首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Structural role of the second copy of the rod–core linker CpcG, which was found by genome analysis, was studied in Synechocystis sp. PCC 6803 by gene disruption and fractionation of phycobilisome (sub)complexes. Disruption of cpcG2 (sll1471) resulted in a marked decrease in phycocyanin content both in the background of wild-type and cpcG1 (slr2051)-disruptant. The unique phycocyanin rod–CpcG2 complex without the major allophycocyanin components was isolated from the cpcG1-disruptant. By fluorescence analysis, it was proposed that CpcG2 protein connects the rods with a minor allophycocyanin component, to support energy transfer to Photosystem I.  相似文献   

3.
In photobioreactors and natural systems, microalgae are subjected to rapidly changing light intensities (LI) due to light attenuation and mixing. A controlled way to study the effect of rapidly changing LI is to subject cultures to flashing light. In this study, series of flashing-light experiments were conducted using Synechocystis sp. PCC6803 with constant overall average LI of approximately 84 μmol·m−2·s−1 and relative times in the light and dark varied. The results were also compared with simulated results using a mathematical model including an absorbed pool of light energy, photoacclimation, and photoinhibition. With equal time in light and dark, the specific growth rate (μ) systematically decreased with increasing light duration, and µ decreased further when the ratio of light to dark was decreased. The model captured both trends with the mechanistic explanation that when the light duration was very short the changes in the pool of absorbed LI were smoothed out across the light and dark periods, whereas longer durations caused the biomass to experience discrete light and dark conditions that lead to reduced light absorption, more energy loss to nonphotochemical quenching, and more photodamage. These growth effects were accentuated as the ratio of light to dark decreased.  相似文献   

4.
A recent proteomic analysis of the thylakoid lumen of Arabidopsis thaliana revealed the presence of several PsbP-like proteins, and a homologue to this gene family was detected in the genome of the cyanobacterium Synechocystis sp. PCC 6803 (Schubert M, Petersson UA, Haas BJ, Funk C, Schröder WP, Kieselbach T (2002) J Biol Chem 277, 8354–8365). Using a peptide-directed antibody against this cyanobacterial PsbP-like protein (sll1418) we could show that it was localized in the thylakoid membrane and associated with Photosystem II. While salt washes did not remove the PsbP-like protein from the thylakoid membrane, it was partially lost during the detergent-based isolation of PSII membrane fractions. In total cell extracts this protein is present in the same amount as the extrinsic PsbO protein. We did not see any significant functional difference between the wild-type and a PsbP-like insertion mutant.  相似文献   

5.
Plant cells are always exposed to various environmental stresses such as high light, low temperature and acid rain, and thus have to respond in order to survive these stresses. Although some mechanisms of responses to high light and low temperature etc., have been clarified, there is little information about the acclimation process to acid stress. In this study, the gene expression changes of Synechocystis sp. PCC 6803 in response to acid stress were examined using DNA microarrays (CyanoCHIP). We compared gene expression profiles of the cells treated at pH 8 (control) and pH 3 for 0.5, 1, 2 or 4 h. As a result, we found that 32 genes were upregulated by more than 3-fold, and 29 genes were downregulated by at least 3-fold after the acid treatment. Among these upregulated genes, expressions of slr0967 and sll0939 kept-increasing until 4 h under the acid stress and increased by 7 to 16-fold after the 4 h treatment. This suggests that the products of these two genes play important roles in the acid acclimation process.  相似文献   

6.
7.
An isolated 25 kDa protein of Synechocystis sp. PCC 6803 was N-terminally sequenced and assigned to a protein encoded by the ORF slr0924. This ORF shows a certain degree of sequence similarity to a subunit from the protein Translocon at the Inner envelope of pea Chloroplasts (Tic22). The deduced amino acid sequence of Slr0924 has a N-terminal extension, that contains two possible translational start points and two possible cleavage sites for leader peptidases. Immunostaining with an antibody raised to the over-produced protein revealed two cross-reacting forms, which probably correspond to a larger intermediate and the mature protein. Immunogold labelling of thin sections showed that the protein is located mainly in the thylakoid region. This result was verified by thylakoid membrane fractionation indicating that Slr0924 is a lumenal protein. The slr0924 gene product is essential for the viability of Synechocystis sp. PCC 6803 as shown by interposon mutagenesis. The merodiploid strain showed reduced photosynthetic activity compared to the wild-type. Furthermore, growth of the merodiploid strain was found to be completely inhibited after cultivation with glucose. Accordingly, the amount of the slr0924 gene product was regulated by glucose and light intensities in wild-type cells. The potential function of the protein in Synechocystis sp. PCC 6803 will be discussed.  相似文献   

8.
The psbZ gene of Synechocystis sp. PCC 6803 encodes the ∼6.6 kDa photosystem II (PSII) subunit. We here report biophysical, biochemical and in vivo characterization of Synechocystis sp. PCC 6803 mutants lacking psbZ. We show that these mutants are able to perform wild-type levels of light-harvesting, energy transfer, PSII oxygen evolution, state transitions and non-photochemical quenching (NPQ) under standard growth conditions. The mutants grow photoautotrophically; however, their growth rate is clearly retarded under low-light conditions and they are not capable of photomixotrophic growth. Further differences exist in the electron transfer properties between the mutants and wild type. In the absence of PsbZ, electron flow potentially increased through photosystem I (PSI) without a change in the maximum electron transfer capacity of PSII. Further, rereduction of P700+ is much faster, suggesting faster cyclic electron flow around PSI. This implies a role for PsbZ in the regulation of electron transfer, with implication for photoprotection.  相似文献   

9.
Synechocystis sp. PCC 6803 is the most popular cyanobacterial strain, serving as a standard in the research fields of photosynthesis, stress response, metabolism and so on. A glucose-tolerant (GT) derivative of this strain was used for genome sequencing at Kazusa DNA Research Institute in 1996, which established a hallmark in the study of cyanobacteria. However, apparent differences in sequences deviating from the database have been noticed among different strain stocks. For this reason, we analysed the genomic sequence of another GT strain (GT-S) by 454 and partial Sanger sequencing. We found 22 putative single nucleotide polymorphisms (SNPs) in comparison to the published sequence of the Kazusa strain. However, Sanger sequencing of 36 direct PCR products of the Kazusa strains stored in small aliquots resulted in their identity with the GT-S sequence at 21 of the 22 sites, excluding the possibility of their being SNPs. In addition, we were able to combine five split open reading frames present in the database sequence, and to remove the C-terminus of an ORF. Aside from these, two of the Insertion Sequence elements were not present in the GT-S strain. We have thus become able to provide an accurate genomic sequence of Synechocystis sp. PCC 6803 for future studies on this important cyanobacterial strain.  相似文献   

10.
Synechocystis sp. PCC 6803 is a widely used model cyanobacterium for studying photosynthesis, phototaxis, the production of biofuels and many other aspects. Here we present a re-sequencing study of the genome and seven plasmids of one of the most widely used Synechocystis sp. PCC 6803 substrains, the glucose tolerant and motile Moscow or ‘PCC-M’ strain, revealing considerable evidence for recent microevolution. Seven single nucleotide polymorphisms (SNPs) specifically shared between ‘PCC-M’ and the ‘PCC-N and PCC-P’ substrains indicate that ‘PCC-M’ belongs to the ‘PCC’ group of motile strains. The identified indels and SNPs in ‘PCC-M’ are likely to affect glucose tolerance, motility, phage resistance, certain stress responses as well as functions in the primary metabolism, potentially relevant for the synthesis of alkanes. Three SNPs in intergenic regions could affect the promoter activities of two protein-coding genes and one cis-antisense RNA. Two deletions in ‘PCC-M’ affect parts of clustered regularly interspaced short palindrome repeats-associated spacer-repeat regions on plasmid pSYSA, in one case by an unusual recombination between spacer sequences.  相似文献   

11.
The first two genes of ferredoxin-dependent glutamate synthase (Fd-GOGAT) from a prokaryotic organism, the cyanobacterium Synechocystis sp. PCC 6803, were cloned in Escherichia coli. Partial sequencing of the cloned genomic DNA, of the 6.3 kb Hind III and 9.3 kb Cla I fragments, confirmed the existence of two different genes coding for glutamate synthases, named gltB and gltS. The gltB gene was completely sequenced and encodes for a polypeptide of 1550 amino acid residues (M r 168 964). Comparative analysis of the gltB deduced amino acid sequence against other glutamate synthases shows a higher identity with the alfalfa NADH-GOGAT (55.2%) than with the corresponding Fd-GOGAT from the higher plants maize and spinach (about 43%), the red alga Antithamnnion sp. (42%) or with the NADPH-GOGAT of bacterial source, such as Escherichia coli (41%) and Azospirillum brasilense (45%). The detailed analysis of Synechocystis gltB deduced amino acid sequence shows strongly conserved regions that have been assigned to the 3Fe-4S cluster (CX5CHX3C), the FMN-binding domain and the glutamine-amide transferase domain. Insertional inactivation of gltB and gltS genes revealed that both genes code for ferredoxin-dependent glutamate synthases which were nonessential for Synechocystis growth, as shown by the ferredoxin-dependent glutamate synthase activity and western-blot analysis of the mutant strains.  相似文献   

12.
Various post-translational modifications (PTMs) of pilin in Synechocystis sp. PCC 6803 have been proposed. In this study, we investigated previously unidentified PTMs of pilin by mass spectrometry (MS). MALDI-TOF MS and TOF/TOF MS showed that the molecular mass of the C-terminal lysine of pilin was increased by 42 Da, which could represent acetylation (ΔM = 42.0470) or trimethylation (ΔM = 42.0106). To discriminate between these isobaric modifications, the molecular mass of the C-terminal tryptic peptide was measured using 15T Fourier transform ion cyclotron resonance (FT-ICR) MS. The high magnetic field FT-ICR provided sub-ppm mass accuracy, revealing that the C-terminal lysine was modified by trimethylation. We could also detect the existence of mono- and di-methylation of the C-terminal lysine. Cells expressing a pilin point mutant with glutamine replacing the C-terminal lysine showed dramatically reduced motility and short pili. These findings suggest that trimethylation of pilin at the C-terminal lysine may be essential for the biogenesis of functional pili.  相似文献   

13.
The cyanobacterium, Synechocystis sp. PCC 6803, was the first photosynthetic organism whose genome sequence was determined in 1996 (Kazusa strain). It thus plays an important role in basic research on the mechanism, evolution, and molecular genetics of the photosynthetic machinery. There are many substrains or laboratory strains derived from the original Berkeley strain including glucose-tolerant (GT) strains. To establish reliable genomic sequence data of this cyanobacterium, we performed resequencing of the genomes of three substrains (GT-I, PCC-P, and PCC-N) and compared the data obtained with those of the original Kazusa strain stored in the public database. We found that each substrain has sequence differences some of which are likely to reflect specific mutations that may contribute to its altered phenotype. Our resequence data of the PCC substrains along with the proposed corrections/refinements of the sequence data for the Kazusa strain and its derivatives are expected to contribute to investigations of the evolutionary events in the photosynthetic and related systems that have occurred in Synechocystis as well as in other cyanobacteria.  相似文献   

14.
利用聚球藻7942热休克基因groESL的启动子和报告基因egfp,构建了表达载体pUC-Tegfp并转化集胞藻6803,并通过所制备抗体对转基因藻进行蛋白免疫印迹检测.结果发现,在转基因藻株T-egfp的细胞粗提液中含有能与eGFP抗体特异结合的蛋白质,表明外源增强型绿色荧光蛋白基因(egfp)在集胞藻6803中成功表达.  相似文献   

15.
The genome of Synechocystis sp. PCC 6803 contains an operon with homology to the sulfate permease of other prokaryotes. We used antibodies raised against cytoplasmic membrane protein to find three genes with strong homology to sbpA, orf81 and cysT genes of the cyanobacterium Synechococcus sp. PCC 7942, Escherichia coli, Salmonella typhymurium and Marchantia polymorpha. It is likely that the permease genes are expressed and the proteins are inserted into the cytoplasmic membrane.  相似文献   

16.
藻胆体是蓝藻细胞主要的捕光天线色素超分子复合体,主要由核心体和外围的杆两部分组成,核心体主要由别藻蓝蛋白组装而成,参与光能向光合作用反应中心的传递.该研究通过PCR扩增出集胞藻6803别藻蓝蛋白α亚基(ApcA)编码基因apcA,构建表达质粒pET-32a(+)-apcA,并将其转入大肠杆菌BL21(DE3)pLysS菌株中;通过IPTG诱导表达重组蛋白,并利用组氨酸标签将可溶性目的蛋白进行亲和纯化后,免疫日本大耳白兔,从而获得多克隆抗体.间接ELISA法揭示ApcA抗体效价可高达1∶1 025 000;蛋白免疫印迹确定该抗体具有高度特异性.表明该研究成功制备了集胞藻6803藻胆体别藻蓝蛋白多克隆抗体,为进一步研究藻胆体的核心体在光能传递过程中所承担的重要生理角色奠定了生化基础.  相似文献   

17.
【背景】蛋白酶能够降解细胞中错误折叠或是无功能的蛋白,Clp家族蛋白就是一类重要的蛋白酶复合物。Clp蛋白酶复合物的水解核心是ClpP,集胞藻PCC6803中存在4种不同的ClpP蛋白,分别为ClpP1-ClpP4。作为重要的蛋白水解复合物的功能组分,目前对集胞藻ClpP的研究十分有限,对其生理功能与调控底物的研究甚少。【目的】选择集胞藻为研究对象探究ClpP2蛋白的功能,鉴定其潜在底物,为集胞藻ClpP2作用机制提供实验支撑。【方法】构建集胞藻ClpP2突变株(ΔClpP2),进行其生长实验和光合生理功能研究。通过标记定量蛋白质组学技术(isobaric tag for relative absolute quantitation, iTRAQ)鉴定ClpP2调控的靶标蛋白,生物信息学分析底物蛋白参与的代谢通路,最后利用平行反应监测(parallel reaction monitoring, PRM)技术对部分定量数据进行验证。【结果】ΔClpP2可以在自然条件下光合自养生长至对数生长期,但高光或高温胁迫下则无法正常生长。相较于野生型,ΔClpP2有着显著降低的PSⅡ电子传递效率及P...  相似文献   

18.
19.
Kurian D  Jansèn T  Mäenpää P 《Proteomics》2006,6(5):1483-1494
To provide an insight into the heterotrophic metabolism of cyanobacteria, a proteomic approach has been employed with the model organism Synechocystis sp. PCC 6803. The soluble proteins from Synechocystis grown under photoautotrophic and light-activated heterotrophic conditions were separated by 2-DE and identified by MALDI-MS or LC-MS/MS analysis. 2-DE gels made using narrow- and micro-range IPG strips allowed quantitative comparison of more than 900 spots. Out of 67 abundant protein spots identified, 13 spots were increased and 9 decreased under heterotrophy, representing all the major fold changes. Proteomic alterations and activity levels of selected enzymes indicate a shift in the central carbon metabolism in response to trophic change. The significant reduction in light-saturated rate of photosynthesis as well as in the expression levels of rubisco and CO(2)-concentrating mechanism proteins under heterotrophy indicates the down-regulation of the photosynthetic machinery. Alterations in the expression level of proteins involved in carbon utilization pathways refer to enhanced glycolysis, oxidative pentose phosphate pathway as well as tricarboxylic acid cycle under heterotrophy. Proteomic evidences also suggest an enhanced biosynthesis of amino acids such as histidine and serine during heterotrophic growth.  相似文献   

20.
类铁氧还蛋白 (ferredoxin-like, Fd-like) 在高等植物中具有调控叶绿体发育等多种重要的生理功能,但在蓝藻中的生物功能尚未被发现。通过比较集胞藻PCC 6083编码Fd-like蛋白基因的敲除突变株Δslr1205与野生型 (WT) 在不同碳源和光周期条件下的生理生化表型,分析Slr1205在集胞藻中的功能。结果显示,在高CO2浓度自养、混合营养和光异养时,Δslr1205的生长速率低于WT,而在空气中自养条件下并无差异。与此相对应,混合营养和光异养时Δslr1205比WT的呼吸速率低,与呼吸作用密切相关的NDH-1L复合体的含量少。Δslr1205在所有测试的条件下有较高的类胡萝卜素以及偏黄的表型。这些数据表明,Fd-like蛋白Slr1205的缺失造成在碳源充足条件下的生长速率下降,这可能是由于呼吸作用下调导致供能不足。研究结果为今后深入研究蓝藻Fd-like蛋白奠定了基础,为开展光合作用和呼吸作用的调节机制研究探索了新方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号