首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The deformations of neutrophils as they pass through the pulmonary microcirculation affect their transit time, their tendency to contact and interact with the endothelial surface, and potentially their degree of activation. Here we model the cell as a viscoelastic Maxwell material bounded by constant surface tension and simulate indentation experiments to quantify the effects of (N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP)-stimulation on its mechanical properties (elastic shear modulus and viscosity). We then simulate neutrophil transit through individual pulmonary capillary segments to determine the relative effects of capillary geometry and fMLP-stimulation on transit time. Indentation results indicate that neutrophil viscosity and shear modulus increase by factors of 3.4, for 10(-9) M fMLP, and 7.3, for 10(-6) M fMLP, over nonstimulated cell values, determined to be 30.8 Pa.s and 185 Pa, respectively. Capillary flow results indicate that capillary entrance radius of curvature has a significant effect on cell transit time, in addition to minimum capillary radius and neutrophil stimulation level. The relative effects of capillary geometry and fMLP on neutrophil transit time are presented as a simple dimensionless expression and their physiological significance is discussed.  相似文献   

2.
In a previous study, direct measurements of pulmonary capillary transit time by fluorescence video microscopy in anesthetized rabbits showed that chest inflation increased capillary transit time and decreased cardiac output. In isolated perfused rabbit lungs we measured the effect of lung volume, left atrial pressure (Pla), and blood flow on capillary transit time. At constant blood flow and constant transpulmonary pressure, a bolus of fluorescent dye was injected into the pulmonary artery and the passage of the dye through the subpleural microcirculation was recorded via the video microscope on videotape. During playback of the video signals, the light emitted from an arteriole and adjacent venule was measured using a video photoanalyzer. Capillary transit time was the difference between the mean time values of the arteriolar and venular dye dilution curves. We measured capillary transit time in three groups of lungs. In group 1, with airway pressure (Paw) at 5 cmH2O, transit time was measured at blood flow of approximately 80, approximately 40, and approximately 20 ml.min-1.kg-1. At each blood flow level, Pla was varied from 0 (Pla less than Paw, zone 2) to 11 cmH2O (Pla greater than Paw, zone 3). In group 2, at constant Paw of 15 cmH2O, Pla was varied from 0 (zone 2) to 22 cmH2O (zone 3) at the same three blood flow levels. In group 3, at each of the three blood flow levels, Paw was varied from 5 to 15 cmH2O while Pla was maintained at 0 cmH2O (zone 2).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Although the lung is known to be a major site of neutrophil margination, the anatomic location of these sequestered cells within the lung is controversial. To determine the site of margination and the kinetics of neutrophil transit through the pulmonary microvasculature, we infused fluorescein isothiocyanate-labeled canine neutrophils into the pulmonary arteries of 10 anesthetized normal dogs and made fluorescence videomicroscopic observations of the subpleural pulmonary microcirculation through a window inserted into the chest wall. The site of fluorescent neutrophil sequestration was exclusively in the pulmonary capillaries with a total of 951 labeled cells impeded in the capillary bed for a minimum of 2 s. No cells were delayed in the arterioles or venules. Transit times of individual neutrophils varied over a wide range from less than 2 s to greater than 20 min with an exponential distribution skewed toward rapid transit times. These observations indicate that neutrophil margination occurs in the pulmonary capillaries with neutrophils impeded for variable periods of time on each pass through the lung. The resulting wide distribution of transit times may determine the dynamic equilibrium between circulating and marginated neutrophils.  相似文献   

4.
The initial retention of neutrophils within the pulmonary microvascular bed occurs in both physiological and pathological states, yet the factors responsible for this retention are poorly understood. Because the diameter of the neutrophil is approximately 7.03 micron and the mean pulmonary capillary diameter is 5.5 micron, we postulated that geometric constraints imposed by the microvascular bed, the deformability of the neutrophil, and the hydrodynamic characteristics of blood were important determinants of neutrophil retention. We used a filtration system wherein 111In-labeled human neutrophils (111In-N) suspended in a serum-containing buffer were passed through Nuclepore filters of known pore size. Compared with 99mTc-labeled erythrocytes (99mTc-RBC), the passage of 111In-N was delayed and a higher percentage was retained within the filter. Because the neutrophil and RBC are approximately equal in diameter, the deformability of the neutrophil must be less than that of RBC. As the flow rate increased, retention in the filters decreased logarithmically from 72 +/- 5% (flow rate 0.5 ml/min) to 15 +/- 4% (10.0 ml/min). As the number of RBC in the buffer increased, neutrophil retention in 5-micron filters decreased in a linear fashion from 65 +/- 6% at hematocrit of 0 to 33 +/- 2% at hematocrit of 10. The perfusion pressure and shear stress were of critical importance, and there was a logarithmic relationship between retention and perfusion pressure or shear stress (tau), whether the increase in pressure or tau was generated by increasing flow or by increasing the hematocrit of the perfusate. As the pore size of the filter increased, the retention of neutrophils decreased in a logarithmic fashion: from 75 +/- 5% in the 3-micron filter to 4 +/- 1.3% in the 12-micron filter.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Theoretical modeling of filtration of blood cell suspensions   总被引:2,自引:0,他引:2  
A theoretical model of filtration of suspensions containing red blood cells (RBCs) and white blood cells (WBCs) has been developed. Equations are written for the pressure drop, the filtration flow and the fractions of filter pores containing RBCs (alpha) and WBCs (alpha*). Because the relative resistances (ratios of resistance of cell to resistance of suspending fluid) of RBCs (beta) and WBCs (beta*) through the filter pore are greater than one, the transit of these cells (especially WBCs) through the filter is slower than that of suspending fluid; this leads to values of alpha and alpha* higher than those simply expected from the hematocrit and leukocrit, respectively, in the entering and exiting suspensions. In the absence of pore plugging by the cells (steady flow), the pressure drop can be computed from alpha, alpha*, beta and beta*. In order to model unsteady flow, differential equations are written to include pore plugging and the subsequent unplugging by the rising filtration pressure at a constant flow. By specifying the fractions of entering RBCs (epsilon) and WBCs (epsilon*) which would plug the pores and the rate at which the plugged pores would unplug in response to pressure rise (epsilon u), as well as the fractions of entering RBCs (epsilon p) and WBCs (epsilon p*) that would plug the pores permanently, theoretical pressure-time curves can be generated by numerical integration, and the results fit the experimental data well. From such fitting of theoretical curve to experimental data, information can be deduced for epsilon, epsilon*, epsilon u, epsilon p and epsilon* p.  相似文献   

6.
A common indicator of rheological dysfunction is a measurable decrease in the deformability of red blood cells (RBCs). Decreased RBC deformability is associated with cellular stress or pathology and can impede the transit of these cells through the microvasculature, where RBCs play a central role in the oxygenation of tissues. Therefore, RBC deformability has been recognized as a sensitive biomarker for rheological disease. In the current study, we present a strategy to measure RBC cortical tension as an indicator of RBC deformability based on the critical pressure required for RBC transit through microscale funnel constrictions. By modeling RBCs as a Newtonian liquid drop, we were able to discriminate cells fixed with glutaraldehyde concentrations that vary as little as 0.001%. When RBCs were sampled from healthy donors on different days, the RBC cortical tension was found to be highly reproducible. Inter-individual variability was similarly reproducible, showing only slightly greater variability, which might reflect biological differences between normal individuals. Both the sensitivity and reproducibility of cortical tension, as an indicator of RBC deformability, make it well-suited for biological and clinical analysis of RBC microrheology.  相似文献   

7.
We compared rates of oxygen transport in an in vitro capillary system using red blood cells (RBCs) and cell-free hemoglobins. The axial PO(2) drop down the capillary was calculated using finite-element analysis. RBCs, unmodified hemoglobin (HbA(0)), cross-linked hemoglobin (alpha alpha-Hb) and hemoglobin conjugated to polyethylene-glycol (PEG-Hb) were evaluated. According to their fractional saturation curves, PEG-Hb showed the least desaturation down the capillary, which most closely matched the RBCs; HbA(0) and alpha alpha-Hb showed much greater desaturation. A lumped diffusion parameter, K*, was calculated based on the Fick diffusion equation with a term for facilitated diffusion. The overall rates of oxygen transfer are consistent with hemoglobin diffusion rates according to the Stokes-Einstein Law and with previously measured blood pressure responses in rats. This study provides a conceptual framework for the design of a 'blood substitute' based on mimicking O(2) transport by RBCs to prevent autoregulatory changes in blood flow and pressure.  相似文献   

8.
Neutrophils play an essential role in protection against infections and their numbers in the blood are frequently measured in the clinic. Higher neutrophil counts in the blood are usually an indicator of ongoing infections, while low neutrophil counts are a warning sign for higher risks for infections. To accomplish their functions, neutrophils also have to be able to move effectively from the blood where they spend most of their life, into tissues, where infections occur. Consequently, any defects in the ability of neutrophils to migrate can increase the risks for infections, even when neutrophils are present in appropriate numbers in the blood. However, measuring neutrophil migration ability in the clinic is a challenging task, which is time consuming, requires large volume of blood, and expert knowledge. To address these limitations, we designed a robust microfluidic assays for neutrophil migration, which requires a single droplet of unprocessed blood, circumvents the need for neutrophil separation, and is easy to quantify on a simple microscope. In this assay, neutrophils migrate directly from the blood droplet, through small channels, towards the source of chemoattractant. To prevent the granular flow of red blood cells through the same channels, we implemented mechanical filters with right angle turns that selectively block the advance of red blood cells. We validated the assay by comparing neutrophil migration from blood droplets collected from finger prick and venous blood. We also compared these whole blood (WB) sources with neutrophil migration from samples of purified neutrophils and found consistent speed and directionality between the three sources. This microfluidic platform will enable the study of human neutrophil migration in the clinic and the research setting to help advance our understanding of neutrophil functions in health and disease.  相似文献   

9.
Neutrophils are normally delayed in transit through the lung microcirculation, relative to the passage of erythrocytes. This sequestration contributes to a pulmonary pool of neutrophils that may relate to the relative inability of neutrophils to deform compared with erythrocytes when in transit in the pulmonary capillaries. A micropore membrane was used to model the human pulmonary microcirculation, in which cell deformability was measured as the pressure developed during filtration of the cells through the membrane at a constant flow. We demonstrated a significant correlation between in vitro deformability and in vivo lung sequestration of indium-111-labeled neutrophils in 10 normal subjects (r = 0.69, P less than 0.02). In eight patients with stable chronic obstructive pulmonary disease, this relationship was not significant (r = -0.2, P greater than 0.05). Furthermore, in a subject with microscopic pulmonary telangiectasia known to allow significant passage of 30-microns microspheres, neutrophils passed through the lungs without delay. Moreover, neutrophils from patients studied acutely with an exacerbation of chronic obstructive pulmonary disease were temporarily less deformable (P less than 0.01). These studies confirm that cell deformability is an important determinant of the normal neutrophil sequestration within the lungs. Changes in cell deformability may alter the extent of this sequestration.  相似文献   

10.
The effect of isovolemic hemodilution on the circulation of red blood cells (RBCs) in the cerebrocortical capillary network was studied by intravital videomicroscopy with use of a closed-cranial-window technique in the rat. Velocity and supply rate of RBCs were measured by tracking the movement and counting the number of fluorescently labeled cells. Arterial blood was withdrawn in increments of 2 ml and replaced by serum albumin. Arterial blood pressure was maintained constant with an infusion of methoxamine. Both velocity and supply rate of RBCs increased, by approximately equal amounts, as arterial hematocrit was reduced from 44 to 15%. The maximum increase in RBC velocity was 4.6 and in RBC supply rate was 5.2 times the baseline value. Calculated lineal density of RBC, an index of capillary hematocrit, did not change with hemodilution. The results suggest that RBC flow and oxygen supply in the cerebral capillary network are maintained during isovolemic hemodilution. The "optimal hematocrit" is as low as 15%.  相似文献   

11.
Dynamical clustering of red blood cells in capillary vessels   总被引:3,自引:0,他引:3  
We have modeled the dynamics of a 3-D system consisting of red blood cells (RBCs), plasma and capillary walls using a discrete-particle approach. The blood cells and capillary walls are composed of a mesh of particles interacting with harmonic forces between nearest neighbors. We employ classical mechanics to mimic the elastic properties of RBCs with a biconcave disk composed of a mesh of spring-like particles. The fluid particle method allows for modeling the plasma as a particle ensemble, where each particle represents a collective unit of fluid, which is defined by its mass, moment of inertia, translational and angular momenta. Realistic behavior of blood cells is modeled by considering RBCs and plasma flowing through capillaries of various shapes. Three types of vessels are employed: a pipe with a choking point, a curved vessel and bifurcating capillaries. There is a strong tendency to produce RBC clusters in capillaries. The choking points and other irregularities in geometry influence both the flow and RBC shapes, considerably increasing the clotting effect. We also discuss other clotting factors coming from the physical properties of blood, such as the viscosity of the plasma and the elasticity of the RBCs. Modeling has been carried out with adequate resolution by using 1 to 10 million particles. Discrete particle simulations open a new pathway for modeling the dynamics of complex, viscoelastic fluids at the microscale, where both liquid and solid phases are treated with discrete particles. Figure A snapshot from fluid particle simulation of RBCs flowing along a curved capillary. The red color corresponds to the highest velocity. We can observe aggregation of RBCs at places with the most stagnant plasma flow.  相似文献   

12.
The authors have previously presented a mathematical model to predict transit time of a neutrophil through an alveolar capillary segment which was modeled as an axisymmetric arc-shaped constriction settled in a cylindrical straight pipe to investigate the influence of entrance curvature of a capillary on passage of the cell. The axially asymmetric cross section of a capillary also influences the transit time because it requires three-dimensional deformation of a cell when it passes through the capillary and could lead to plasma leakage between the cell surface and the capillary wall. In this study, a rectangular channel was introduced, the side walls of which were moderately constricted, as a representative of axially asymmetric capillaries. Dependence of transit time of a neutrophil passing through the constriction on the constriction geometry, i.e., channel height, throat width and curvature radius of the constriction, was numerically investigated, the transit time being compared with that through the axisymmetric model. It was found that the transit time is dominated by the throat hydraulic diameter and curvature radius of the constriction and that the throat aspect ratio little affects the transit time with a certain limitation, indicating that if an appropriate curvature radius is chosen, such a rectangular channel model can be substituted for an axisymmetric capillary model having the same throat hydraulic diameter in terms of the transit time by choosing an appropriate curvature radius. Thus, microchannels fabricated by the photolithography technique, whose cross section is generally rectangular, are expected to be applicable to in vitro model experiments of neutrophil retention and passage in the alveolar capillaries.  相似文献   

13.
Changes in the ratio between the diameters of capillaries and neutrophils, neutrophil stiffening, and their adhesion to vascular endothelium lead to the retention and accumulation of leukocytes in the pulmonary capillary system. In experiments, these phenomena are induced by different methods, from injection of microorganisms into the blood to breathing pure oxygen for 24 h. They may result in capillary occlusion with neutrophils and platelets and damage to blood vessels and tissues. The hypothesis is discussed that blood is filtered by neutrophils accumulated in capillaries, which ensures the contact of neutrophils with microorganisms no later than 5–10 min after the microorganisms enter the blood circulation. Neutrophils are retained, at least temporarily, in the places in the capillary system where relatively wide capillaries branch into narrower capillaries.  相似文献   

14.
The viscosity of neutrophils and their transit times through small pores   总被引:1,自引:0,他引:1  
Passive neutrophils from five different individuals are rapidly aspirated at constant suction pressure and at room temperature into a pipet with a diameter of 4 microns. The excess suction pressures (i.e., the pressures in excess of the small threshold pressure required to produce continuous flow into the pipet) are 5000, 10,000 and 20,000 dyn/cm2 (0.5, 1 and 2 kPa) and are comparable to those encountered in the microcirculation. The rate of entry into the pipet is modeled with a linearized version of a theory by Yeung and Evans for the newtonian flow of a neutrophil into a pipet or pore. From this theory and measurements of the cell size and its rate of entry into the pipet, we can calculate a value for the cytoplasmic viscosity. A linear (newtonian) fit of the theory to the experimental data gives a value for the viscosity of 1050 poise. A non-linear fit predicts a decrease in the "apparent viscosity" from about 1500 poise at zero excess pressure to 1000 poise at an excess aspiration pressure of 20,000 dyn/cm2. Our experiments and analysis also allow us to calculate a value for the transit time through short pores over a wide range of excess aspiration pressures and pore diameters. For example, for a pore diameter of 3 microns and an aspiration pressure of 1250 dyn/cm2, we predict a transit time of about 70 s. At 6 microns and 20,000 dyn/cm2, the predicted transit time is only about 0.04 s.  相似文献   

15.
When pulmonary blood flow is elevated, hypoxemia can occur in the fastest-moving erythrocytes if their transit times through the capillaries fall below the minimum time for complete oxygenation. This desaturation is more likely to occur if the distribution of capillary transit times about the mean is large. Increasing cardiac output is known to decrease mean pulmonary capillary transit time, but the effect on the distribution of transit times has not been reported. We measured the mean and variance of transit times in single pulmonary capillary networks in the dependent lung of anesthetized dogs by in vivo videofluorescence microscopy of a fluorescein dye bolus passing from an arteriole to a venule. When cardiac output increased from 2.9 to 9.9 l/min, mean capillary transit time decreased from 2.0 to 0.8 s. Because transit time variance decreased proportionately (relative dispersion remained constant), increasing cardiac output did not alter the heterogeneity of local capillary transit times in the lower lung where the capillary bed was nearly fully recruited.  相似文献   

16.
All vertebrates except cold-water ice fish transport oxygenvia hemoglobin packaged in red blood cells (RBCs). VertebrateRBCs vary in size by thirtyfold. Differences in RBC size havebeen known for over a century, but the functional significanceof RBC size remains unknown. One hypothesis is that large RBCsare a primitive character. Agnathans have larger RBCs than domammals. However, the largest RBCs are found in urodele amphibianswhich is inconsistent with the hypothesis that large RBCs areprimitive. Another possibility is that small RBCs increase bloodoxygen transport capacity. Blood hemoglobin concentration ([Hb])and mean RBC hemoglobin concentration (MCHC) increase from Agnathato birds and mammals. However, the changes in [Hb] and MCHCdo not parallel changes in RBC size. In addition, RBC size doesnot affect blood viscosity. Thus, there is no clear link betweenRBC size and oxygen transport capacity. We hypothesize thatRBC size attends changes in capillary diameter. This hypothesisis based on the following observations. First, RBC width averages25% larger than capillary diameter which insures cell deformationduring capillary flow. Functionally, RBC deformation minimizesdiffusion limitations to gas exchange. Second, smaller capillariesare associated with increased potential for diffusive gas exchange.However, smaller capillaries result in higher resistances toblood flow which requires higher blood pressures. We proposethat the large capillary diameters and large RBCs in urodelesreflect the evolutionary development of a pulmonary vascularsupply. The large capillaries reduced systemic vascular resistancesenabling a single ventricular heart to supply blood to two vascularcircuits, systemic and pulmonary, without developing high pressureson the pulmonary side. The large RBCs preserved diffusive gasexchange efficiency in the large capillaries.  相似文献   

17.
The passage of red blood cells (RBCs) through capillaries is essential for human blood microcirculation. This study used a moving mesh technology that incorporated leader-follower pairs to simulate the fluid-structure and structure-structure interactions between the RBC and a microvessel stenosis. The numerical model consisted of plasma, cytoplasm, the erythrocyte membrane, and the microvessel stenosis. Computational results showed that the rheology of the RBC is affected by the Reynolds number of the plasma flow as well as the surface-to-volume ratio of the erythrocyte. At a constant inlet flow rate, an increased plasma viscosity will improve the transit of the RBC through the microvessel stenosis. For the above reasons, we consider that the decreased hemorheology in microvessels in a pathological state may primarily be attributed to an increase in the number of white blood cells. This leads to the aggregation of RBCs and a change in the blood flow structure. The present fundamental study of hemorheology aimed at providing theoretical guidelines for clinical hemorheology.  相似文献   

18.
Systemic parameters and microvascular and capillary hemodynamics were studied in the hamster window chamber model before and after hyaluronan degradation by intravenous injection of Streptomyces hyaluronidase (100 units, 40-50 U/ml plasma). Glycocalyx permeation was estimated using fluorescent markers of different molecular size (40, 70, and 2,000 kDa), and electrical charge. Systemic parameters (blood pressure, heart rate, blood gases) and microhemodynamics (vascular tone, velocity, and blood flow) remained statistically unchanged after injection of hyaluronidase, compared with inactivated hyaluronidase. Conversely, capillary hemodynamics were drastically affected. Functional capillary density, the capillaries perfused with red blood cells (RBCs), decreased by 35%, capillary Hct of the remaining functional capillaries increased from 16 to 27%, and penetration of 70-kDa fluorescent marker increased. Furthermore, plasma-only perfused capillaries statistically increased 30 min after hyaluronidase. The decrease in functional capillary density accounted for an increased RBC flux in the remainder of the capillaries, since the same number of RBCs had to traverse a reduced number of capillaries. Flux balances showed a reduction from baseline of 11% for the RBC flux and 20% for the plasma flux after treatment. These discrepancies are within the margin of error of the techniques used and could be explained by accounting for RBC over-velocity compared with plasma. These findings suggest that the decrease in the glycocalyx leads to capillary perfusion impairments.  相似文献   

19.
The mechanism that causes neutrophils to sequester in the pulmonary circulation is unknown. Because the CD11/CD18 glycoprotein family on the surface membrane of neutrophils participates in many adhesive interactions with the endothelium, we investigated the role of these proteins in the intravascular sequestration of pulmonary neutrophils. Neutrophils were isolated from normal dogs and from the only living dog known to have leukocyte adhesion deficiency disease, an inherited deficiency of the CD11/CD18 adhesion family. The neutrophils were labeled with fluorescein dye, injected into normal recipient dogs, and their passage through the pulmonary microcirculation was recorded by in vivo videofluorescence microscopy through a transparent thoracic window. Transit times for normal and deficient neutrophils were similar over a wide range of hemo-dynamic conditions. Activation by zymosan-activated plasma, which increases the surface membrane expression of CD11/CD18, prolonged the transit of normal neutrophils but did not alter the transit time of the deficient neutrophils. These results indicate that neutrophil CD11/CD18 adhesion-promoting glycoproteins are not involved in the normal pulmonary sequestration of neutrophils but have a significant role in the arrest of activated neutrophils in the pulmonary capillaries.  相似文献   

20.
Monoclonal antibodies (mAbs) against cell surface antigens and receptors are instrumental in defining specific membrane markers. mAbs GF 26.7.3 and MF 25.1 against human neutrophils modulated the activation mechanism of superoxide anion production induced by formyl-peptide and PMA in all subject. However, treatment with mAb MF 25.1 of neutrophils from patients with rheumatoid arthritis did not have any effect. This may suggest that the antigen which MF 25.1 binds is absent in rheumatoid conditions. This confirms our previous data showing that defective expression of membrane components is associated with neutrophil dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号