factor. The structure of the enzyme and the putative role of its subunits are recalled. An attempt is made to discriminate the driving force and the activator effects of the electrochemical proton gradient. Respective roles of delta pH, delta phi, external and internal pH are discussed with regard to mechanistic implications. The hypothesis of a functional switch of the enzyme between two states with better efficiency either in ATP synthesis or in ATP hydrolysis is also examined. A brief survey is made on some problems complicating quantitative studies of energy coupling, such as localized chemiosmosis, delta pH and delta phi computations, and scalar ATPases. The main data on the enzyme activation and the energy-dependent release of tightly bound nucleotides are summarized. The arguments for and against the catalytic competence of theses nucleotides are reviewed. Lastly, some prevailing models of the catalytic mechanism are presented. The relevance of nucleotides binding change events in this process is discussed.  相似文献   

16.
Nucleotide binding properties of two vacant noncatalytic sites of thioredoxin-activated chloroplast coupling factor 1 (CF(1)) were studied. Kinetics of nucleotide binding to noncatalytic sites is described by the first-order equation that allows for two nucleotide binding sites that differ in kinetic features. Dependence of the nucleotide binding rate on nucleotide concentration suggests that tight nucleotide binding is preceded by rapid reversible binding of nucleotides. ADP binding is cooperative. The preincubation of CF(1) with Mg(2+) produces only slight effect on the rate of ADP binding and decreases the ATP binding rate. The ATP and ADP dissociation from noncatalytic sites is described by the first-order equation for similar sites with dissociation rate constants k(-2)(ADP)=1.5 x 10(-1) min(-1) and k(-2)(ATP) congruent with 10(-3) min(-1), respectively. As follows from the study, the noncatalytic sites of CF(1) are not homogeneous. One of them retains the major part of endogenous ADP after CF(1) precipitation with ammonium sulfate. Its other two sites can bind both ADP and ATP but have different kinetic parameters and different affinity for nucleotides.  相似文献   

17.
Nucleotide binding properties of two vacant noncatalytic sites of thioredoxin-activated chloroplast coupling factor 1 (CF1) were studied. Kinetics of nucleotide binding to noncatalytic sites is described by the first-order equation that allows for two nucleotide binding sites that differ in kinetic features. Dependence of the nucleotide binding rate on nucleotide concentration suggests that tight nucleotide binding is preceded by rapid reversible binding of nucleotides. ADP binding is cooperative. The preincubation of CF1 with Mg2+ produces only slight effect on the rate of ADP binding and decreases the ATP binding rate. The ATP and ADP dissociation from noncatalytic sites is described by the first-order equation for similar sites with dissociation rate constants k−2(ADP)=1.5×10−1 min−1 and k−2(ATP)≅10−3 min−1, respectively. As follows from the study, the noncatalytic sites of CF1 are not homogeneous. One of them retains the major part of endogenous ADP after CF1 precipitation with ammonium sulfate. Its other two sites can bind both ADP and ATP but have different kinetic parameters and different affinity for nucleotides.  相似文献   

18.
The interaction of tentoxin [cyclo(-l-leucyl-N-methyl-(Z)-dehydrophenyl-analyl-glycyl-N-methyl-l-alanyl-)] with solubilized lettuce chloroplast coupling factor 1 was characterized by direct binding studies, measurement of the time course of ATPase inhibition, and steady-state enzyme kinetics. Neither substrates, products or Ca2+ competed with the tentoxin binding site, nor did they induce any large change in tentoxin affinity. The inhibition of lettuce chloroplast coupling factor 1 ATPase was found to be the time dependent, and at equilibrium the affinities estimated by equilibrium ultrafiltration and enzyme inhibition were similar (1.8 · 108M?1). The steady-state kinetics best fit an uncompetitive pattern suggesting that the inhibited steps follow an irreversible step occurring after ATP binding.  相似文献   

19.
The binding of tentoxin to lettuce chloroplast coupling factor 1 and its inhibition of Ca+2-dependent ATPase involves the α and β subunits which remain after trypsin treatment. The tentoxin-binding properties of the digest are not greatly altered from those previously reported for the untreated protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号