首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Plasma membrane flavins and pterins are considered to mediate important physiological functions such as blue light photoperception and redox activity. Therefore, the presence of flavins and pterins in the plasma membrane of higher plants was studied together with NAD(P)H-dependent redox activities. Plasma membranes were isolated from the apical hooks of etiolated bean seedlings (Phaseolus vulgaris L. cv. Limburgse Vroege) by aqueous two-phase partitioning. Fluorescence spectroscopy revealed the presence of two chromophores. The first showed excitation maxima at 370 and 460 nm and an emission peak at 520 nm and was identified as a flavin. The second chromophore was probably a pterin molecule with excitation peaks at 290 and 350 nm and emission at 440 nm. Both pigments are considered intrinsic to the plasma membrane since they could not be removed by treatment with hypotonic media containing high salt and low detergent concentrations. The flavin concentration was estimated at about 500 pmol mg?1 protein. However difficulties were encountered in quantifying the pterin concentrations. Protease treatments indicated that the flavins were non-covalently bound to the proteins. Separation of the plasma membrane proteins after solubilisation by octylglucoside, on an ion exchange system (HPLC, Mono Q), resulted in a distinct protein fraction showing flavin and pterin fluorescence and NADH oxidoreductase activity. The flavin of this fraction was identified as flavin mononucleotide (FMN) by HPLC analysis. Other minor peaks of NADH:acceptor reductase activity were resolved on the column. The presence of distinct NAD(P)H oxidases at the plasma membrane was supported by nucleotide specificity and latency studies using intact vesicles. Our work demonstrates the presence of plasma membrane flavins as intrinsic chromophores, that may function in NAD(P)H-oxidoreductase activity and suggests the presence of plasma membrane bound pterins.  相似文献   

3.
A. Bérczi  H. Asard 《Protoplasma》1995,184(1-4):140-144
Summary A considerable number of studies have demonstrated the presence of NAD(P)-oxidoreductases in the plant and animal cell plasma membranes. Recently several attempts on the isolation and purification of these proteins have been presented. The results indicate the presence of distinct NAD(P)H-utilizing enzymes in the plasma membrane of several species. Proteins with molecular masses of 27 kDa, 31 kDa, 36–39 kDa, and 45 kDa have been identified. Little information is so far available on the presence and nature of the chromophores on these proteins. The electron donor and acceptor specificities of the purified enzymes seem to depend to some extent on the purification procedures used. Two interesting remarks became apparent when evaluating the literature available on this subject. First, although some plasma membrane NAD(P)H-oxidoreductase activity is transmembrane, none of the purified enzymes was reported to depend on the presence of polar lipids to reach full activity. Second, considerable amounts of enzyme activity were found in the non-solubilised membrane material and apparently resisted the solubilisation procedures. The nature of these activities has not yet been clarified. Clearly the amino acid sequencing and structural analysis of these proteins will reveal important new clues to the understanding of the plasma membrane electron transport in the near future.Abbreviations DQ duroquinone - HCF hexacyanoferrate (III)  相似文献   

4.
Redox enzymes in the plant plasma membrane and their possible roles   总被引:1,自引:0,他引:1  
Purified plasma membrane (PM) vesicles from higher plants contain redox proteins with low‐molecular‐mass prosthetic groups such as flavins (both FMN and FAD), hemes, metals (Cu, Fe and Mn), thiol groups and possibly naphthoquinone (vitamin K1), all of which are likely to participate in redox processes. A few enzymes have already been identified: Monodehydroascorbate reductase (EC 1.6.5.4) is firmly bound to the cytosolic surface of the PM where it might be involved in keeping both cytosolic and, together with a b‐type cytochrome, apoplastic ascorbate reduced. A malate dehydrogenase (EC 1.1.1.37) is localized on the inner side of the PM. Several NAD(P)H‐quinone oxidoreductases have been purified from the cytocolic surface of the PM, but their function is still unknown. Different forms of nitrate reductase (EC 1.6.6.1–3) are found attached to, as well as anchored in, the PM where they may act as a nitrate sensor and/or contribute to blue‐light perception, although both functions are speculative. Ferric‐chelate‐reducing enzymes (EC 1.6.99.13) are localized and partially characterized on the inner surface of the PM but they may participate only in the reduction of ferric‐chelates in the cytosol. Very recently a ferric‐chelate‐reducing enzyme containing binding sites for FAD, NADPH and hemes has been identified and suggested to be a trans‐PM protein. This enzyme is involved in the reduction of apoplastic iron prior to uptake of Fe2+ and is induced by iron deficiency. The presence of an NADPH oxidase, similar to the so‐called respiratory burst oxidase in mammals, is still an open question. An auxin‐stimulated and cyanide‐insensitive NADH oxidase (possibly a protein disulphide reductase) has been characterized but its identity is still awaiting independent confirmation. Finally, the only trans‐PM redox protein which has been partially purified from plant PM so far is a high‐potential and ascorbate‐reducible b‐type cytochrome. In co‐operation with vitamin K1 and an NAD(P)H‐quinone oxidoreductase, it may participate in trans‐PM electron transport.  相似文献   

5.
Oxygen consumption in the presence of cyanide was utilized as a measure of plasma membrane electron transport in Chinese hamster ovary (CHO) and human cervical carcinoma (HeLa) cell lines. Both intact cells and isolated plasma membranes carry cyanide-insensitive NADH(P)H oxidases at their external membrane surfaces (designated ECTO-NOX proteins). Regular oscillatory patterns of oxygen consumption with period lengths characteristic of those observed for rates of NADH oxidation by ECTO-NOX proteins were observed to provide evidence for transfer of protons and electrons to reduce oxygen to water. The oscillations plus the resistance to inhibition by cyanide identify the bulk of the oxygen consumption as due to ECTO-NOX proteins. With intact CHO cells, oxygen consumption was enhanced by but not dependent upon external NAD(P)H addition. With intact HeLa cells, oxygen consumption was inhibited by both NADH and NAD+ as was growth. The results suggest that plasma membrane electron transport from internal donors to oxygen as an external acceptor is mediated through ECTO-NOX proteins and that electron transport to molecular oxygen may be differentially affected by external pyridine nucleotides depending on cell type.  相似文献   

6.
Aging, a major risk factor in Alzheimer's disease (AD), is associated with an oxidative redox shift, decreased redox buffer protection, and increased free radical reactive oxygen species (ROS) generation, probably linked to mitochondrial dysfunction. While NADH is the ultimate electron donor for many redox reactions, including oxidative phosphorylation, glutathione (GSH) is the major ROS detoxifying redox buffer in the cell. Here, we explored the relative importance of NADH and GSH to neurodegeneration in aging and AD neurons from nontransgenic and 3xTg‐AD mice by inhibiting their synthesis to determine whether NADH can compensate for the GSH loss to maintain redox balance. Neurons stressed by either depleting NAD(P)H or GSH indicated that NADH redox control is upstream of GSH levels. Further, although depletion of NAD(P)H or GSH correlated linearly with neuron death, compared with GSH depletion, higher neurodegeneration was observed when NAD(P)H was extrapolated to zero, especially in old age, and in the 3xTg‐AD neurons. We also observed an age‐dependent loss of gene expression of key redox‐dependent biosynthetic enzymes, NAMPT (nicotinamide phosphoribosyltransferase), and NNT (nicotinamide nucleotide transhydrogenase). Moreover, age‐related correlations between brain NNT or NAMPT gene expression and NADPH levels suggest that these genes contribute to the age‐related declines in NAD(P)H. Our data indicate that in aging and more so in AD‐like neurons, NAD(P)H redox control is upstream of GSH and an oxidative redox shift that promotes neurodegeneration. Thus, NAD(P)H generation may be a more efficacious therapeutic target upstream of GSH and ROS.  相似文献   

7.
Summary Barley (Hordeum vulgare L.) has both NADH-specific and NAD(P)H-bispecific nitrate reductases. Genomic and cDNA clones of the NADH nitrate reductase have been sequenced. In this study, a genomic clone (pMJ4.1) of a second type of nitrate reductase was isolated from barley by homology to a partial-length NADH nitrate reductase cDNA and the sequence determined. The open reading frame encodes a polypeptide of 891 amino acids and its interrupted by two small introns. The deduced amino acid sequence has 70% identity to the barley NADH-specific nitrate reductase. The non-coding regions of the pMJ4.1 gene have low homology (ca. 40%) to the corresponding regions of the NADH nitrate reductase gene. Expression of the pMJ4.1 nitrate reductase gene is induced by nitrate in root tissues which corresponds to the induction of NAD(P)H nitrate reductase activity. The pMJ4.1 nitrate reductase gene is sufficiently different from all previously reported higher plant nitrate reductase genes to suggest that it encodes the barley NAD(P)H-bispecific nitrate reductase.Scientific Paper No. 9101-14. College of Agriculture and Home Economics Research Center, Washington State University, Research Project Nos. 0233 and 0745  相似文献   

8.
It has been previously demonstrated in a human-derived hepatoma cell line (HepG2) that juices from cruciferous vegetables protect against the genotoxicity caused by dietary carcinogens. HepG2 cells possess different enzymes involved in the biotransformation of xenobiotics. Therefore, we investigated the effect of cruciferous juices on the activities of CYP 1A and several phase II enzymes in this cell model. For each experiment, 1 × 106 cells were seeded on Petri dishes. After 2 days, the juices (0.5–8 μl/ml of culture medium) were added for 48 h prior to cell harvesting. The addition of juice from water cress (Nasturtium officinalis R. Br) significantly increased the activities of ethoxyresorufin-O-deethylase at high doses only and NAD(P)H-quinone reductase in a dose-dependent manner (1.8- and 5-fold, respectively). The addition of juice from garden cress (Lepidum sativum L.) significantly increased the activities of NAD(P)H-quinone reductase and UDP-glucuronosyl-transferase with a maximal effect around the dose of 2 μl/ml juice (1.4- and 1.2-fold, respectively) while the other enzymes were not altered. Mustard (Sinapis alba L.) juice increased the activities of NAD(P)H-quinone reductase (2.6-fold at the dose of 8 μl/ml), and N-acetyl-transferase (1.4-fold at the dose of 8 μl/ml) in a dose-dependent manner while a maximal induction of UDP-glucuronosyl-transferase was obtained with a dose of 2 μl/ml (1.8-fold). These observations show that the three juices have different induction profiles: only water cress acted as a bifunctional inducer by enhancing both phase I and phase II enzymes. As a consequence, each juice may preferentially inhibit the genotoxicity of specific compounds.  相似文献   

9.
Summary Plasma membranes (PM) from maize roots (Zea mays L.) were isolated by aqueous two-phase partitioning. The isolated membrane fraction showed a 4.6-fold enrichment in specific activity of the PM marker enzyme vanadate-sensitive, Mg2+-ATPase over a microsomal pellet collected at 50,000 × g. Activities of marker enzymes for mitochondria, endoplasmic reticulum, tonoplast, and Golgi apparatus were low or not detectable in the PM fraction. Quantitative morphometric analysis using the PM-specific silicotungstic acid stain showed the fraction to be > 92% PM vesicles. Using detergent stimulation of ATPase activity as a measure of structurally linked latency, greater than 90% of the PM vesicles were oriented with the cytoplasmic surface inside.An electron transport activity was investigated in the PM fraction. The rate of NADH oxidation in the absence of an artificial electron acceptor was < 167pkat·mg protein–1; however, NADH catalysed the reduction of a variety of artificial electron acceptors including ferricyanide (2.6 nkat·mg protein–1), cytochromec (0.8 nkat·mg protein–1), a tetrazolium derivative (0.6 nkat·mg protein–1) and dichlorophenol indophenol (0.4 nkat·mg protein–1). While the NADH-dependent ferricyanide and dichlorophenol indophenol reductases were stimulated 6-fold by 0.025% (v/v) Triton X-100, the cytochromec and INT reductases were not greatly stimulated. Washing membranes with high salt significantly decreased the NADH-dependent, and eliminated the NADPH-dependent, ferricyanide reductase activity measured in the absence of detergent. These results suggest that NADH was oxidized on the extracytoplasmic surface of the membrane; however, a significant portion of this activity was extrinsic and may have originated from cytoplasmic contamination during isolation. The greater portion of the PM-associated NAD(P)H oxidation and/or ferricyanide reduction was catalyzed on sites not exposed to the outer surface of the membrane.Abbreviations BTP 1,3-bis[tris(hydroxymethyl)-methylamino]-propane - CHAPS 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate dihydrate - cytc cytochromec - DCIP 2,6-dichlorophenol indolphenol - INT 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyltetrazolium chloride - kat mole·s–1 - Mes 2-(N-morpholino)ethanesulfonic acid - MF microsomal fraction - PM plasma membrane - STA silicotungstic acid - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol The mention of vendor or product does not imply that they are endorsed or recommended by U.S. Department of Agriculture over vendors of similar products not mentioned.  相似文献   

10.
Using isolated chloroplasts or purified thylakoids from photoautotrophically grown cells of the chromophytic alga Pleurochloris meiringensis (Xanthophyceae) we were able to demonstrate a membrane bound NAD(P)H dehydrogenase activity. NAD(P)H oxidation was detectable with menadione, coenzyme Q0, decylplastoquinone and decylubiquinone as acceptors in an in vitro assay. K m-values for both pyridine nucleotides were in the molar range (K m[NADH]=9.8 M, K m[NADPH]=3.2 M calculated according to Lineweaver-Burk). NADH oxidation was optimal at pH 9 while pH dependence of NADPH oxidation showed a main peak at 9.8 and a smaller optimum at pH 7.5–8. NADH oxidation could be completely inhibited with rotenone, an inhibitor of mitochondrial complex I dehydrogenase, while NADPH oxidation revealed the typical inhibition pattern upon addition of oxidized pyridine nucleotides reported for ferredoxin: NADP+ reductase. Partly-denaturing gel electrophoresis followed by NAD(P)H dehydrogenase activity staining showed that NADPH and NADH oxidizing proteins had different electrophoretic mobilities. As revealed by denaturing electrophoresis, the NADH oxidizing enzyme had one main subunit of 22 kDa and two further polypeptides of 29 and 44 kDa, whereas separation of the NADPH depending protein yielded five bands of different molecular weight. Measurement of oxygen consumption due to PS I mediated methylviologen reduction upon complete inhibition of PS II showed that the NAD(P)H dehydrogenase is able to catalyze an input of electrons from NADH to the photosynthetic electron transport chain in case of an oxidized plastoquinone-pool. We suggest ferredoxin: NADP+ reductase to be the main NADPH oxidizing activity while a thylakoidal NAD(P)H: plastoquinone oxidoreductase involved in the chlororespiratory pathway in the dark acts mainly as an NADH oxidizing enzyme.Abbreviations Coenzyme Q0-2,3-dimethoxy-5-methyl-1,4-benzoquinone - FNR ferredoxin: NADP+ reductase - MD menadione - MV methylviologen - NDH NAD(P)H dehydrogenase - PQ plastoquinone - PQ10 decylplastoquinone - SDH succinate dehydrogenase - UQ10 decylubiquinone (2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinone)  相似文献   

11.
The 2.1 A resolution crystal structure of flavin reductase P with the inhibitor nicotinamide adenine dinucleotide (NAD) bound in the active site has been determined. NAD adopts a novel, folded conformation in which the nicotinamide and adenine rings stack in parallel with an inter-ring distance of 3.6 A. The pyrophosphate binds next to the flavin cofactor isoalloxazine, while the stacked nicotinamide/adenine moiety faces away from the flavin. The observed NAD conformation is quite different from the extended conformations observed in other enzyme/NAD(P) structures; however, it resembles the conformation proposed for NAD in solution. The flavin reductase P/NAD structure provides new information about the conformational diversity of NAD, which is important for understanding catalysis. This structure offers the first crystallographic evidence of a folded NAD with ring stacking, and it is the first enzyme structure containing an FMN cofactor interacting with NAD(P). Analysis of the structure suggests a possible dynamic mechanism underlying NADPH substrate specificity and product release that involves unfolding and folding of NADP(H).  相似文献   

12.
The involvement of pyridine nucleotides in the reduction of extracytoplasmatic electron acceptors by iron-deficient Plantago lanceolata L. roots has been examined by measuring the changes in NAD(P)H and NAD(P) induced by various external acceptors. Exposure of the plants to FeEDTA, ferricyanide, ferric citrate or hexachloroiri-date resulted in a transient decrease in NADPH and an increase in NAD. No major differences in this pattern were observed between acceptors which were assumed to be reduced by different enzymes. The application of the membrane-permeable oxidant nitro blue tetrazolium led to similar changes in reduced and oxidized pyridine nucleotides and decreased the reduction of external acceptors. The amino acid analog p -fluorophenylalanine caused a transient decline in both NADPH level and NADPH/ NADP ratio and a decrease in the ratio of NADH to NAD without affecting the level of NADH. Exposure of the plants to the translation inhibitor cycloheximide increased both NADH and NADPH concentrations. A comparison of the redox activities and pyridine nucleotide fractions after inhibitor treatment revealed that the constitutive, but not iron stress-induced redox activity correlates with NADPH levels. These results are interpreted as confirming that the redox systems on the root plasma membrane are separately regulated. Possible metabolic reactions during the reduction processes are discussed.  相似文献   

13.
Havir EA 《Plant physiology》1986,80(2):473-478
Different organs of maize seedlings are known to contain different complements of NADH and NAD(P)H nitrate reductase (NR) activity. The study of the genetic programming that gives rise to such differences can be initiated by looking for genetic variants exhibiting different patterns of distribution of the above enzymes. We demonstrate in this work that scutella of very young maize seedlings contain NADH NR almost exclusively and that this activity is gradually replaced, as the seedling ages, with NAD(P)H NR. Leaves in the seedlings contain exclusively the NADH NR activity. A genetic variant is described that contains much reduced levels of NAD(P)H NR activity but not of NADH NR activity in the scutellum. This same variant exhibits a relatively low level of NAD(P)H NR but normal NADH NR activity in seedling root tips. These observations suggest that the genetic program used to specify the scutellar complement of NR activity shares some common components with the genetic program used to determine the young root tip complement of NR activities. Parts of regenerating callus at different stages of differentiation were examined to determine when the differences in NR complement begin to appear. The same pattern of NADH NR and NAD(P)H NR activities was found in unorganized as well as in organized callus, in recognizable root-like and even in green shoot-like material, both activities being present in all these tissues. An examination of the NR complement in different organs of a number of siblings originating from a cross involving transposon Mu-containing parents and having different levels of leaf NADH NR activity shows that the leaf NADH NR activity content and the scutellum NAD(P)H NR activity content are relatively independent of each other, indicating that the genetic programs specifying the NR content of these organs are not tightly coupled, if at all.  相似文献   

14.
The respiratory chain of plant mitochondria differs from that in mammalian mitochondria by containing several rotenone-insensitive NAD(P)H dehydrogenases. Two of these are located on the outer, cytosolic surface of the inner membrane. One is specific for NADH, the other for NADPH. Only the latter is inhibited by diphenyleneiodonium (DPI). Both of these enzymes are normally dependent upon Ca2+ for activity and this constitutes a potentially important mechanism by which the cell can regulate the oxidation of cytosolic NAD(P)H via the concentration of free Ca2+. This and other potential regulatory mechanisms such as the substrate concentration and polyamines are discussed.  相似文献   

15.
This study proposes a novel chemiluminescent assay of bacterial activity. Luminol chemiluminescence (LC) was amplified on addition of menadione to Escherichia coli suspension, and it was effectively inhibited by addition of superoxide dismutase rather than catalase. This fact suggests that H2O2 produced from O2 by superoxide dismutase is decomposed by catalase of E. coli. NAD(P)H:menadione reductase activities in periplasm and cytosol corresponded to the amplification of menadione-catalyzed LC, and outer and cytoplasmic membranes were only slightly involved in the LC. The total activity and Vmax of NAD(P)H:menadione reductase in the cytoplasm were greater than those in the periplasm. A transient increase in menadione-catalyzed LC was observed in the exponential phase and the LC decreased in the stationary phase during growth of E. coli. Menadione-catalyzed LC was sensitive to antibiotic action. A decrease in menadione-catalyzed LC by the impairment of membrane functions and by the inhibition of protein synthesis was observed at 5 min and 3 hr, respectively. These findings suggest the possibility that menadione-catalyzed luminol chemiluminescent assay is applicable to rapid antimicrobial assay because LC is sensitive to the change in growth and cytotoxic events caused by antimicrobial agents.  相似文献   

16.
Redox activities, NADH:ferricyanide reductase, NAD(P)H:cytochrome reductases, and NADH:ascorbate free-radical reductase, are present in endoplasmic reticulum (ER) and glyoxysomal membranes from the endosperm of germinating castor bean (Ricinus comminus L. var Hale). The development of these functions was followed in glyoxysomes and ER isolated on sucrose gradients from castor bean endosperm daily from 0 through 6 days of germination. On a per seed basis, glyoxysomal and ER protein, glyoxysomal and ER membrane redox enzyme activities, and glyoxylate cycle activities peaked at day 4 as did the ER membrane content of cytochrome P-450. NADH:ferricyanide reductase was present in glyoxysomes and ER isolated from dry seed. This activity increased only about twofold in glyoxysomes and threefold in ER during germination relative to the amount of protein in the respective fractions. The other reductases, NADH:cytochrome reductase and NADH:ascorbate free-radical reductase, increased about 10-fold in the ER relative to protein up to 4 to 5 days, then declined. NADPH:cytochrome reductase reached maximum activity relative to protein at day 2 in both organelles. The increases in redox activities during germination indicate that the membranes of the ER and glyoxysome are being enriched with redox proteins during their development. The development of redox functions in glyoxysomes was found to be coordinated with development of the glyoxylate cycle.  相似文献   

17.
Abstract: The metabolism of Clostridium acetobutylicum was manipulated, at neutral pH and in chemostat culture, by the addition of Neutral red, a molecule that can replace ferredoxin in the oxido-reduction reactions catalysed by the enzymes involved in the distribution of the electron flow. Cultures grown on glucose alone produced mainly acids while cultures grown on glucose plus Neutral red produced mainly alcohols and butyrate and low levels of hydrogen. We demonstrated that just after addition of Neutral red to an acidogenic culture, the simultaneous utilizations of ferredoxin and dye deviate electron flow from hydrogen to NADH production initially by the enzymatic regulation of in vivo hydrogenase and ferredoxin NAD reductase activities. The higher NAD(P)H pool generated might, thereafter, be the signal for the setting up of a new metabolism. In the resulting steady-state, the NAD(P)H 'pressure' is maintained by high ferredoxin NAD and NADP reductases level associated to a low NADH ferredoxin reductase level. The regeneration of NAD is mainly achieved via the induced or increased NADH-dependent aldehyde and alcohol dehydrogenase activities.  相似文献   

18.
We have studied changes in plasma membrane NAD(P)H:quinone oxidoreductases of HL-60 cells under serum withdrawal conditions, as a model to analyze cell responses to oxidative stress. Highly enriched plasma membrane fractions were obtained from cell homogenates. A major part of NADH-quinone oxidoreductase in the plasma membrane was insensitive to micromolar concentrations of dicumarol, a specific inhibitor of the NAD(P)H:quinone oxidoreductase 1 (NQO1, DT-diaphorase), and only a minor portion was characterized as DT-diaphorase. An enzyme with properties of a cytochrome b 5 reductase accounted for most dicumarol-resistant quinone reductase activity in HL-60 plasma membranes. The enzyme used mainly NADH as donor, it reduced coenzyme Q0 through a one-electron mechanism with generation of superoxide, and its inhibition profile by p-hydroxymercuribenzoate was similar to that of authentic cytochrome b 5 reductase. Both NQO1 and a novel dicumarol-insensitive quinone reductase that was not accounted by a cytochrome b 5 reductase were significantly increased in plasma membranes after serum deprivation, showing a peak at 32 h of treatment. The reductase was specific for NADH, did not generate superoxide during quinone reduction, and was significantly resistant to p-hydroxymercuribenzoate. The function of this novel quinone reductase remains to be elucidated whereas dicumarol inhibition of NQO1 strongly potentiated growth arrest and decreased viability of HL-60 cells in the absence of serum. Our results demonstrate that upregulation of two-electron quinone reductases at the plasma membrane is a mechanism evoked by cells for defense against oxidative stress caused by serum withdrawal.  相似文献   

19.
20.
Two pyridine nucleotide dehydrogenases have been isolated from castor bean seed extracts by a combination of ion exchange chromatography on DEAE-Sepharose and gel permeation chromatography on Sephadex G-200. The enzymes were designated D-I and D-II according to their elution position on DEAE-Sepharose. Both enzymes D-I and D-II are globular proteins which have MWs of 66 000 and 60 000, respectively. Dehydrogenation is observed with both NADH and NADPH as electron donors, while the electron acceptor specificity demonstrates that the enzymes are probably NAD(P)H: quinone oxidoreductases. Successful coupling of dehydrogenase activity with that of peroxidase indicates a possible role of the enzymes in seed germination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号