首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nonenzymatic digestion of proteins by microwave D-cleavage is an effective technique for site-specific cleavage at aspartic acid (D). This specific cleavage C-terminal to D residues leads to inherently large peptides (15-25 amino acids) that are usually relatively highly charged (above +3) when ionized by electrospray ionization (ESI) due to the presence of several basic amino acids within their sequences. It is well-documented that highly charged peptide ions generated by ESI are well-suited for electron transfer dissociation (ETD), which produces c- and z-type fragment ions via gas-phase ion/ion reactions. In this paper, we describe the sequence analysis by ETD tandem mass spectrometry (MS/MS) of multiply charged peptides generated by microwave D-cleavage of several standard proteins. Results from ETD measurements are directly compared to CID MS/MS of the same multiply charged precursor ions. Our results demonstrate that the nonenzymatic microwave D-cleavage technique is a rapid (<6 min) and specific alternative to enzymatic cleavage with Lys-C or Asp-N to produce highly charged peptides that are amenable to informative ETD.  相似文献   

2.
Analysis of gangliosides using fast atom bombardment mass spectrometry   总被引:1,自引:0,他引:1  
The native gangliosides GM3, GM1, Fuc-GM1, GD1a, GD1b, Fuc-GD1b, GT1b and GQ1b were analysed by fast atom bombardment mass spectrometry (FAB-MS) in the negative ion mode in a matrix of thioglycerol. After permethylation the same gangliosides were analysed by electron impact (EI) and FAB-MS in the positive ion mode. The negative ion mass spectra furnished information on the molecular weight, the ceramide moiety and the sequence of carbohydrate residues. The sites of attachment and the number of sialic acids present could be deduced directly from the pattern of sequence ions. After addition of sodium acetate positive ion FAB-spectra of the permethylated samples show intense pseudomolecular ions M + Na, that provide evidence on the homogeneity of the samples. In addition, the ceramide part, the oligosaccharide moiety obtained after cleavage of the glycosidic bond of the hexosamine residue, the whole carbohydrate chain and the sialic acids are represented by specific fragment ions. With EI-MS further information can be obtained on the sphingosine and fatty acid components of the ceramide residue. The data show, that the combination of soft ionization mass spectrometry with classical EI-MS gives valuable information on the structure and homogeneity of gangliosides. The method is also applicable to the structural elucidation or quantitation of more complex gangliosides or glycolipid mixtures using only micrograms of material.  相似文献   

3.
5 fragments are isolated after the degradation of somatotropin from sei whale pituitary glands with cyanogen bromide: N-terminal 4-segmented; C-terminal 12-segmented with the internal disulfide bond; middle 25- and 30-segmented and a high molecular weight fragment following N-terminal tetrapeptide and bound with disulfide bond to 30-segmented fragment. Complete amino acid sequence of three shortest cyanogen bromide fragments is deciphered and N- and C-terminal sequence is investigated in two large fragments after their uncoupling under performic acid oxidation. Amino acid sequence is deciphered of a peptide obtained after trypsine hydrolysis of 30-segmented cyanogen bromide fragment. Comparison of amino acid sequence of whale somatotropin fragments with that of sheep, beef and human somatotropin has revealed that 57 out of 61 identified amino acid residues of whale somatotropin repeat amino acid residues in similar regions of beef somatotropin, 56--of sheep and only 42--of human somatotropins. Besdies, 4 of 5 revealed amino acid substitutions in whale hormone, as compared with sheep somatotropin, are amino acids which are present at the same positions in human hormone.  相似文献   

4.
Three major calmodulin-binding cyanogen bromide peptides (fragments A, B, and D) were isolated from chicken gizzard muscle caldesmon and their amino acid sequences were determined. The molecular masses of fragments A, B, and D were estimated to 16, 12, and 9 kDa, respectively, by SDS-urea polyacrylamide gel electrophoresis. Fragment A was composed of 102 amino acid residues and contained homoserine at the C terminus. The amino acid sequence from the 37th residue of fragment A corresponds to the N-terminal sequence of the 15 kDa peptide which was obtained by thrombin digestion [Mornet, D., Audemard, E., & Derancourt, J. (1988) Biochem. Biophys. Res. Commun. 154, 564-571]. Thrombin 15 kDa peptide binds to F-actin but does not bind to calmodulin. Thus the N-terminal 36 residues and the C-terminal part from the 37th residue of fragment A are supposed to bind to calmodulin and F-actin, respectively. The sequences of fragments B and D were identical, but fragment D was composed of 64 amino acid residues and ended with tryptophan, whereas fragment B was of 98 or 99 amino acid residues and ended with proline. Both fragments B and D are supposed to be the C-terminal peptides of chicken caldesmon. Fragment B had heterogeneous sequences at the C-terminal region. These results can explain the reported heterogeneity of chicken caldesmon in charge and molecular mass.  相似文献   

5.
We have evaluated the effect of lysine guanidination in peptides and proteins on the dissociation of protonated ions in the gas phase. The dissociation of guanidinated model peptide ions compared to their unmodified forms showed behavior consistent with concepts of proton mobility as a major factor in determining favored fragmentation channels. Reduction of proton mobility associated with lysine guanidination was reflected by a relative increase in cleavages occurring C-terminal to aspartic acid residues as well as increases in small molecule losses. To evaluate the effect of guanidination on the dissociation behavior of whole protein ions, bovine ubiquitin was selected as a model. Essentially, all of the amide bond cleavages associated with the +10 charge state of fully guanidinated ubiquitin were observed to occur C-terminal to aspartic acid residues, unlike the dissociation behavior of the +10 ion of the unmodified protein, where competing cleavage N-terminal to proline and nonspecific amide bond cleavages were also observed. The +8 and lower charge states of the guanidinated protein showed prominent losses of small neutral molecules. This overall fragmentation behavior is consistent with current hypotheses regarding whole protein dissociation that consider proton mobility and intramolecular charge solvation as important factors in determining favored dissociation channels, and are also consistent with the fragmentation behaviors observed for the guanidinated model peptide ions. Further evaluation of the utility of condensed phase guanidination of whole proteins is necessary but the results described here confirm that guanidination can be an effective strategy for enhancing C-terminal aspartic acid cleavages. Gas phase dissociation exclusively at aspartic acid residues, especially for whole protein ions, could be useful in identifying and characterizing proteins via tandem mass spectrometry of whole protein ions.  相似文献   

6.
The 10(5) resolving power and MS/MS capabilities of Fourier-transform mass spectrometry provide electrospray ionization mass spectra containing >100 molecular and fragment ion mass values of high accuracy. Applying these spectra to the detection and localization of errors and modifications in the DNA-derived sequences of proteins is illustrated with the thiCEFSGH thiamin biosynthesis operon from Escherichia coli. Direct fragmentation of the multiply-charged intact protein ions produces large fragment ions covering the entire sequence; further dissociation of these fragment ions provides information on their sequences. For ThiE (23 kDa), the entire sequence was verified in a single spectrum with an accurate (0.3 Da) molecular weight (Mr) value, with confirmation from MS/MS fragment masses. Those for ThiH (46 kDa) showed that the Mr value (1 Da error) represented the protein without the start Met residue. For ThiF (27 kDa), MS/MS localized a sequence discrepancy to a 34 residue peptide. The first 107 residues of ThiC (74 kDa) were shown to be correct, with C-terminal heterogeneity indicated. For ThiG (predicted Mr = 34 kDa), ESI/FTMS showed two components of 7,310.74 (ThiS) and 26,896.5 Da (ThiG); MS/MS uncovered three reading frame errors and a stop codon for the first protein. MS/MS ions are consistent with 68 fragments predicted by the corrected ThiS/ThiG DNA sequences.  相似文献   

7.
Human C1s proenzyme (Mr 83 000) was isolated by a rapid two-stage method involving affinity chromatography of C1 on IgG-Sepharose and isolation of subcomponent C1s by ion-exchange chromatography on DEAE-Sephacel. Single-chain C1s proenzyme was activated to two-chain C1s with self-activated C1r. After reduction and S-carboxamidomethylation the heavy chain of C1s (Mr 57 000) was isolated by ion exchange chromatography on DEAE-Sephacel. Cleavage of C1s heavy chain with CNBr yielded five fragments whose N-terminal sequences were determined. The alignment of the fragments within the heavy chain was established by tryptic peptides containing methionine. C1s heavy chain comprises about 470 amino acid residues and 42% of its sequence was determined. An intrachain sequence homology and a homology to the alpha 2 chain of human haptoglobin were identified. The C-terminal CNBr fragment comprising 44 amino acid residues was completely sequenced. From BNPS-skatole cleavage of reduced and alkylated C1s proenzyme a fragment was isolated which overlaps the C1s heavy and light chain parts and which contains the peptide bond cleaved during activation. The results show that this is an Arg-Ile bond and that under standard conditions of activation no peptide material is liberated from this portion of the molecule. The sequence data and homology to two-chain serine proteases indicate a single interchain disulfide bond in C1s.  相似文献   

8.
A chemically synthesized 34-amino acid peptide, an analog, and a fragment of the peptide have been purified and studied. Biophysical studies were carried out to determine some of the metal ion binding properties of the original peptide and an analog of this parent peptide, in which the two histidine residues were replaced by alanines. As shown by visible absorption spectroscopy, Co (II) forms a complex with the parent peptide, but not with the analog peptide, and one or two histidines in the parent peptide are ligands for Co (II) ion binding. The effects on disulfide bond formation in the peptide by Zn (II) and Co (II) ions were also examined for this analog. Anti-growth assays were performed using the original cysteine-containing peptide with Zn (II) ion complexed to the peptide through the two cysteine residues. These rat uterine growth assays showed that the complexing of Zn (II) ion to the peptide maintained the anti-growth activity of the peptide, while gel-filtration experiments showed the zinc ions maintained the peptide in its anti-growth form indefinitely in solution. A saliently important part of this research was the discovery that a fragment of the peptide consisting of a middle sequence of 14 amino acids was found to have significant anti-growth activity in the rat uterine assay. Its activity suggested that this fragment might be considered a viable candidate for testing in anti-cancer protocols.  相似文献   

9.
Cap43 protein has been tested for metal binding domains. The protein, specifically induced by nickel compounds in cultured human cells, had a new mono-histidinic motif consisting of 10 amino acids repeated three times in the C-terminus. The 20-Ac-TRSRSHTSEG-TRSRSHTSEG (Thr(341)-Arg-Ser-Arg-Ser-His(346)-Thr-Ser-Glu-Gly-Thr-Arg-Ser-Arg-Ser-His(356)-Thr-Ser-Glu-Gly(360) - peptide 1) and the 30-Ac-TRSRSHTSEG-TRSRSHTSEG-TRSRSHTSEG (Thr(341)-Arg-Ser-Arg-Ser-His(346)-Thr-Ser-Glu-Gly-Thr-Arg-Ser-Arg-Ser-His(356)-Thr-Ser-Glu-Gly-Thr-Arg-Ser-Arg-Ser-His(366)-Thr-Ser-Glu-Gly(370) - peptide 2) amino acids sequence has been analyzed as a site for Ni(II) binding. A combined pH-metric and spectroscopic (UV-visible, CD, NMR) studies of Ni(II) binding to both fragments were performed. The 20-amino acid peptide can bind one and two metal ions while the 30-amino acid fragment one, two and three metal ions. At physiological pH, depending on the metal to ligand molar ratio, peptide 1 forms the Ni(2)L species while peptide 2 the NiL, Ni(2)L and Ni(3)L complexes where each metal ion is coordinated to the imidazole nitrogen atom of the histidine residue of the 10-amino acid fragment. Octahedral complexes at pH 8-9 and planar 4N complexes with (N(Im), 3N(-)) bonding mode at pH above 9, are formed. This work supports the existence of an interesting binding site at the COOH-terminal domain of the Cap43 protein.  相似文献   

10.
Highly sensitive peptide fragmentation and identification in sequence databases is a cornerstone of proteomics. Previously, a two-layered strategy consisting of MALDI peptide mass fingerprinting followed by electrospray tandem mass spectrometry of the unidentified proteins has been successfully employed. Here, we describe a high-sensitivity/high-throughput system based on orthogonal MALDI tandem mass spectrometry (o-MALDI) and the automated recognition of fragments corresponding to the N- and C-terminal amino acid residues. Robotic deposition of samples onto hydrophobic anchor substrates is employed, and peptide spectra are acquired automatically. The pulsing feature of the QSTAR o-MALDI mass spectrometer enhances the low mass region of the spectra by approximately 1 order of magnitude. Software has been developed to automatically recognize characteristic features in the low mass region (such as the y1 ion of tryptic peptides), maintaining high mass accuracy even with very low count events. Typically, the sum of the N-terminal two ions (b2 ion), the third N-terminal ion (b3 ion), and the two C-terminal fragments of the peptide (y1 and y2) can be determined. Given mass accuracy in the low ppm range, peptide end sequencing on one or two tryptic peptides is sufficient to uniquely identify a protein from gel samples in the low silver-stained range.  相似文献   

11.
Peptide substrates of the general structure acetyl-Alan (n = 2-5), acetyl-Pro-Ala-Pro-Phe-Alan-NH2 (n = 0-3), and acetyl-Pro-Ala-Pro-Phe-AA-NH2 (AA = various amino acids) were synthesized and used to investigate the enzyme-substrate interactions of the microbial serine proteases thermitase, subtilisin BPN', and proteinase K on the C-terminal side of the scissile bond. The elongation of the substrate peptide chain up to the second amino acid on the C-terminal side (P'2) enhances the hydrolysis rate of thermitase and subtilisin BPN', whereas for proteinase K an additional interaction with the third amino acid (P'3) is possible. The enzyme subsite S'1 specificity of the proteases investigated is very similar. With respect to kcat/Km values small amino acid residues such as Ala and Gly are favored in this position. Bulky residues such as Phe and Leu were hydrolyzed to a lower extent. Proline in P'1 abolishes the hydrolysis of the substrates. Enzyme-substrate interactions on the C-terminal side of the scissile bond appear to affect kcat more than Km for all three enzymes.  相似文献   

12.
A series of c- and z*-type product ions formed via gas-phase electron-transfer ion/ion reactions between protonated polypeptides with azobenzene radical anions are subjected to ion trap collision activation in a linear ion trap. Fragment ions including a-, b-, y-type and ammonia-loss ions are typically observed in collision induced dissociation (CID) of c ions, showing almost identical CID patterns as those of the C-terminal amidated peptides consisting of the same sequences. Collisional activation of z* species mainly gives rise to side-chain losses and peptide backbone cleavages resulting in a-, b-, c-, x-, y-, and z-type ions. Most of the fragmentation pathways of z* species upon ion trap CID can be accounted for by radical driven processes. The side-chain losses from z* species are different from the small losses observed from the charge-reduced peptide molecular species in electron-transfer dissociation (ETD), which indicates rearrangement of the radical species. Characteristic side-chain losses are observed for several amino acid residues, which are useful to predict their presence in peptide/protein ions. Furthermore, the unique side-chain losses from leucine and isoleucine residues allow facile distinction of these two isomeric residues.  相似文献   

13.
The interactions of proteins with reactive oxygen species (ROS) may result in covalent modifications of amino acid residues in proteins, formation of protein-protein cross-linkages, and oxidation of the protein backbone resulting in protein fragmentation. In an attempt to elucidate the products of the metal-catalyzed oxidation of the human (H) and mouse (M) (1-10H), (1-10M), (1-16H) and (1-16M) fragments of beta-amyloid peptide, the high performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) methods and Cu(II)/H(2)O(2) as a model oxidizing system were employed. Peptide solution (0.50 mM) was incubated at 37 degrees C for 24 h with metal:peptide:H(2)O(2) molar ratio 1:1:1 for the (1-16H), (1-16M) fragments, and 1:1:2 for the (1-10H), (1-10M) peptides in phosphate buffer, pH 7.4. Oxidation targets for all peptide studied are the histidine residues coordinated to the metal ions. For the (1-16H) peptide are likely His(13) and/or His(14), and for the (1-16M) fragment His(6) and/or His(14), which are converted to 2-oxo-His. Metal-binding residue, the aspartic acid (D(1)) undergoes the oxidative decarboxylation and deamination to pyruvate. The cleavages of the peptide bonds by either the diamide or alpha-amidation pathways were also observed.  相似文献   

14.
High-performance immobilized metal ion affinity chromatography was utilized to evaluate the adsorption properties of 67 synthetic, biologically active, peptides ranging in size from 5 to 42 residues. The metal ions, Cu(II), Ni(II) and Zn(II), were immobilized by iminodiacetic acid (IDA) coupled to TSK gel 5PW (10 microns). Two types of gradient elution (imidazole and pH) were used to evaluate peptide retention by the metal ions. A decreasing pH gradient and an increasing imidazole gradient eluted the peptides in similar order. IDA-Cu(II) and IDA-Zn(II) showed very similar selectivities for the peptides analyzed; however, IDA-Zn(II) displayed a weaker affinity for the peptides. IDA-Ni(II) showed a slightly different pattern of selectivity. Peptide adsorption effects contributed by the metal-free gel matrix were found to be relatively minor. The concentration and type of salt included in the mobile phase could affect the relative affinities of the peptides for the immobilized metal ions. Retention coefficients were assigned to individual amino acid residues by multiple linear regression analysis. Histidine showed the largest positive correlation with retention, followed by aromatic amino acid residues. Modified N-terminal residues resulted in negative contributions to retention. Analyses of peptide amino acid composition alone allowed prediction of peptide retention behavior on immobilized metal ion affinity columns.  相似文献   

15.
Riboflavin synthase of Escherichia coli is a homotrimer with a molecular mass of 70 kDa. The enzyme catalyzes the dismutation of 6,7-dimethyl-8-(1'-D-ribityl)-lumazine, affording riboflavin and 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione. The N-terminal segment (residues 1-87) and the C-terminal segment (residues 98-187) form beta-barrels with similar fold and a high degree of sequence similarity. A recombinant peptide comprising amino acid residues 1-97 forms a dimer, which binds riboflavin with high affinity. Here, we report the structure of this construct in complex with riboflavin at 2.6A resolution. It is demonstrated that the complex can serve as a model for ligand-binding in the native enzyme. The structure and riboflavin-binding mode is in excellent agreement with structural information obtained from the native enzyme from Escherichia coli and riboflavin synthase from Schizosaccharomyces pombe. The implications for the binding specificity and the regiospecificity of the catalyzed reaction are discussed.  相似文献   

16.
A potentiometric and spectroscopic (UV-vis, CD and EPR) study of Cu(II) binding to the (11-20), (11-28), (Ac-11-20H) and (Ac-11-28) fragments of human (H) and mouse (M) beta-amyloid peptide was carried out. The values of the protonation constants of the two lysine side chain amino groups for the (11-28) and (Ac-11-28) fragments of beta-amyloid peptide differ noticeably suggesting considerable interactions between the two residues. The N-terminal amino acid sequence Xaa-Yaa-His for the (11-20H) and (11-28H) fragments determines the coordination ability of the fragments studied to copper(II) ions. Addition of the (17-20) and (17-28) sequences to the (11-16) fragment of human and mouse beta-amyloid peptide does not change the coordination mode, and the stabilities of the complexes formed are comparable to those of the (11-16) peptide, although 1N complexes of the (11-28) fragments are stabilized by about one order of magnitude compared to those of the (11-16) peptides. The (Ac-11-28) peptides form complexes with the same coordination mode as those for the (Ac-11-16) fragments. The stability of the complexes for the (Ac-11-28H) fragment is one or two orders of magnitude higher compared to those of the (Ac-11-16H) fragment. This stabilization may result from structural organization of a peptide in copper(II) complexes.  相似文献   

17.
Sulfation of tyrosine residues is a common post-translational modification, but detecting and quantitating this modification poses challenges due to lability of the sulfate group. The goal of our studies was to determine how best to detect and to assess the stoichiometry of this modification using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS). Sulfated and nonsulfated forms of peptides—hirudin(55–65), caerulein, and cholecystokinin octapeptide and phosphorylated and nonphosphorylated pp60-c-src (521–533)—were analyzed using several matrices: sinapinic acid (SA), 2,5-dihydroxybenzoic acid (DBA), and cyano-4-hydroxycinnamic acid (CHCA). Intact sulfated peptides were difficult to detect using positive ion mode; peptides were observed as desulfated ions. Phosphorylated peptide was stable and was detected in positive and negative ion modes. Detection of sulfated peptides improved with: (1) Analysis in negative ion mode, (2) Decreased laser power, (3) Matrix selection: DBA  SA > CHCA. In negative ion mode, desorption/ionization of sulfated peptide was equivalent or more efficient than nonsulfated peptide, depending on conditions of analysis. Examination of a tryptic digest of α2-antiplasmin detected the single site of sulfation in negative ion mode but not in positive ion mode. We conclude that improved detection of sulfated peptides can be achieved in negative ion mode. Dual analysis in positive and negative ion modes serves as a potential means of identifying peptides with labile modifications such as sulfation and distinguishing them from phosphorylation.  相似文献   

18.
Vitamin K-dependent gamma-glutamyl carboxylase is a 758 amino acid integral membrane glycoprotein that catalyzes the post-translational conversion of certain protein glutamate residues to gamma-carboxyglutamate. Carboxylase has ten cysteine residues, but their form (sulfhydryl or disulfide) is largely unknown. Pudota et al. in Pudota, B. N., Miyagi, M., Hallgren, K. W., West, K. A., Crabb, J. W., Misono, K. S., and Berkner, K. L. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 13033-13038 reported that Cys-99 and Cys-450 are the carboxylase active site residues. We determined the form of all cysteines in carboxylase using in-gel protease digestion and matrix-assisted laser desorption/ionization mass spectrometry. The spectrum of non-reduced, trypsin-digested carboxylase revealed a peak at m/z 1991.9. Only this peak disappeared in the spectrum of the reduced sample. This peak's m/z is consistent with the mass of peptide 92-100 (Cys-99) disulfide-linked with peptide 446-453 (Cys-450). To confirm its identity, the m/z 1991.9 peak was isolated by a timed ion selector as the precursor ion for further MS analysis. The fragmentation pattern exhibited two groups of triplet ions characteristic of the symmetric and asymmetric cleavage of disulfide-linked tryptic peptides containing Cys-99 and Cys-450. Mutation of either Cys-99 or Cys-450 caused loss of enzymatic activity. We created a carboxylase variant with both C598A and C700A, leaving Cys-450 as the only remaining cysteine residue in the 60-kDa fragment created by limited trypsin digestion. Analysis of this fully active mutant enzyme showed a 30- and the 60-kDa fragment were joined under non-reducing conditions, thus confirming Cys-450 participates in a disulfide bond. Our results indicate that Cys-99 and Cys-450 form the only disulfide bond in carboxylase.  相似文献   

19.
The alkali light chain of rabbit skeletal muscle myosin, A1, was cyanylated with 2-nitro-5-thiocyanobenzoic acid, and the peptide bond at Cys 177 was subsequently cleaved in the presence of 0.05 M CaCl2. Two peptide fragments, from the N-terminal to the residue 176 (CF1) and from the residue 177 to the C-terminal (CF2), were obtained. The CD spectrum and the difference UV absorption spectrum induced by CaCl2 suggested that CF1 largely retained the higher order structure of A1. The CF1 fragment, however, could neither incorporate subfragment-1 (S-1) by an exchange reaction, nor bind with the renatured 20K fragment of S-1 heavy chain. On the other hand, the C-terminal fragment of 14 residues, CF2, could bind with the 20K fragment of S-1 heavy chain. These results indicate that the binding site of the alkali light chain for the heavy chain of myosin is located within the C-terminal 14 residues.  相似文献   

20.
The accurate mass values of all immonium, y(1), y(2), a(2), and b(2) ions of tryptic peptides composed of the 20 standard amino acids were calculated. The differences between adjacent masses in this data set are greater than 10 mDa for more than 80% of the values. Using this mass list, the majority of low mass ions in quadrupole-time of flight tandem mass spectra of peptides from tryptic digests and from an elastase digest could be assigned. Besides the a(2)/b(2) ions, which carry residues 1-2 from the N-terminus, a variety of internal dipeptide b ions were regularly observed. In case internal proline was present, corresponding dipeptide b ions carrying proline at the N-terminal position occurred. By assigning the dipeptide b ions on the basis of their accurate mass, bidirectional or unidirectional sequence information was obtained, which is localized to the peptide N-terminus (a(2)/b(2) ions) or not localized (internal b ions). Identification of the y(1) and y(2) ions by their accurate mass provides unidirectional sequence information localized to the peptide C-terminus. It is shown that this patchwork-type sequence information extractable from accurate mass data of low-mass ions is highly efficient for protein identification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号