首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNA polymerase activity and incorporation of 3H-orotic acid into RNA in livers of young mice were investigated. Total RNA polymerase activity of isolated liver nuclei increased approximately three-fold during the first 30 days after birth. Assays with α-amanitin revealed that both RNA polymerase I and II activity increased over this period. Chromatographic fractionation of solubilized RNA polymerases confirmed that the ratio of polymerase I to polymerase II activity was similar at 1 day and at 30 days of age. Incorporation of 3H-orotic acid into total liver RNA in intact animals also increased during this period. The results are compared with the increase in cell number and cell size in postnatal liver development.  相似文献   

2.
A method for the isolation of polytene nuclei from salivary glands cells of the Diptera Rhynchosciara americana is described. The stage-specific morphological pattern of the chromosome is maintained during the isolation. The isolated nuclei show two distinct RNA polymerase activities, namely I and II, characterized on the basis of ionic requirements and -amanitin sensitivity. Studies of the product under the incubation conditions show that the system allows the synthesis of high-molecular weight RNA, beside a low molecular weight peak which may comprise pre-4S and 5S RNAs.-Autoradiographic studies carried out in the presence or absence of the toxin -amanitin showed that micronucleoli contain products of RNA polymerase type I activity (ribosomal RNA) and that the DNA puffs are engaged in -amanitin sensitive RNA synthesis and thus are sites of polymerase type II activity.  相似文献   

3.
The rates of RNA synthesis in cultured human KB cells infected by adenovirus 2 were estimated by measuring the endogenous RNA polymerase activities in isolated nuclei. The fungal toxin α-amanitin was used to determine the relative and absolute levels of RNA synthesis by RNA polymerases I, II, and III in nuclei isolated during the course of infection. Whereas the level of endogenous RNA polymerase I activity in nuclei from infected cells remained constant relative to the level in nuclei from mock-infected cells, the endogenous RNA polymerase II and III activities each increased about 10-fold. These increases in endogenous RNA polymerase activities were accompanied by concomitant increases in the rates of synthesis in isolated nuclei of viral mRNA precursor, which was monitored by hybridization to viral DNA, and of viral 5.5S RNA, which was quantitated by electrophoretic analysis on polyacrylamide gels. The cellular RNA polymerase levels were measured with exogenous templates after solubilization and chromatographic resolution of the enzymes on DEAE-Sephadex, using procedures in which no losses of activity were apparent. In contrast to the endogenous RNA polymerase activities in isolated nuclei, the cellular levels of the solubilized class I, II, and III RNA polymerases remained constant throughout the course of the infection. Furthermore, no differences were detected in the chromatographic properties of the RNA polymerases obtained from infected or control mock-infected cells. These observations suggest that the increases in endogenous RNA polymerase activities in isolated nuclei are not due to variations in the cellular concentrations of the enzymes. Instead, it is likely that the increased endogenous enzyme activities result from either the large amounts of viral DNA template available as a consequence of viral replication or from functional modifications of the RNA polymerases or from a combination of these effects.  相似文献   

4.
Isolated nuclei from differentiating cultures ofNicotiana sanderae showed increased levels of RNA polymerase activity as compared to the nuclei from callus cultures. The RNA synthetic activity was dependent on nucleotide triphosphates and Mg2+ and was destroyed by RNase. Maximum activity was obtained in the presence of 50 mM (NH4)2 SO4 and α-amanitin inhibited 40% and 55% of the activity in the nuclei from callus and differentiating tissue respectively. The nuclei from differentiating tissue elicited a 3-fold increase in RNA polymerase I and a 4-fold augmentation in RNA polymerase II activities.  相似文献   

5.
An incubation medium is described which supports RNA synthesis in isolated oocyte nuclei of the newt Notophthalmus, and which permits subsequent autoradiographic examination of the lampbrush chromosomes and nucleoli. By using different concentrations of α-amanitin we distinguish RNA synthesis due to RNA polymerases I, II and III. All RNA synthesis on loops is inhibited by 0.5 μ/ml of α-amanitin and is therefore due to polymerase II. Polymerase III is responsible for RNA synthesis at a small number of discrete sites in condensed chromatm. These include the centromere bars of three of four chromosomes, which probably represent 5S RNA synthesis, as well as 15–20 lesser sites scattered elsewhere. Polymerase I activity is confined to the nucleoli. Dedicated to Professor W. Beermann on the occasion of his 60th birthday  相似文献   

6.
7.
8.
Using α-amanitin to inhibit polymerase II activity in intact nuclei from Oncopeltus embryos, it is demonstrated that there is no difference in relative amounts of α-amanitin-resistant (Form I) and α-amanitin-sensitive (Form II) polymerases at two stages of embryonic development (70 and 140 hr), although the total polymerase activity is considerably higher at the earlier stage. However the RNA made under these circumstances (presumably due to Form I activity) appears to be, as expected, largely ribosomal.When the RNA polymerase activities are solubilized and separated, there is a substantially higher level of Form I activity in 70-hr embryos over that in 140-hr embryos. It is suggested that this high level of polymerase activity is correlated directly with the high level of ribosomal RNA synthesis at this stage.  相似文献   

9.
The hypothesis of functional hemizygosity has been examined for the α-amanitin resistant (AmaR, a codominant marker) locus in a series of Chinese hamster cell lines. AmaR mutants were obtained from different cell lines, e.g., CHO, CHW, M3-1 and CHO-Kl, at similar frequencies. After fractionation of different RNA polymerase activities in the extracts by chromatographic procedures, the sensitivity of the mutant RNA polymerase II towards α-amanitin was determined. While all of the RNA polymerase II activity in mutant CHO and CHO-Kl lines became resistant to α-amanitin inhibition, only about 50% of the activity is highly resistant in AmaR mutants of CHW and M3-1 cell lines. The remaining activity in the latter cell lines shows α-amanitin sensitivity similar to that seen with the wild-type enzyme. This behaviour is similar to that observed with a 1:1 mixture of resistant and sensitive enzymes from CHO cells. These results, therefore, strongly indicate that while only one functional copy of the gene affected by α-amanitin is present in CHO and CHO-Kl cells, two copies of this gene are functional in the CHW and M3-1 cell lines.  相似文献   

10.
CHO hybrid cell lines obtained by fusing cells of wild-type sensitivity to α-amanitin with mutant cells containing RNA polymerase II activity resistant to α-amanitin have both sensitive (wild-type) and resistant forms of RNA polymerase II. When these hybrids were grown in medium containing α-amanitin, the sensitive form of polymerase II was inactivated, and the activity resistant to α-amanitin increased proportionally. The total polymerase II activity level therefore remained constant. This regulation of RNA polymerase II activity occurred independently of that of RNA polymerase I and was similar to that observed previously in the α-amanitin-resistant rat myoblast mutant clone Ama102 (Somers, Pearson, and Ingles, 1975).A sensitive radioimmunoassay was developed to quantitate the total mass of RNA polymerase II enzyme. Under conditions of regulation of the enzymatic activity when hybrids grown in α-amanitin exhibited a 2–3 fold increase in the activity of the α-amanitin-resistant enzyme, no major change in the enzyme mass was detected immunologically. However, quantitation of the α-amanitin-inactivated polymerase II of wild-type sensitivity by 3H-amanitin binding indicated that the loss of its enzymic activity was accompanied by a loss of 3H-amanitin binding capacity in the cell lysates. All these results taken together indicate that a mechanism for regulating the intracellular level of RNA polymerase II exists and that it involves changes in the concentration of enzyme.  相似文献   

11.
The reactivation of the chick erythrocyte nucleus was studied after erythrocytes were induced to fuse with rat epithelial cells in the presence of Sendai virus. The chick nucleus swells, shows an increase in dry mass and protein content and resumes RNA synthesis. Nucleoplasmic antigens characteristic of the rat cell are found to migrate into the erythrocyte nucleus. The rate of uptake of these molecules, which are believed to be proteins, appears to be directly related to increases in nuclear size, 3H-uridine incorporation and RNA polymerase activity. The polymerase activity which increases during the first days after cell fusion is sensitive to α-amanitin but relatively resistant to actinomycin D. At later time points there is an increase in α-amanitin resistant polymerase activity which probably reflects the appearance of ribosomal RNA synthesis.When heterokaryons containing different proportions of rat: chick nuclei are compared, reactivation is found to proceed most rapidly in those containing a high rat: chick nuclear ratio. As the number of erythrocyte nuclei in heterokaryons increases, the rate of reactivation in the individual nuclei is progressively reduced suggesting that the erythrocyte nuclei compete with each other for macromolecules of specific importance for the activation process.  相似文献   

12.
DNA-dependent RNA polymerases were solubilized from nuclei of cauliflower inflorescences and purified by agarose A-1.5m, DEAE-cellulose, DEAE-Sephadex, and phosphocellulose chromatography and sucrose density gradient centrifugation. RNA polymerases I + III were separated from II by DEAE-cellulose chromatography. Subsequent chromatography on DEAE-Sephadex resolved RNA polymerase I from III. RNA polymerases I and II were further purified to high specific activity by phosphocellulose chromatography and sucrose density gradient centrifugation. RNA polymerase I was refractory to α-amanitin at 2 mg/ml. RNA polymerase II was 50% inhibited at 0.05 μg/ml, and RNA polymerase III was 50% inhibited at 1 to 2 mg/ml of α-amanitin. The enzymes were characterized with respect to divalent cation optima, ionic strength optima, and abilities to transcribe cauliflower, synthetic, and cauliflower mosaic virus DNA templates.  相似文献   

13.
《Experimental mycology》1983,7(4):344-361
The systemic fungicide metalaxyl preferentially inhibits [3H]uridine incorporation into RNA by mycelium ofPhytophthora megasperma f. sp.medicaginis. Even at high concentrations of metalaxyl inhibition is not complete but circa 80%. Neither uptake of [3H]uridine nor its conversion into UTP is inhibited, indicating that interference with RNA synthesis takes place. Synthesis of RNA that lacks poly(A) sequences is more affected than that of poly(A)+ RNA. Metalaxyl has no effect on the activity of RNA polymerases present in mycelial extracts fromPhytophthora nor on that of polymerases I and II that have been partially purified with a procedure involving precipitation with polyethyleneimine, selective elution of RNA polymerases from the polyethyleneimine precipitate, ammonium sulfate fractionation, and DEAE-Sephadex chromatography. RNA polymerase II in mycelial extracts is half-maximally inhibited by α-amanitin at concentrations below 0.01 ¼g/ml. Both metalaxyl and α-amanitin inhibit endogenous RNA polymerase activity of isolated nuclei ofPhytophthora. According to their sensitivity to metalaxyl and α-amanitin, three types of endogenous activity can be distinguished: (a) an α-amanitin-sensitive type, the activity of which is stimulated by ammonium sulfate; (b) an α-amanitin-insensitive but metalaxyl-sensitive type; and (c) a type insensitive to both metalaxyl andα-amanitin. The first type of activity is characteristic of RNA polymerase II; the identity of the latter two remains to be elucidated. Metalaxyl andα-amanitin do not have any effect on free nuclear polymerases when assayed at a concentration of 50 mM ammonium sulfate with poly[d(A-T)] as exogeneously added template in the presence of actinomycin D to inhibit endogenous RNA polymerase activity. At 250 mM ammonium sulfate the free polymerase activity becomes α-amanitin sensitive but remains metalaxyl insensitive. Metalaxyl apparently inhibits RNA synthesis by specific interference with template-bound andα-amanitin-insensitive RNA polymerase activity. Endogenous polymerase activity of nuclei isolated from a metalaxyl-resistant mutant ofP. megasperma f. sp.medicaginis is not inhibited by metalaxyl, indicating that interference with RNA synthesis is the primary action of metalaxyl and that modification of the target site may lead to resistance.  相似文献   

14.
Replicative activity of isolated chromatin from late passage cultured mouse cells has been compared to the activities of chromatin preparaions from dividing and quiescent early passage cells. Rates of endogenous DNA synthesis are similar for chromatin from growing or resting cells but this activity is stimulated 2.5-fold in senescent cell chromatin. Chromatin from growing young cells copies exogenously added single stranded DNA at the highest efficiency. Chromatin of senescent cells copies this template at a lower rate and resting young cell chromatin replicates single stranded DNA at the lowest efficiency. Similar relative rates are obtained when activated DNA is copied by the various chromatin preparations. Total activity of DNA polymerase extracted by salt from chromatin is similar for dividing and quiescent young cells but the proportion of DNA polymerase beta is higher in the latter. Elevated activities of DNA polymerases are extracted from chromatin of old cells. It is concluded, therefore, that chromatin-directed replication is differently arrested in non-dividing senescent cells and in quiescent early passage cells. The possible regulatory mechanisms of DNA replication in quiescence and aging are discussed.  相似文献   

15.
The mushroom toxin α-amanitin is known to possess a high affinity to eukaryotic RNA polymerase II (or B) [1–3]. To pursue the question where these enzymes are located during mitosis of cells, a fluorescent derivative of α-amanitin (FAMA) was prepared. The affinity of FAMA to RNA polymerase II is 18 times lower than that of α-amanitin which is, however, sufficient for bright staining of nuclei of interphase rat kangaroo (PtK1) cells. During mitosis a large part of the fluorescent stain was distributed over the cytoplasm, while the chromosomes were never found to be stained. An accumulation of the fluorescent toxin during metaphase was observed in the spindle, particularly in the centrioles. Fluorescence of the centrioles persists also during anaphase. It is concluded that during mitosis of PtK1 cells the RNA polymerase II is distributed in the cytoplasm rather than bound to chromosomes. The accumulation of fluorescent toxin in the spindle and centrioles may speculatively be explained by the presence of another protein with high affinity to amatoxins, which has recently been isolated from calf thymus by Brodner & Wieland [4].  相似文献   

16.
The DNA-dependent RNA polymerase activity of isolated nuclei from human peripheral blood has been shown to increase following stimulation with phytohaemagglutinin (PHA). Using the toxin α-amanitin it has been possible to demonstrate that within 4 h of the addition of PHA there is a two-fold increase in the amanitin-resistant polymerase activity (polymerase A) with little increase in the sensitive polymerase activity (polymerase B). 24 h following PHA stimulation the amanitin-resistant activity is stimulated 4–5 fold and the amanitin-sensitive activity less than two-fold. The susceptibility of this increased amanitin-resistant activity to low doses of actinomycin D both in vivo and in vitro indicates that the amanitin-resistant enzyme is mainly engaged in ribosomal RNA precursor synthesis. These changes in DNA-dependent RNA polymerase activity closely correspond to the observed changes in ribosomal and non-ribosomal RNA synthesis following lymphocyte stimulation.The increased polymerase A activity is diminished by a 1 h incubation of the cells with cycloheximide added 24 h after PHA whereas polymerase B activity remains unaffected. This indicates that the polymerase A activity observed after transformation is dependent on continuing protein synthesis.In our incubation conditions the polymerase activity observed in isolated nuclei appeared to be almost wholly attributable to elongation of nascent RNA molecules attached to the endogenous DNA template.  相似文献   

17.
Abstract— DNA-dependent RNA polymerase activities were solubilized from the brain nuclei of young rats. Six forms of RNA polymerases were distinguished on DEAE-Sephadex A-25 chromatography and designated A, BI, BII, CI, CII, and Oil by their sensitivities to α-amanitin. CII enzyme was shown to derive from CIII enzyme by serine-protease digestion. CI enzyme was also suggested to be a product of a proteolytic process. Using a DNA template, enzyme A was completely resistant to α-amanitin; BI and BII enzymes were equally sensitive to this toxin (50% inhibition at 0.006 μg/ml); while C enzymes showed intermediate sensitivity (50% inhibition at 30 μg/ml). When poly[d(A-T)] was used as a template, α-amanitin sensitivities were altered in A, CI, CII, and CIII enzymes without any change in the BII enzyme. CI, CII and CIII enzymes were greatly stimulated by poly[d(A-T)], whereas A and BII enzymes were only slightly stimulated. All six forms of RNA polymerases were extensively characterized with respect to their ammonium sulphate optima, effects of divalent metal ions, template requirements and pH optima, using DNA and poly[d(A-T)] as templates. The results show new findings in several properties and supply basic data for discussion and future studies on RNA metabolism of the brain.  相似文献   

18.
The contribution of human DNA polymerase epsilon to nuclear DNA replication was studied. Antibody K18 that specifically inhibits DNA polymerase activity of human DNA polymerase epsilon in vitro significantly inhibits DNA synthesis both when microinjected into nuclei of exponentially growing human fibroblasts and in isolated HeLa cell nuclei. The capability of this neutralizing antibody to inhibit DNA synthesis in cells is comparable to that of monoclonal antibody SJK-132-20 against DNA polymerase alpha. Contrary to the antibody against DNA polymerase alpha, antibody K18 against DNA polymerase epsilon did not inhibit SV40 DNA replication in vitro. These results indicate that DNA polymerase epsilon plays a role in replicative DNA synthesis in proliferating human cells like DNA polymerase alpha, and that this role for DNA polymerase epsilon cannot be modeled by SV40 DNA replication.  相似文献   

19.
α-Amanitin, a potent inhibitor of RNA polymerase II, is found inert against transformed fibroblasts in tissue culture. However, when α-amanitin is synergistically used with amphotericin B, RNA and protein synthesis are strongly blocked. Our data suggest that messenger RNA formation is preferentially inhibited since (1) the total inhibition by α-amanitin was greatly magnified when rRNA synthesis was first blocked with 0.03 μg/ml actinomycin D; (2) mRNA in polysomes was greatly reduced and the size of polysomes diminished after cells were exposed to 2 μg/ml α-amanitin plus 20 μg/ml amphotericin B for 5 h.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号