共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang J Karabinos A Schünemann J Riemer D Weber K 《European journal of cell biology》2000,79(7):478-487
Two novel cytoplasmic intermediate filament (IF) proteins (C and D) from the tunicate (urochordate) Styela are characterised as putative keratin orthologs. The coexpression of C and D in all epidermal cells and the obligatory heteropolymeric IF assembly of the recombinant proteins argue for keratin orthologs, but the sequences do not directly reveal which protein behaves as a keratin I or II ortholog. This problem is solved by the finding that keratin 8, a type II keratin from man or Xenopus, forms chimeric IF when mixed with Styela D. Mutant proteins of Styela D and keratin 8 with a single cysteine in equivalent positions show that these chimeric IF are, like vertebrate keratin filaments, based on the hetero coiled coil. We propose that Styela D retains, in spite of its strong sequence drift, important molecular features of type I keratins. By inference Styela C reflects a type II ortholog. We discuss that type I to III IF proteins are expressed along the chordate branch of metazoa. 相似文献
2.
《Journal of structural biology》2021,213(4):107793
On the basis of sequence homology with mammalian α-keratins, and on the criteria that the coiled-coil segments and central linker in the rod domain of these molecules must have conserved lengths if they are to assemble into viable intermediate filaments, a total of 28 Type I and Type II keratin intermediate filament chains (KIF) have been identified from the genome of the European common wall lizard (Podarcis muralis). Using the same criteria this number may be compared to 33 found here in the green anole lizard (Anole carolinensis) and 25 in the tuatara (Sphenodon punctatus). The Type I and Type II KIF genes in the wall lizard fall in clusters on chromosomes 13 and 2 respectively. Although some differences occur in the terminal domains in the KIF chains of the two lizards and tuatara, the similarities between key indicator residues – cysteine, glycine and proline – are significant. The terminal domains of the KIF chains in the wall lizard also contain sequence repeats commonly based on glycine and large apolar residues and would permit the fine tuning of physical properties when incorporated within the intermediate filaments. The H1 domain in the Type II chain is conserved across the lizards, tuatara and mammals, and has been related to its role in assembly at the 2–4 molecule level. A KIF-like chain (K80) with an extensive tail domain comprised of multiple tandem repeats has been identified as having a potential filament-crosslinking role. 相似文献
3.
Ishii D Abe R Watanabe S Tsuchiya M Nöcker B Tsumoto K 《Journal of molecular biology》2011,408(5):832-838
Trichocyte intermediate filament protein (IFP) is a heterodimeric complex that plays a pivotal role in the hair shaft for its mechanical strength, hair shape, and so on. Trichocyte IFP consists of acidic-type IFP and basic-type IFP, and the well-studied supramolecular assembly process of the complex occurs via the following steps: dimer formation, tetramer formation, formation of the lateral 32mer, and the elongation of the 32mer. Among these interactions, only the dimer formation, owing to coiled-coil interaction, has been described in detail; the nature of other interactions remains unspecified. For each assembly step, we report interaction isotherms obtained by means of isothermal titration calorimetry at various urea and NaCl concentrations. Decreasing the urea concentration generally promotes protein refolding, and we therefore expected to observe endothermic interactions owing to the refolding process. However, exothermic interactions were observed at 4 and 2 M urea, along with various characteristic endothermic interactions at the other urea concentrations as well as NaCl titration. The thermal responses described herein enabled us to analyze the protein supramolecular assembly process in a stepwise manner. 相似文献
4.
5.
Hüsken K Wiesenfahrt T Abraham C Windoffer R Bossinger O Leube RE 《Differentiation; research in biological diversity》2008,76(8):881-896
The Caenorhabditis elegans intestinal lumen is surrounded by a dense cytoplasmic network that is laterally attached to the junctional complex and is referred to as the endotube. It localizes to the terminal web region which anchors the microvillar actin filament bundles and is particularly rich in intermediate filaments. To examine their role in intestinal morphogenesis and function, C. elegans reporter strains were generated expressing intestine-specific CFP-tagged intermediate filament polypeptide IFB-2. When these animals were treated with dsRNA against intestinal intermediate filament polypeptide IFC-2, the endotube developed multiple bubble-shaped invaginations that protruded into the enterocytic cytoplasm. The irregularly widened lumen remained surrounded by a continuous IFB-2::CFP-labeled layer. Comparable but somewhat mitigated phenotypic changes were also noted in wild-type N2 worms treated with ifc-2 (RNAi). Junctional complexes were ultrastructurally and functionally normal and the apical domain of intestinal cells was also not altered. These observations demonstrate that IFC-2 is important for structural maintenance of the intestinal tube but is not needed for establishment of the endotube and epithelial cell polarity. 相似文献
6.
7.
The complete cDNA clone for a cytoplasmic intermidiatefilament (IF) protein from the annelid Lumbricus terrestris reported here, shows an extra 42 residues in the coil 1b subdomain of the central rod, as do the IF proteins from nematodes and moluscs. These extra six heptads are also present in all nuclear lamins but not in any known vertebrate cytoplasmic IF protein. Thus, it seems that protostomic metazoa conserve a lamin-like structural element in their cytoplasmic IF proteins, which was lost in the deuterostomic metazoan branch leading to the vertebrates. 相似文献
8.
Hirako Y Yamakawa H Tsujimura Y Nishizawa Y Okumura M Usukura J Matsumoto H Jackson KW Owaribe K Ohara O 《Cell and tissue research》2003,313(2):195-207
Using a monoclonal antibody, we have detected a high molecular weight muscle protein, co-localized and co-isolating with desmin. Searching a human cDNA database with partial amino acid sequences of the protein, we found a cDNA clone encoding a 1565-amino-acid polypeptide, identified as a mammalian (human) synemin, a member of the intermediate filament (IF) protein family. Immunoblotting showed the presence of a 180-kDa polypeptide in skeletal muscle and 180- and 200-kDa polypeptides in cardiac and smooth muscles. Interestingly, synemin was also found in myoepithelial cells, which have keratin filaments instead of desmin. Moreover, synemin was also found in astrocytes of optic nerves and non-myelin-forming Schwann cells, together with glial fibrillary acidic protein (GFAP) and vimentin. Blot overlays pointed to molecular interactions of synemin with desmin, vimentin, GFAP and keratin 5 and 6, but not with keratin 14. The experimental data also suggested a possible link with nebulin, a skeletal muscle protein. Purified synemin was coassembled with desmin in different molar ratios, and at 1:25, as typically found in vivo, IFs were formed which were comparable in length to desmin filaments. However, at molar ratios of 3:25 and 6:25, much shorter and irregular shaped filamentous polymers were generated. The fact that synemin is present in all four classes of muscle cells and a specific type of glial cells is indicative of important functions. Its incorporation may give structural and functional versatility to the IF cytoskeleton.This work was supported by grants from the Ministry of Education, Science, and Culture of Japan. 相似文献
9.
10.
Till B. Puschmann Carl Zandén Isabell Lebkuechner Camille Philippot Yolanda de Pablo Johan Liu Milos Pekny 《Journal of neurochemistry》2014,128(6):878-889
Heparin‐binding epidermal growth factor‐like growth factor (HB‐EGF), a vascular‐derived trophic factor, belongs to the epidermal growth factor (EGF) family of neuroprotective, hypoxia‐inducible proteins released by astrocytes in CNS injuries. It was suggested that HB–EGF can replace fetal calf serum (FCS) in astrocyte cultures. We previously demonstrated that in contrast to standard 2D cell culture systems, Bioactive3D culture system, when used with FCS, minimizes the baseline activation of astrocytes and preserves their complex morphology. Here, we show that HB‐EGF induced EGF receptor (EGFR) activation by Y1068 phosphorylation, Mapk/Erk pathway activation, and led to an increase in cell proliferation, more prominent in Bioactive3D than in 2D cultures. HB‐EGF changed morphology of 2D and Bioactive3D cultured astrocytes toward a radial glia‐like phenotype and induced the expression of intermediate filament and progenitor cell marker protein nestin. Glial fibrillary acidic protein (GFAP) and vimentin protein expression was unaffected. RT‐qPCR analysis demonstrated that HB‐EGF affected the expression of Notch signaling pathway genes, implying a role for the Notch signaling in HB‐EGF‐mediated astrocyte response. HB‐EGF can be used as a FCS replacement for astrocyte expansion and in vitro experimentation both in 2D and Bioactive3D culture systems; however, caution should be exercised since it appears to induce partial de‐differentiation of astrocytes.
11.
12.
The structure and functional role of the dimeric external stalk of FoF1-ATP synthases have been very actively researched over the last years. To understand the function, detailed knowledge of the structure and protein packing interactions in the dimer is required. In this paper we describe the application of structural prediction and molecular modeling approaches to elucidate the structural packing interaction of the cyanobacterial ATP synthase external stalk. In addition we present biophysical evidence derived from ESR spectroscopy and site directed spin labeling of stalk proteins that supports the proposed structural model. The use of the heterodimeric bb′ dimer from a cyanobacterial ATP synthase (Synechocystis sp. PCC 6803) allowed, by specific introduction of spin labels along each individual subunit, the evaluation of the overall tertiary structure of the subunits by calculating inter-spin distances. At defined positions in both b and b′ subunits, reporter groups were inserted to determine and confirm inter-subunit packing. The experiments showed that an approximately 100 residue long section of the cytoplasmic part of the bb′-dimer exists mostly as an elongated α-helix. The distant C-terminal end of the dimer, which is thought to interact with the δ-subunit, seemed to be disordered in experiments using soluble bb′ proteins. A left-handed coiled coil packing of the dimer suggested from structure prediction studies and shown to be feasible in molecular modeling experiments was used together with the measured inter-spin distances of the inserted reporter groups determined in ESR experiments to support the hypothesis that a significant portion of the bb′ structure exists as a left-handed coiled coil. 相似文献
13.
Tze-Jen Huang Tsong-Tse Lee Wen-Chuan Lee Yiu-Kay Lai Jau-Song Yu Shiaw-Der Yang 《Journal of Protein Chemistry》1994,13(6):517-525
The autophosphorylation-dependent protein kinase has been identified as a potent vimentin kinase that incorporates 2 mol of phosphates per mol of protein and generates five major phosphorylation sites in vimentin. Tryptic phosphopeptide mapping by high-performance liquid chromatography followed by sequential manual Edman degradation and direct peptide sequence analysis revealed that Ser-25, Ser-38, Ser-65, and Ser-71 in the amino-terminal domain and Ser-411 in the carboxyl-terminal domain are the phosphorylation sites in vimentin phosphorylated by this kinase, indicating that autophosphorylation-dependent protein kinase is a potent and unique vimentin kinase. Functional study further revealed that phosphorylation of vimentin by autophosphorylation-dependent protein kinase can completely inhibit polymerization and assembly of the cytoskeletal intermediate filament as demonstrated by electron microscopic analysis. Taken together, the results provide initial evidence that the autophosphorylation-dependent protein kinase may function as a vimentin kinase involved in the structure-function regulation of the cytoskeletal system. The results also support the notion that this cyclic nucleotide- and calcium-independent protein kinase may function as a multisubstrate/multifunctional protein kinase involved in the regulation of diverse cell functions. 相似文献
14.
The coiled coil of in vitro assembled keratin filaments is a heterodimer of type I and II keratins: use of site-specific mutagenesis and recombinant protein expression 总被引:9,自引:11,他引:9 下载免费PDF全文
Recombinant DNA technology has been used to analyze the first step in keratin intermediate filament (IF) assembly; i.e., the formation of the double stranded coiled coil. Keratins 8 and 18, lacking cysteine, were subjected to site specific in vitro mutagenesis to change one amino acid in the same relative position of the alpha-helical rod domain of both keratins to a cysteine. The mutations lie at position -36 of the rod in a "d" position of the heptad repeat pattern, and thus air oxidation can introduce a zero-length cystine cross-link. Mutant keratins 8 and 18 purified separately from Escherichia coli readily formed cystine homodimers in 2 M guanidine-HCl, and could be separated from the monomers by gel filtration. Heterodimers with a cystine cross-link were obtained when filaments formed by the two reduced monomers were allowed to oxidize. Subsequent ion exchange chromatography in 8.5 M urea showed that only a single dimer species had formed. Diagonal electrophoresis and reverse phase HPLC identified the dimer as the cystine containing heterodimer. This heterodimer readily assembled again into IF indistinguishable from those obtained from the nonmutant counterparts or from authentic keratins. In contrast, the mixture of cystine-stabilized homodimers formed only large aberrant aggregates. However, when a reducing agent was added, filaments formed again and yielded the heterodimer after oxidation. Thus, the obligatory heteropolymer step in keratin IF assembly seems to occur preferentially at the dimer level and not during tetramer formation. Our results also suggest that keratin I and II homodimers, once formed, are at least in 2 M guanidine-HCl a metastable species as their mixtures convert spontaneously into heterodimers unless the homodimers are stabilized by the cystine cross-link. This previously unexpected property of homodimers explains major discrepancies in the literature on the keratin dimer. 相似文献
15.
Benoit J. Gentil Jesse R. McLean Shangxi Xiao Beibei Zhao Heather D. Durham Janice Robertson 《Journal of neurochemistry》2014,131(5):588-601
Peripherin is a type III intermediate filament protein, the expression of which is associated with the acquisition and maintenance of a terminally differentiated neuronal phenotype. Peripherin up‐regulation occurs during acute neuronal injury and in degenerating motor neurons of amyotrophic lateral sclerosis. The functional role(s) of peripherin during normal, injurious, and disease conditions remains unknown, but may be related to differential expression of spliced isoforms. To better understand peripherin function, we performed a yeast two‐hybrid screen on a mouse brain cDNA library using an assembly incompetent peripherin isoform, Per‐61, as bait. We identified new peripherin interactors with roles in vesicular trafficking, signal transduction, DNA/RNA processing, protein folding, and mitochondrial metabolism. We focused on the interaction of Per‐61 and the constitutive isoform, Per‐58, with SNAP25 interacting protein 30 (SIP30), a neuronal protein involved in SNAP receptor‐dependent exocytosis. We found that peripherin and SIP30 interacted through coiled‐coil domains and colocalized in cytoplasmic aggregates in SW13vim(?) cells. Interestingly, Per‐61 and Per‐58 differentially altered the subcellular distribution of SIP30 and SNAP25 in primary motor neurons. Our findings suggest a novel role of peripherin in vesicle trafficking.
16.
Dr. Jürgen Schweizer Martin Rentrop Roswitha Nischt Mitsuru Kinjo Hermelita Winter 《Cell and tissue research》1988,253(1):221-229
Summary The internal epithelium of mouse forestomach represents a fully keratinized tissue that has many morphological aspects in common with the integumental epidermis. In the present study we have, therefore, analyzed keratin expression in the total epithelium, in subfractions of basal cells and in living and dead suprabasal cells that were obtained by Percoll density gradient centrifugation of trypsin-dissociated forestomach keratinocytes. The keratin analysis revealed that basal forestomach keratinocytes synthesize the same keratin types as basal epidermal cells (60 000, 52 000 and 47 000 daltons), whereas differentiating cells contain both the epidermal suprabasal keratin pair (67 000 and 59 000 daltons) and the suprabasal keratin pair characteristic for other internal squamous epithelia (57 000 and 47 000 daltons). Indirect immunofluorescence using an antibody recognizing the members of the epidermal-type suprabasal keratin pair and in-situ-hybridization experiments using specific cDNA probes for the members of the internal-type keratin pair showed that the two keratin pairs are uniformly coexpressed in living suprabasal forestomach keratinocytes. Furthermore, it could be shown that distinct cells in the basal cell layer acquire the ability to express both the 67 000/59 000 dalton and the 57 000/47 000 dalton keratin pair and that some basal cells apparently lose the ability to synthesize mRNAs for basal keratins. 相似文献
17.
Beaded filaments are the major cytoskeletal element of the eye lens and they are essential to the optical properties of the eye lens. They were discovered in 1972 by Harry Maisel and Margaret Perry and have since been found to comprise two novel intermediate filament proteins, CP49 and filensin. These proteins possess unique structure features and unusual assembly characteristics, which distinguish them from canonical IF proteins. Whilst CP49 is completely tailless, filensin has a rather short rod domain and extremely large C-terminal tail domain. In vitro, CP49 and filensin do not form IFs on their own. In vitro studies suggest that CP49 and filensin have a distinct coassembly mechanism. Whilst CP49 self-assembles into thick bundles of filaments, filensin only forms short fibrils, but when combined together they form filaments. The generation of gene knockouts by the targeted deletion of Bfsp1 and Bfsp2 that encode filensin and CP49, respectively, have been made to explore the function of beaded filaments in the lens. Our results suggest that the lens-specific beaded filaments are the key cytoskeletal element in organising and maintaining lens fibre cell architecture and are a key factor in determining the optical properties of the lens. We have also found that some common mouse strains contain a natural mutation in Bfsp2 that will effectively generate a CP49 knockout. This finding has important implications for lens research involving other gene knockouts maintained on a 129 background. It has also been observed that mutations in Bfsp2 are the genetic basis of inherited human cataract. Collectively, these data demonstrate that beaded filaments are fundamental to lens function. 相似文献
18.
By comparing newly available cDNA sequences of the human intermediate filament protein lamin B(2) with published sequences, we have identified an additional translation initiation codon 60 nucleotides upstream of the previously assumed translation start. In addition, corresponding sequences were identified in the chimpanzee, mouse, rat and bovine genes and cDNAs, respectively. Therefore, we generated antibodies against these potential 20 new amino acids of the human sequence. By immunoblot analysis and immunofluorescence microscopy we show that human lamin B(2) is indeed synthesized as a longer version than previously reported, because it contains these additional 20 amino acids. Notably, the sequence homology to mouse, rat and bovine lamin B(2) is significantly lower in this segment than in that between the second methionine codon and the start of the alpha-helical rod indicating that the tip of the "head" is engaged in more species-specific functions. Forced expression of the GFP-tagged authentic "long" and the 20 amino acid shorter version of lamin B(2) in human cultured SW-13 cells demonstrated that both the longer and the shorter version are properly integrated into the nuclear lamina, although the shorter version exhibited a tendency to disturb envelope architecture at higher expression levels. 相似文献
19.
Lorenzo Alibardi 《Journal of morphology》2013,274(2):175-193
The isolation of genes for alpha‐keratins and keratin‐associated beta‐proteins (formerly beta‐keratins) has allowed the production of epitope‐specific antibodies for localizing these proteins during the process of cornification epidermis of reptilian sauropsids. The antibodies are directed toward proteins in the alpha‐keratin range (40–70 kDa) or beta‐protein range (10–30 kDa) of most reptilian sauropsids. The ultrastructural immunogold study shows the localization of acidic alpha‐proteins in suprabasal and precorneous epidermal layers in lizard, snake, tuatara, crocodile, and turtle while keratin‐associated beta‐proteins are localized in precorneous and corneous layers. This late activation of the synthesis of keratin‐associated beta‐proteins is typical for keratin‐associated and corneous proteins in mammalian epidermis (involucrin, filaggrin, loricrin) or hair (tyrosine‐rich or sulfur‐rich proteins). In turtles and crocodilians epidermis, keratin‐associated beta‐proteins are synthesized in upper spinosus and precorneous layers and accumulate in the corneous layer. The complex stratification of lepidosaurian epidermis derives from the deposition of specific glycine‐rich versus cysteine‐glycine‐rich keratin‐associated beta‐proteins in cells sequentially produced from the basal layer and not from the alternation of beta‐ with alpha‐keratins. The process gives rise to Oberhäutchen, beta‐, mesos‐, and alpha‐layers during the shedding cycle of lizards and snakes. Differently from fish, amphibian, and mammalian keratin‐associated proteins (KAPs) of the epidermis, the keratin‐associated beta‐proteins of sauropsids are capable to form filaments of 3–4 nm which give rise to an X‐ray beta‐pattern as a consequence of the presence of a beta‐pleated central region of high homology, which seems to be absent in KAPs of the other vertebrates. J. Morphol., 2013. © 2012 Wiley Periodicals, Inc. 相似文献
20.
P M Steinert D A Parry W W Idler L D Johnson A C Steven D R Roop 《The Journal of biological chemistry》1985,260(11):7142-7149
From the nucleotide sequences of specific cDNA clones, we present partial amino acid sequences (75-90% of the total) of 67-kDa type II keratin subunits expressed in terminally differentiating mouse and human epidermis. Analysis of the sequence information reveals that their secondary structures conform to the pattern common for all intermediate filament (IF) subunits. Together with the previously published sequence of the mouse 59-kDa type I keratin (Steinert, P. M., Rice, R. H., Roop, D. R., Trus, B. L., and Steven, A. C. (1983) Nature 302, 794-800) these data allow us to make comparisons between two keratins which are coexpressed in an epithelial cell type and which coassemble into the same IF. Moreover, these comparisons suggest a systematic plan for the general organization of the end domains of other keratin subunits. We postulate that each end domain consists of a set of subdomains which are distributed with bilateral symmetry with respect to the central alpha-helical domain. Type II (but not type I) keratins contain short globular sequences, H1 and H2, immediately adjacent to the central domain, that have been conserved in size and sequence and which account for most of the difference in mass between coexpressed type II and type I keratins. These are flanked by subdomains V1 and V2 that are highly variable in both length and sequence, often contain tandem peptide repeats, and are conspicuously rich in glycines and/or serines. At the termini are strongly basic subdomains (N and C, respectively) that are variable in sequence. Among keratins of a given type, their variability in mass appears to reside in the size of their V1 and V2 subdomains. However, coexpressed type I and type II keratins have generally similar V1 and/or V2 sequences. By virtue of the ease with which large portions of these subdomain sequences can be removed from intact keratin IF by limited proteolysis, we hypothesize that they lie on the periphery of the IF where they participate in interactions with other constituents of epithelial cells. 相似文献