首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C D Surridge  R G Burns 《Biochemistry》1992,31(26):6140-6144
The effects of various anionic phospholipids on the in vitro assembly of MAP2/tubulin microtubules has been examined. We show that the potency to inhibit is related to the polarity of the phospholipids and that this is consistent with a mode of action involving the sequencing of microtubule-associated proteins (MAPs) by nonspecific electrostatic interactions. The inhibitory potency of phosphatidylinositol (PI) is, however, considerably larger than predicted by this model. The effects of PI on MAP2/tubulin microtubule assembly have therefore been examined in greater detail by preparing phosphatidylcholine (PC) liposomes doped with increasing amounts of PI. We show that when the PI is sufficiently dispersed by dilution with PC, it inhibits microtubule assembly by binding to MAP2 with an apparent stoichiometry, after correction for the bilamellar nature of the liposomes, of 1:1 mol.mol-1 PI:MAP2. Furthermore, we show that the Kd of this interaction is in the submicromolar range.  相似文献   

2.
3.
A heat-stable microtubule-associated protein (MAP) with a molecular weight of 190,000, termed 190-kDa MAP, has been purified from bovine adrenal cortex (Murofushi, H. et al. (1986) J. Cell Biol. 103, 1911-1919). Immunoblotting experiments using an antibody against this MAP revealed that several kinds of culture cells derived from human tissues contain proteins with an apparent molecular weight of 180,000 reacting with the antibody. Indirect immunofluorescence microscopic observation of HeLa cells showed that the immunoreactive protein co-exists with microtubules, indicating that the protein is one of the HeLa MAPs. A heat-stable MAP with a molecular weight of 180,000, termed here HeLa 180-kDa MAP, was purified by the taxol-dependent procedure (Vallee, R.B. (1982) J. Cell Biol. 92, 435-442) and successive co-polymerization with brain tubulin. This protein was the most abundant MAP in HeLa cells, suggesting that the MAP is identical to the major HeLa MAP previously reported by Bulinski and Borisy (Bulinski, J.C. & Borisy, G.G. (1980) J. Biol. Chem. 255, 11570-11576) and Weatherbee et al. [1980) Biochemistry 19, 4116-4123). It was shown that, like bovine adrenal 190-kDa MAP, yet distinct from brain MAP2 and tau, purified HeLa 180-kDa MAP does not interact with actin filaments. This common characteristic of the two MAPs along with the same heat-stability strongly suggests that they are members of the same group of MAPs. The fact that HeLa 180-kDa MAP reacts with an antibody against bovine adrenal 190-kDa MAP means that they share common epitopes, in other words, common local amino acid sequences. However, the limited proteolytic patterns of the two MAPs with S. aureus V8 protease and chymotrypsin were distinct from each other, suggesting the presence of large differences in the overall primary structures between bovine adrenal 190-kDa MAP and HeLa 180-kDa MAP.  相似文献   

4.
Previous studies have demonstrated that the microtubule - associated proteins MAP-2 and tau interact selectively with common binding domains on tubulin defined by the low-homology segments a (430–441) and (422–434). It has been also indicated that the synthetic peptide VRSKIGSTENLKHQPGGG corresponding to the first tau repetitive sequence represents a tubulin binding domain on tau. The present studies show that the calcium-binding protein calmodulin interacts with a tubulin binding site on tau defined by the second repetitive sequence VTSKCGSLGNIHHKPGGG. It was shown that both tubulin and calmodulin bind to tau peptide-Sepharose affinity column. Binding of calmodulin occurs in the presence of 1 mM Ca 2+ and it can be eluted from the column with 4 mM EGTA. These findings provide new insights into the regulation of microtubule assembly, since Ca 2+/calmodulin inhibition of tubulin polymerization into microtubules could be mediated by the direct binding of calmodulin to tau, thus preventing the interaction of this latter protein with tubulin.  相似文献   

5.
Inositol 1,4,5-trisphosphate 3-kinase A (IP(3)K-A) is a brain specific and F-actin-binding protein. We recently demonstrated that IP(3)K-A modulates a structural reorganization of dendritic spines through F-actin remodeling, which is required for synaptic plasticity and memory formation in brain. However, detailed functions of IP(3)K-A and its regulatory mechanisms involved in the neuronal cytoskeletal dynamics still remain unknown. In the present study, we identified tubulin as a candidate of IP(3)K-A-binding protein through proteomic screening. By various in vitro and in vivo approaches, we demonstrated that IP(3)K-A was a novel microtubule-associated protein (MAP), and the N terminus of IP(3)K-A was a critical region for direct binding to tubulin in dendritic shaft of hippocampal neurons. Moreover, PKA phosphorylated Ser-119 within IP(3)K-A, leading to a significant reduction of microtubule binding affinity. These results suggest that PKA-dependent phosphorylation and microtubule binding of IP(3)K-A are involved in its regulatory mechanism for activity-dependent neuronal events such as local calcium signaling and its synaptic targeting.  相似文献   

6.
A monoclonal antibody raised against mitotic spindles isolated from CHO cells ([CHO1], Sellitto, C., and R. Kuriyama. 1988. J. Cell Biol. 106:431-439) identifies an epitope that resides on polypeptides of 95 and 105 kD and is localized in the spindles of diverse organisms. The antigen is distributed throughout the spindle at metaphase but becomes concentrated in a progressively narrower zone on either side of the spindle midplane as anaphase progresses. Microinjection of CHO1, either as an ascites fluid or as purified IgM, results in mitotic inhibition in a stage-specific and dose-dependent manner. Parallel control injections with nonimmune IgMs do not yield significant mitotic inhibition. Immunofluorescence analysis of injected cells reveals that those which complete mitosis display normal localization of CHO1, whereas arrested cells show no specific localization of the CHO1 antigen within the spindle. Immunoelectron microscopic images of such arrested cells indicate aberrant microtubule organization. The CHO1 antigen in HeLa cell extracts copurifies with taxol-stabilized microtubules. Neither of the polypeptides bearing the antigen is extracted from microtubules by ATP or GTP, but both are approximately 60% extracted with 0.5 M NaCl. Sucrose gradient analysis reveals that the antigens sediment at approximately 11S. The CHO 1 antigen appears to be a novel mitotic MAP whose proper distribution within the spindle is required for mitosis. The properties of the antigen(s) suggest that the corresponding protein(s) are part of the mechanism that holds the antiparallel microtubules of the two interdigitating half spindles together during anaphase.  相似文献   

7.
Recently, we revealed that microtubule-associated protein (MAP) 4 isoforms, which differ in the number of repeat sequences, alter the microtubule surface properties, and we proposed a hypothesis stating that the change in the surface properties may regulate the movements of microtubule motors [Tokuraku et al. (2003) J Biol Chem 278: 29609-29618]. In this study, we examined whether MAP4 isoforms affect the kinesin motor activity. When the MAP4 isoforms were present in an in vitro gliding assay, the five-repeat isoform but not the three- and four-repeat isoforms inhibited the movement of the microtubules in a concentration-dependent manner. The observation of individual microtubules revealed that in the presence of the five-repeat isoform, the microtubules completely stopped their movements or recurrently paused and resumed their movements, with no deceleration in the moving phase. The result can be explained by assuming that kinesin stops its movement when it encounters a microtubular region whose properties are altered by the MAPs. A sedimentation assay demonstrated that the MAP4 isoforms did not compete with kinesin for binding to microtubules, indicating that kinesin can bind to the MAP-bound microtubules, although it cannot move on them.  相似文献   

8.
9.
Nine genes that encode proteins of the MAP65 family have been identified in the Arabidopsis thaliana genome. In this study, we reported that AtMAP65-2, a member of the AtMAP65 family, could strongly stabilize microtubules (MTs). Bacterially-expressed AtMAP65-2 fusion proteins induced the formation of large MT bundles in vitro. Although AtMAP65-2 showed little effect on MT assembly or nucleation, AtMAP65-2 greatly stabilized MTs that were subjected to low-temperature treatment in vitro. Analyses of truncated versions of AtMAP65-2 indicated that the region that encompassed amino acids 495–578, which formed a flexible extended loop, played a crucial role in the stabilization of MTs. Analysis of suspension-cultured Arabidopsis cells that expressed the AtMAP65-2-GFP fusion protein showed that AtMAP65-2 co-localized with MTs throughout the cell cycle. Cortical MTs that were decorated with AtMAP65-2-GFP were more resistant to the MT-disrupting drug propyzamide and to ice treatment in vivo. The results of this study demonstrate that AtMAP65-2 strongly stabilizes MTs and is involved in the regulation of MT organization and dynamics. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. H. Li and X. Zeng have contributed equally to this paper and are considered as joint first authors.  相似文献   

10.
《The Journal of cell biology》1989,109(6):3367-3376
We report the complete sequence of the microtubule-associated protein MAP1B, deduced from a series of overlapping genomic and cDNA clones. The encoded protein has a predicted molecular mass of 255,534 D and contains two unusual sequences. The first is a highly basic region that includes multiple copies of a short motif of the form KKEE or KKEVI that are repeated, but not at exact intervals. The second is a set of 12 imperfect repeats, each of 15 amino acids and each spaced by two amino acids. Subcloned fragments spanning these two distinctive regions were expressed as labeled polypeptides by translation in a cell-free system in vitro. These polypeptides were tested for their ability to copurify with unlabeled brain microtubules through successive cycles of polymerization and depolymerization. The peptide corresponding to the region containing the KKEE and KKEVI motifs cycled with brain microtubules, whereas the peptide corresponding to the set of 12 imperfect repeats did not. To define the microtubule binding domain in vivo, full-length and deletion constructs encoding MAP1B were assembled and introduced into cultured cells by transfection. The expression of transfected polypeptides was monitored by indirect immunofluorescence using anti-MAP1B-specific antisera. These experiments showed that the basic region containing the KKEE and KKEVI motifs is responsible for the interaction between MAP1B and microtubules in vivo. This region bears no sequence relationship to the microtubule binding domains of kinesin, MAP2, or tau.  相似文献   

11.
12.
The kinetics of assembly were studied for bovine and pig microtubule protein in vitro over a range of conditions of pH, temperature, nucleotide and protein concentration. The kinetics are in general biphasic with two major processes of similar amplitude but separated in rate by one order of magnitude. Rates and amplitudes are complex functions of solution conditions. The rates of the fast phase and the slow phase attain limiting values as a function of increasing protein concentration, and are more stringently limited at pH 6.5 than pH 6.95. Such behaviour indicates that mechanisms other than the condensation polymerization of tubulin dimer become rate-limiting at higher protein concentration. The constancy of the wavelength-dependence of light-scattering and ultrastructural criteria indicate that microtubules of normal morphology are formed in both phases of the assembly process. Electrophoretic analysis of assembling microtubule protein shows that MAP- (microtubule-associated-protein-)rich microtubules are formed during the fast phase. The rate of dissociation of oligomeric species on dilution of microtubule protein closely parallels the fast-phase rate in magnitude and temperature-dependence. We propose that the rate of this process constitutes an upper limit to the rate of the fast phase of assembly. The kinetics of redistribution of MAPs from MAP-rich microtubules may be a factor limiting the slow-phase rate. A working model is derived for the self-assembly of microtubule protein incorporating the dissociation and redistribution mechanisms that impose upper limits to the rates of assembly attainable by bimolecular addition reactions. Key roles are assigned to MAP-containing fragments in both phases of microtubule elongation. Variations in kinetic behaviour with solution conditions are inferred to derive from the nature and properties of fragments formed from oligomeric species after the rapid temperature jump. The model accounts for the limiting rate behaviour and indicates experimental criteria to be applied in evaluating the relative contributions of alternative pathways.  相似文献   

13.
gamma-tubulin is a minus end-specific microtubule binding protein   总被引:6,自引:3,他引:3       下载免费PDF全文
The role of microtubules in mediating chromosome segregation during mitosis is well-recognized. In addition, interphase cells depend upon a radial and uniform orientation of microtubules, which are intrinsically asymmetric polymers, for the directional transport of many cytoplasmic components and for the maintenance of the structural integrity of certain organelles. The slow growing minus ends of microtubules are linked to the centrosome ensuring extension of the fast growing plus ends toward the cell periphery. However, the molecular mechanism of this linkage is not clear. One hypothesis is that gamma-tubulin, located at the centrosome, binds to the minus ends of microtubules. To test this model, we synthesized radiolabeled gamma-tubulin in vitro. We demonstrate here biochemically a specific, saturable, and tight (Kd = 10(-10) M) interaction of gamma-tubulin and microtubule ends with a stoichiometry of 12.6 +/- 4.9 molecules of gamma-tubulin per microtubule. In addition, we designed an in vitro assay to visualize gamma-tubulin at the minus ends of axonemal microtubules. These data show that gamma-tubulin represents the first protein to bind microtubule minus ends and might be responsible for mediating the link between microtubules and the centrosome.  相似文献   

14.
The kinesin-like calmodulin binding protein (KCBP) is a new member of the kinesin superfamily that appears to be present only in plants. The KCBP is unique in its ability to interact with calmodulin in a Ca2+-dependent manner. To study the interaction of the KCBP with microtubules, we expressed different regions of the Arabidopsis KCBP and used the purified proteins in cosedimentation assays with microtubules. The motor domain with or without the calmodulin binding domain bound to microtubules. The binding of the motor domain containing the calmodulin binding region to microtubules was inhibited by Ca2+-calmodulin. This Ca2+-calmodulin regulation of motor domain interactions with microtubules was abolished in the presence of antibodies specific to the calmodulin binding region. In addition, the binding of the motor domain lacking the calmodulin binding region to microtubules was not inhibited in the presence of Ca2+-calmodulin, suggesting an essential role for the calmodulin binding region in Ca2+-calmodulin modulation. Results of the cosedimentation assays with the N-terminal tail suggest the presence of a second microtubule binding site on the KCBP. However, the interaction of the N-terminal tail region of the KCBP with microtubules was insensitive to ATP. These data on the interaction of the KCBP with microtubules provide new insights into the functioning of the KCBP in plants.  相似文献   

15.
Vinca alkaloids vinblastine and vincristine and some of their derivatives such as vinorelbine are widely used in therapy of leukemia and several solid tumors. Their action is associated with alterations of the mitotic spindle functions that prevent the cell cycle progression and lead to mitotic block. A number of studies show that some Vinca alkaloids inhibit CaM-target interaction. The newest microtubule inhibitor, vinflunine (Javlor), currently in clinical trials, is remarkably more active than vinblastine against a number of tumors. Moreover, vinflunine is significantly less toxic than other Vinca alkaloids. The high antitumor activity of this molecule is not well understood since it binds to tubulin with an overall affinity several-fold lower than that of vinblastine or vincristine. In this study, we examined the interaction of Ca2+-CaM with vinflunine, vinblastine, and stable tubule only polypeptide (STOP) by using a combination of thermodynamic and mass spectrometric approaches. We characterized the influence of Vinca alkaloids on Ca2+-CaM-STOP complex formation. Our results revealed different binding modes to Ca2+-CaM for vinflunine and vinblastine, highlighting that adding fluorine atoms on the cleavamine moiety of the Vinca alkaloid molecule is critical for the localization of the drug on calmodulin. We demonstrate that vinflunine is a better inhibitor for STOP binding to calmodulin than vinblastine. We suggest that vinflunine action on calmodulin can have an effect on microtubule dynamics. These data may contribute to a better understanding of the superior antitumor efficiency and lower toxicity of vinflunine.  相似文献   

16.
17.
Specific antibodies to a protein P1 Mr approximately equal to 63,000) from Chinese hamster ovary cells, which is affected in mutants resistant to the microtubule inhibitor, podophyllotoxin, and behaves like a microtubule-related protein by certain criteria [14], have been raised. The antibody reacts specifically with the P1 protein in one- and two-dimensional immunoblots, and a cross-reacting protein of similar molecular mass and electrophoretic mobility is also found in cells from various vertebrate and invertebrate species. The observed similarity in the peptide maps of the cross-reacting protein from human, mouse, Chinese hamster and chicken cells indicates that the structure of this protein should be highly conserved. However, no P1-antibody cross-reacting protein was observed in plants (corn, mung), fungus (Neurospora crassa), yeast (Saccharomyces cerevisiae) and bacteria (Escherichia coli and Salmonella typhimurium). Immunofluorescence studies with the P1-antibody show that, in interphase cells of various cross-reacting species, it bound specifically to mitochondria which were associated and distributed on and along the length of microtubules. Similar association and codistribution of mitochondria and microtubules were not observed in mitotic cells. Some implications of the mitochondrial localization of the protein P1 and the observed association between microtubules and mitochondria are discussed.  相似文献   

18.
19.
The effect of neurosteroids is mediated through their membrane or nuclear receptors. However, no dehydroepiandrosterone (DHEA)-specific receptors have been evidenced so far in the brain. In this paper, we showed by isothermal titration calorimetry that the DHEA specifically binds to the dendritic brain microtubule-associated protein MAP2C with an association constant of 2.7 x 10(7) m-1 and at a molar ratio of 1:1. By partial tryptic digestions and mass spectrometry analysis, we found that the binding involved the N-terminal region of MAP2C. Interestingly, MAP2C displays homologies with 17 beta-hydroxysteroid dehydrogenase 1, an enzyme required for estrogen synthesis. Based on these sequence homologies and on the x-ray structure of the DHEA-binding pocket of 17 beta-hydroxysteroid dehydrogenase 1, we modeled the complex of DHEA with MAP2C. The binding of DHEA to MAP2C involved specific hydrogen bonds that orient the steroid into the pocket. This work suggests that DHEA can directly influence brain plasticity via MAP2C binding. It opens interesting ways for understanding the role of DHEA in the brain.  相似文献   

20.
The microtubule-binding domain of MAP4, a ubiquitous microtubule-associated protein, contains a Repeat region with tandemly organized repeat sequences. In this study, we focused on the variations of the Repeat region, and searched for MAP4 isoforms with diverse Repeat region organizations. We successfully isolated four types of MAP4 cDNAs, which differed from each other in both the number and the arrangement of the repeat sequences, from a single source (bovine adrenal gland). To examine the functional differences among the isoforms, we prepared the microtubule-binding domain polypeptides of three of the four isoforms, and examined their activities. The isoform fragments showed similar degrees of microtubule assembly promoting activity and microtubule binding affinity. This result suggested that the Repeat region variation is not important for the control of microtubule dynamics, which is believed to be the main function of MAPs. On the other hand, the microtubule bundle-forming activity differed among the isoform fragments. The bundle formation was augmented by increasing the number of repeat sequences in the fragments. Based on these results, we propose the hypothesis that the role of the MAP4 isoforms is to regulate the surface charge of microtubules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号