首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human myeloma cells from a patient suffering from a lambda Bence-Jones myeloma were hybridized with a continuous mouse myeloma cell line. Several hybrids were obtained, two of which produced the same lambda chain produced by the patient. They have proved to be stable over long periods of time in continuous cell culture. Kinetics of growth of this line proved to be linear over 72 h. This growth rate is independent of any possible nutrient depletion effect from the media. Rate of production of lambda chain was highest (45 micrograms/10(6) cells/24 h) when cell density was between 3-5 X 10(5)/ml and decreased as cell density increased. Efficiency of human light chain synthesis in these hybrids is similar to murine Ig synthesis by the producer parental mouse cells. Human-mouse myeloma hybrids that produce large quantities of human Igs can be established routinely, are stable over long periods of time, and can be used as a model system for the study of the control of synthesis of human Igs.  相似文献   

2.
Fusion of unfractionated human lymphocytes with mouse myeloma cells resulted in proliferating hybrid colonies, almost all producting human Ig. We examined whether this high frequency of Ig production was the result of selective formation of human B lymphocyte-mouse myeloma hybrids, rather than induction of Ig genes in T lymphocytes. Unfractionated peripheral lymphocytes and B lymphocytes from patients with the common variable form of agammaglobulinemia formed proliferating somatic cell hybrid colonies. In contrast, peripheral lymphocytes from a patient with agammaglobulinema who lacked B lymphocytes, as well as albumin gradient fractions of peripheral blood which do not contain B lymphocytes, failed to produce somatic cell hybrids with three different myeloma parent cell lines. B, T, and precursor lymphocytes all had Sendai virus receptors, as witnessed by viral agglutination. We conclude that fusion of human lymphocytes with mouse myeloma cells results in selective hybrid formation, rather than activation of Ig genes in disparate cell types. Only B lymphocyte-mouse myeloma heterokaryons form hybrid cells.  相似文献   

3.
D A Thorley-Lawson 《Cell》1979,16(1):33-42
A rabbit antiserum has been prepared against the B95-8 transforming strain of EBV. The antiserum has a high virus neutralizing titer (approximately 1:1000) against both the marmoset B95-8 EBV and the human P3HR-1 EBV. The neutralizing antibodies may be absorbed completely with EBV producer cell lines, but not with nonproducer cell lines or producer cell lines treated with phosphonoacetic acid (PAA) so as to be nonproducer. After repeated absorption with PAA-treated B95-8, the serum remains reactive with the membranes of producer cell lines as judged by immunofluorescence or the 125I--Staphylococcal protein A radioimmunoassay. Thus the neutralizing antigens are expressed on the membranes of producer cell lines and may be purified from this source using the serum and 125I--Staph A binding as an assay. The ability of the serum to differentiate between producer and nonproducer cells by means of cell surface determinants has been exploited to achieve a separation of these two populations from the same culture. Immunoprecipitation by the protein A technique shows that the serum recognizes two polypeptides from producer cells of approximate molecular weights 150,000 and 75,000.  相似文献   

4.
Through a series of human-mouse hybrids we have identified that two human chromosomes, 10 and 18, must be present for production of the pregnancy protein hormone human chorionic gonadotropin (hCG). Human choriocarcinoma cells producing hCG were hybridized to mouse cells. From 49 independent clones three hybrid clones continued to produce whole hCG. Chromosomal analysis was done on the 3 producer clones and 5 nonproducer clones. The additional 41 nonproducer clones were genetically characterized by isozymes. Only when chromosomes 10 and 18 were present in a clone would the whole hCG molecule be produced. Clones with only 10 or only 18 did not produce hormone. Nine subclones of a producer clone confirmed this observation. Three subclones retaining both 10 and 18 continued to produce hCG. This study demonstrated the need to use cellular chromosome data and population enzyme data to identify two chromosomes necessary for hCG production in heterogeneous human-mouse hybrids.  相似文献   

5.
The effect of changing cell volume on rat mammary protein synthesis has been examined. Cell swelling, induced by a hyposmotic challenge, markedly increased the incorporation of radiolabelled amino acids (leucine and methionine) into trichloroacetic acid (TCA)-precipitable material: reducing the osmolality by 47% increased leucine and methionine incorporation into mammary protein by 147 and 126% respectively. Conversely, cell shrinking, induced by a hyperosmotic shock, almost abolished the incorporation of radiolabelled amino acids into mammary protein: increasing the osmolality by 70% reduced leucine and methionine incorporation into mammary protein by 86 and 93% respectively. The effects of cell swelling and shrinking were fully reversible. Volume-sensitive mammary tissue protein synthesis was dependent upon the extent of the osmotic challenge. Isosmotic swelling of mammary tissue, using a buffer containing urea (160 mM), increased the incorporation of radiolabelled leucine into TCA-precipitable material by 106%. Swelling-induced mammary protein synthesis was dependent upon calcium: removing extracellular calcium together with the addition of EGTA markedly reduced volume-activated protein synthesis. Cell swelling-induced protein synthesis was inhibited by the Ca(2+) ATPase blocker thapsigargin suggesting that volume-sensitive protein synthesis is dependent upon luminal calcium.  相似文献   

6.
The effects of three types of amino acids on 45Ca2+ fluxes in rat pancreatic islets have been compared. Alanine, a non-insulinotropic neutral amino acid, transported with Na+, increased 45Ca2+ efflux in the presence or in the absence of extracellular Ca2+, but not in the absence of Na+. Its effects in Na+-solutions were practically abolished by 7 mM-glucose. Alanine slightly stimulated 45Ca2+ influx (5 min uptake) only when Na+ was present. Two insulinotropic cationic amino acids (arginine and lysine) triggered similar changes in 45Ca2+ efflux. They accelerated the efflux in the presence of Ca2+ and inhibited the efflux in a Ca2+-free medium, whether glucose was present or not. In an Na+-free Ca2+-medium, arginine and lysine markedly accelerated 45Ca2+ efflux, but this effect was suppressed by 7 mM-glucose. Arginine stimulated 45Ca2+ influx irrespective of the presence or absence of glucose and Na+. Leucine, a neutral insulinotropic amino acid well metabolized by islet cells, inhibited 45Ca2+ efflux from the islets in a Ca2+-free medium; this effect was potentiated by glutamine. In the presence of Ca2+ and Na+, leucine was ineffective alone, but triggered a marked increase in 45Ca2+ efflux when combined with glutamine. In an Na+-free Ca2+-medium, leucine accelerated 45Ca2+ efflux to the same extent with or without glutamine. Leucine also stimulated 45Ca2+ influx in the presence or in the absence of Na+, but its effects were potentiated by glutamine only in the presence of Na+. The results show that amino acids of various types cause distinct changes in 45Ca2+ fluxes in pancreatic islets. Certain of these changes involve an Na+-mediated mobilization of cellular Ca2+ from sequestering sites where glucose appears to exert an opposite effect.  相似文献   

7.
A simple dynamic model has been applied to explain the population dynamics of monoclonal antibody (MAb) producing (producer) and nonproducing hybridoma cells (nonproducer) coexisting in culture. The events of mutation or loss of genes associated with antibody synthesis have been incorporated into the model to account for the conversion of a producer to a nonproducer. The model shows that the cell population is not necessarily dominated by the nonproducer, and a steady balance of producer and nonproducer populations can be achieved. A nonproducer population is undesirable, and cultivation strategies to maximize MAb production are suggested, taking into account the dynamics of a nonproducer population.  相似文献   

8.
Single-cell rates of accumulation of cellular protein have been determined as a function of total protein content using flow cytometry and population balance equations for exponentially growing murine hybridoma cells in the individual G(1), S(1) and G(2) + M cell cycle phases. A novel flow cytometric technique for the identification of hybridoma cells in mitosis was developed and implemented. The data were obtained from a producer cell line which synthesizes and secretes high levels of monoclonal antibodies, and from a nonproducer clone which does not synthesize and secrete substantial amounts of antibody. The results indicate that the kinetics of single-cell protein accumulation in these two cell lines are considerably different. In particular, low protein content G(1) phase producer cells were characterized by a rate of protein accumulation which was approximately five times higher than the mean rate observed for higher protein content producer cells cycle phase. In contrast, the rate of accumulation of protein increased continuously with totalprotein content for the G(1) phase nonproducer cells. S phase hybridoma cells were characterized by a considerably lower rate of protein accumulation which did not vary much with protein content for either cell line. Finally, G(2) + M phase producer cells demonstrated a negative rate of protein accumulation which indicates that the rates of protein synthesis. It was hypothesized that these differences in total protein accumulation are caused by differences in monoclonal antibody accumulation. The distribution of rates suggests the need for a segregated approach to the modeling of the kinetics of antibody production in hybridomas.  相似文献   

9.
A human hybrid myeloma for production of human monoclonal antibodies   总被引:2,自引:0,他引:2  
We produced somatic cell hybrids between human myeloma cells and a lymphoblastoid cell line that is hypoxanthine phosphoribosyl transferase-deficient and ouabain-resistant. These hybrids were phenotypically similar to the human myeloma parental cells and grew as well as the human lymphoblastoid parental cells. After counterselection in 6-thioguanine, mutants that were 6-thioguanine-and ouabain-resistant were obtained, one of which was used as a fusion partner with lymphoblastoid B cells that produce anti-tetanus toxoid (TT) antibodies. These hybrids secreted human anti-TT monoclonal antibodies in much larger amounts than the parental lymphoblastoid cells, and were stable for a period of over 10 mo until the present time. Thus, by hybridizing plasmacytomas with lymphoblastoid cells, we constructed a fusion partner that secretes large amounts of immunoglobulin (Ig), grows at a fast rate, has a high fusion frequency, and supports the production of monoclonal antibodies over long periods of time. Moreover, anti-TT antibody-producing hybrids have been grown as solid tumors in irradiated BALB/c nude mice and then adopted to ascites growth, producing 1 to 8 mg of human immunoglobulin per 1 ml of ascites fluid.  相似文献   

10.
Rates of accumulation of immunoglobulin proteins have been determined using flow cytometry and population balance equations for exponentially growing murine hybridoma cells in the individual G1, S and G2+M cell cycle phases. A producer cell line that secretes monoclonal antibodies, and a nonproducer clone that synthesizes only -light chains were analyzed. The pattern for the kinetics of total intracellular antibody accumulation during the cell cycle is very similar to the previously described pattern for total protein accumulation (Kromenaker & Srienc 1991). The relative mean rate of heavy chain accumulation during the S phase was approximately half the relative mean rate of light chain accumulation during this cell cycle phase. This indicates an unbalanced synthesis of heavy and light chains that becomes most pronounced during this cell cycle phase. The nonproducer cells have on average an intracellular light chain content that is 42% lower than that of the producer cells. The nonproducer cells in the G1 phase with low light chain content did not have a significantly higher rate of light chain accumulation relative to other G1 phase nonproducer cells. This is in sharp contrast to what was observed for the G1 phase producer cells. In addition, although the relative mean rate of accumulation of light chain was negative for G2+M phase nonproducer cells, the magnitude of this relative mean rate was less than half that observed for the producer cells in this cell cycle phase. This suggests that the mechanisms that regulate the transport of fully assembled antibody molecules through the secretion pathway differ from those which regulate the secretion of free light chains. The results reported here indicate that there is a distinct pattern for the cell cycle dynamics of antibody synthesis and secretion in hybridomas. These results are consistent with a model for the dynamics of secretion which suggests that the rate of accumulation of secreted proteins will be greatest for newborn cells due to an interruption of the secretion pathway during mitosis.  相似文献   

11.
1. At 28 degrees C, synthesis of protein cyst coat in ciliates of Colpoda steinii is induced by washing with water and, as judged by glutamic acid assays and incorporation studies with l-[U-(14)C]leucine, starts about 30min after the cells have stopped swimming and is largely complete 90min later. During this time up to 70% of the protein synthesized by the cell is coat protein. 2. When cells were placed in l-[U-(14)C]leucine at low concentrations (0.25-0.76mm) during the period of coat synthesis there was no lag in uptake. Only a small proportion of the leucine incorporated into the coat was from the external substrate, implying that the rate of radioactive isotope incorporation measured the rate of transport of amino acid into the cell. Transport of l-[U-(14)C]leucine into the cell was markedly stimulated by l-glutamic acid and l-lysine. 3. When cells were placed in l-[U-(14)C]leucine at high concentrations (38mm) the rate of incorporation was considered to measure the rate of protein synthesis, but because the latter may have been affected by substrate it is concluded that such measurements are of doubtful value.  相似文献   

12.
Cells from reproductive soybean (Glycine max [L.] Merr.) plants were isolated using a mechanical-enzymic technique that produced a high yield of uniform, physiologically active cells. Cells were incubated in a pH 6.0 buffered solution and subjected to various treatments in order to determine the nature of net amino acid efflux. Total net amino acid (ninhydrinreactive substances) efflux was not affected by the following conditions: (a) darkness, (b) aeration, (c) K+ concentrations of 0.1, 1.0, 10, or 100 millimolar and (d) pH 4, 5, 6, 7, or 8. The Q10 for net amino acid efflux between 10°C and 30°C was 1.6. Thus, it seems that net amino acid efflux requires neither current photosynthetic energy nor a pH/ion concentration gradient. Amino acid analyses of the intra-and extracellular fractions over time showed that each amino acid was exported linearly for at least 210 minutes, but that export rate was not necessarily related to internal amino acid pools. Amino acids that were exported fastest were alanine, lysine, leucine, and glycine. Addition of the inhibitor p-chloromercuriphenyl sulfonic acid, 3(3,4-dichlorophenyl)-1,1-dimethylurea, or carbonylcyanide p-trifluoromethoxyphenylhydrazone increased the rate of total amino acid efflux but had specific effects on the efflux of certain amino acids. For example, p-chloromercuriphenyl sulfonic acid greatly enhanced efflux of γ-aminobutyric acid, which is not normally exported rapidly even though a high concentration normally exists within cells. The data suggest that net amino acid efflux is a selective diffusional process. Because net efflux is the result of simultaneous efflux and influx, we propose that efflux is a facilitated diffusion process whereas influx involves energy-dependent carrier proteins.  相似文献   

13.
Incubation of brain cell suspensions with 14 mM-phenylalanine resulted in rapid alterations of amino acid metabolism and protein synthesis. Both thc rate of uptake and the final intracellular concentration of several radioactively-labelled amino acids were decreased by high concentrations oi phenylalanine. By prelabelling cells with radioactive amino acids, phenylalanine was also shown to effect a rapid loss of the labelled amino acids from brain cells. Amino acid analysis after the incubation of the cells with phenylalanine indicated that several amino acids were decreased in their intracellular concentrations with effects similar to those measured with radioisotopic experiments (large neutral > small and large basic > small neutral > acidic amino acids). Although amino acid uptake and efflux were altered by the presence of 14 mwphenylalanine, little or no alteration was detected in the resulting specific activity of the intracellular amino acids. High levels of phenylalanine did not significantly altcr cellular catabolism of either alanine, lysine, leucine or isoleucine. As determined by the isolation of labcllcd aminoacyl-tRNA from cells incubated with and without phenylalanine, there was little or no alteration in the level of this precursor for radioactive alanine and lysine. There was, however, a detectable decrease in thc labelling of aminoacyl-tRNA for leucine and isoleucine. Only aftcr correcting for the changes of the specific activity of the precursors and thcir availability to translational events, could the effects of phenylalanine on protein synthesis be established. An inhibition of the incorporation into protein for each amino acid was approximately 20%.  相似文献   

14.
Cancer cells modulate their metabolic networks to support cell proliferation and a higher demand of building blocks. These changes may restrict the availability of certain amino acids for protein synthesis, which can be utilized for cancer therapy. However, little is known about the amino acid demand changes occurring during aggressive and invasive stages of cancer. Recently, we developed diricore, an approach based on ribosome profiling that can uncover amino acid limitations. Here, we applied diricore to a cellular model in which epithelial breast cells respond rapidly to TGFβ1, a cytokine essential for cancer progression and metastasis, and uncovered shortage of leucine. Further analyses indicated that TGFβ1 treatment of human breast epithelial cells reduces the expression of SLC3A2, a subunit of the leucine transporter, which diminishes leucine uptake and inhibits cell proliferation. Thus, we identified a specific amino acid limitation associated with the TGFβ1 response, a vulnerability that might be associated with aggressiveness in cancer.  相似文献   

15.
We studied the molecular basis of the up to 46-fold increased accumulation of folates and methotrexate (MTX) in human leukemia CEM-7A cells established by gradual deprivation of leucovorin (LCV). CEM-7A cells consequently exhibited 10- and 68-fold decreased LCV and folic acid growth requirements and 23-25-fold hypersensitivity to MTX and edatrexate. Although CEM-7A cells displayed a 74-86-fold increase in the reduced folate carrier (RFC)-mediated influx of LCV and MTX, RFC overexpression per se cannot induce a prominently increased folate/MTX accumulation because RFC functions as a nonconcentrative anion exchanger. We therefore explored the possibility that folate efflux activity mediated by members of the multidrug resistance protein (MRP) family was impaired in CEM-7A cells. Parental CEM cells expressed substantial levels of MRP1, MRP4, poor MRP5 levels, whereas MRP2, MRP3 and breast cancer resistance protein were undetectable. In contrast, CEM-7A cells lost 95% of MRP1 levels while retaining parental expression of MRP4 and MRP5. Consequently, CEM-7A cells displayed a 5-fold decrease in the [(3)H]folic acid efflux rate constant, which was identical to that obtained with parental CEM cells, when their folic acid efflux was blocked (78%) with probenecid. Furthermore, when compared with parental CEM, CEM-7A cells accumulated 2-fold more calcein fluorescence. Treatment of parental cells with the MRP1 efflux inhibitors MK571 and probenecid resulted in a 60-100% increase in calcein fluorescence. In contrast, these inhibitors failed to alter the calcein fluorescence in CEM-7A cells, which markedly lost MRP1 expression. Replenishment of LCV in the growth medium of CEM-7A cells resulted in resumption of normal MRP1 expression. These results establish for the first time that MRP1 is the primary folate efflux route in CEM leukemia cells and that the loss of folate efflux activity is an efficient means of markedly augmenting cellular folate pools. These findings suggest a functional role for MRP1 in the maintenance of cellular folate homeostasis.  相似文献   

16.
The phenomenon of cell volume recovery following a hypo-osmotic stress mediated by intracellular osmolyte regulation is well known. In many, perhaps all, cell types, the osmolytes involved are usually inorganic ions and amino acids. The details of the regulatory mechanisms for the organic-type osmolytes are not well known. We have found that an immediate influx of external Ca2+ occurs coincident with the application of a hypo-osmotic stress into red cells of two invertebrate species. In both, the influx is initiated by the osmotic stress, not the concomitant ionic decrease. Volume recovery in clam red blood cells is blocked by phenothiazines. In addition, the effect of the phenothiazines is to reduce the amino acid efflux; the ionic portion of the volume response is unaffected. In contrast, the phenothiazines potentiate the volume recovery in worm red coelomocytes. A23187 also potentiates the volume recovery of the worm red cells. The results suggest that the Ca2+ influx is involved in the mechanism that alters cell membrane permeability permitting the amino acid efflux by a mechanism that may involve calmodulin.  相似文献   

17.
After stimulation of the protein secretion by pilocarpine or feeding the rate of incorporation of [3H]-leucine increases in the acinar cells of the parotid gland of the rat while the secretory cells of the submandibular gland show a moderate decrease (Kuijper et al., 1975b). Since the rate of labelled amino acid incorporation depends on the specific radioactivity of the amino acid used, which is not easy to determine in vivo, experiments in vitro were performed to get an idea of the influence of this factor on the measured changes in [3H]-leucine incorporation. In vitro both cell types showed a more pronounced but essentially identical reaction as in vivo. Since in these experiments the specific radioactivity of the extracellular leucine is the same whether fragments of stimulated or unstimulated glands incorporate the radioactive amino acid, the increase of incorporation in the parotid and the decrease in the submandibular cells cannot be ascribed to differences in specific radioactivity of leucine, unless the intracellular leucine pool should show great differences between secreting and non-secreting cells. However, in vitro the submandibular gland cells under both conditions appear to use the extracellular leucine for their protein synthesis (or a small compartmentalized pool in rapid exchange with the extracellular pool). In the parotid cells the whole intracellular pool showed such a rapid exchange with the extracellular one that for practical reasons one may say that these cells, too, rely on the extracellular specific radioactivity of leucine in their protein synthesis. We conclude that the rat parotid gland cells show a rapid and substantial increase of protein synthesis after stimulation of their enzyme secretion, while the submandibular gland cells do not.  相似文献   

18.
19.
20.
Multiple myeloma is a haematological malignancy characterized by the clonal proliferation of plasma cells. It has been proposed that targeting cancer cell metabolism would provide a new selective anticancer therapeutic strategy. In this work, we tested the hypothesis that inhibition of β-oxidation and de novo fatty acid synthesis would reduce cell proliferation in human myeloma cells. We evaluated the effect of etomoxir and orlistat on fatty acid metabolism, glucose metabolism, cell cycle distribution, proliferation, cell death and expression of G1/S phase regulatory proteins in myeloma cells. Etomoxir and orlistat inhibited β-oxidation and de novo fatty acid synthesis respectively in myeloma cells, without altering significantly glucose metabolism. These effects were associated with reduced cell viability and cell cycle arrest in G0/G1. Specifically, etomoxir and orlistat reduced by 40–70% myeloma cells proliferation. The combination of etomoxir and orlistat resulted in an additive inhibitory effect on cell proliferation. Orlistat induced apoptosis and sensitized RPMI-8226 cells to apoptosis induction by bortezomib, whereas apoptosis was not altered by etomoxir. Finally, the inhibitory effect of both drugs on cell proliferation was associated with reduced p21 protein levels and phosphorylation levels of retinoblastoma protein. In conclusion, inhibition of fatty acid metabolism represents a potential therapeutic approach to treat human multiple myeloma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号