首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Transgenic tobacco (Nicotiana tabacum L. cv W38) plants with an antisense gene directed against the mRNA of ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco) activase grew more slowly than wild-type plants in a CO2-enriched atmosphere, but eventually attained the same height and number of leaves. Compared with the wild type, the anti-activase plants had reduced CO2 assimilation rates, normal contents of chlorophyll and soluble leaf protein, and much higher Rubisco contents, particularly in older leaves. Activase deficiency greatly delayed the usual developmental decline in Rubisco content seen in wild-type leaves. This effect was much less obvious in another transgenic tobacco with an antisense gene directed against chloroplast-located glyceraldehyde-3-phosphate dehydrogenase, which also had reduced photosynthetic rates and delayed development. Although Rubisco carbamylation was reduced in the anti-activase plants, the reduction was not sufficient to explain the reduced photosynthetic rate of older anti-activase leaves. Instead, up to a 10-fold reduction in the catalytic turnover rate of carbamylated Rubisco in vivo appeared to be the main cause. Slower catalytic turnover by carbamylated Rubisco was particularly obvious in high-CO2-grown leaves but was also detectable in air-grown leaves. Rubisco activity measured immediately after rapid extraction of anti-activase leaves was not much less than that predicted from its degree of carbamylation, ruling out slow release of an inhibitor from carbamylated sites as a major cause of the phenomenon. Nor could substrate scarcity or product inhibition account for the impairment. We conclude that activase must have a role in vivo, direct or indirect, in promoting the activity of carbamylated Rubisco in addition to its role in promoting carbamylation.  相似文献   

2.
3.
4.
Shen JB  Ogren WL 《Plant physiology》1992,99(3):1201-1207
Site-directed mutagenesis was performed on the 1.6 and 1.9 kilobase spinach (Spinacea oleracea) ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase cDNAs, encoding the 41 and 45 kilodalton (kD) isoforms of the enzyme, to create single amino acid changes in the putative ATP-binding site of Rubisco activase (Lys-107, Gln-109, and Ser-112) and in an unrelated cysteine residue (Cys-256). Replacement of Lys-107 with Met produced soluble protein with reduced Rubisco activase and ATPase activities in both isoforms. Substituting Ala or Arg for Lys-107 produced insoluble proteins. Rubisco activase activity increased in the 41-kD isoform when Gln-109 was changed to Glu, but activity in the 45-kD isoform was similar to the wild-type enzyme. ATPase activity in the Glu-109 mutations did not parallel the changes in Rubisco activase activity. Rather, a higher ratio of Rubisco activase to ATPase activity occurred in both isoforms. The mutation of Gln-109 to Lys inactivated Rubisco activase activity. Replacement of Ser-112 with Pro created an inactive protein, whereas attempts to replace Ser-112 with Thr were not successful. The mutation of Cys-256 to Ser in the 45-kD isoform reduced both Rubisco activase and ATPase activities. The results indicate that the two activities of Rubisco activase are not tightly coupled and that variations in photosynthetic efficiency may occur in vivo by replacing the wild-type enzyme with mutant enzymes.  相似文献   

5.
6.
Wang ZY  Portis AR 《Plant physiology》1992,99(4):1348-1353
Ribulose bisphosphate (RuBP), a substrate of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), is an inhibitor of Rubisco activation by carbamylation if bound to the inactive, noncarbamylated form of the enzyme. The effect of Rubisco activase on the dissociation kinetics of RuBP bound to this form of the enzyme was examined and characterized with the use of 3H-labeled RuBP and proteins purified from spinach (Spinacia oleracea L.) In the absence of Rubisco activase and in the presence of a large excess of unlabeled RuBP, the dissociation rate of bound [1-3H]RuBP was much faster after a short (30 second) incubation than after an extended incubation (1 hour). After 1 hour of incubation, the dissociation rate constant (Koff) of the bound RuBP was 4.8 × 10−4 per second, equal to a half-time of about 35 minutes, whereas the rate after only 30 seconds was too fast to be accurately measured. This time-dependent change in the dissociation rate was reflected in the subsequent activation kinetics of Rubisco in the presence of RuBP, CO2, and Mg2+, and in both the absence or presence of Rubisco activase. However, the activation of Rubisco also proceeded relatively rapidly without Rubisco activase if the RuBP level decreased below the estimated catalytic site concentration. High pH (pH 8.5) and the presence of Mg2+ in the medium also enhanced the dissociation of the bound RuBP from Rubisco in the presence of RuBP. In the presence of Rubisco activase, Mg2+, ATP (but not the nonhydrolyzable analog, adenosine-5′-O-[3-thiotriphosphate]), excess RuBP, and an ATP-regenerating system, the dissociation of [1-3H]RuBP from Rubisco was increased in proportion to the amount of Rubisco activase added. This result indicates that Rubisco activase-mediated hydrolysis of ATP is required for promotion of the enhanced dissociation of the bound RuBP from Rubisco. Furthermore, product analysis by ion-exchange chromatography demonstrated that the release of the bound RuBP, in an unchanged form, was considerably faster than the observed increase in Rubisco activity. Thus, RuBP dissociation was experimentally separated from activation and precedes the subsequent formation of active, carbamylated Rubisco during activation of Rubisco by Rubisco activase.  相似文献   

7.
Ribulose-1,5-bisphosphate carboxylase/oxygenase from parsley leaves was purified by Sepharose 6B gel filtration at pH 8.3 as a single, colorless peak containing both activities. Approximately 0.2 g atom copper per mole enzyme was detected by atomic absorption spectroscopy, but this copper was not detectable by EPR spectrometry.  相似文献   

8.
Xylulose-1,5-bisphosphate in preparations of ribulose-1,5-bisphosphate (ribulose-P2) arises from non-enzymic epimerization and inhibits the enzyme. Another inhibitor, a diketo degradation product from ribulose-P2, is also present. Both compounds simulate the substrate inhibition of ribulose-P2 carboxylase/oxygenase previously reported for ribulose-P2. Freshly prepared ribulose-P2 had little inhibitory activity. The instability of ribulose-P2 may be one reason for a high level of ribulose-P2 carboxylase in chloroplasts where the molarity of active sites exceeds that of ribulose-P2. Because the KD of the enzyme/substrate complex is ≤1 μM, all ribulose-P2 generated in situ may be stored as this complex to prevent decomposition.  相似文献   

9.
10.
Modulation of the activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in low light and darkness was measured in A) 25 genotypes from the four cultivated species of Phaseolus (P. vulgaris, P. acutifolius, P. lunatus and P. coccineus), B) 8 non-cultivated Phaseolus species, and C) the related species Macroptileum atropurpureum. The activity ratio of Rubisco (the ratio of initial and total Rubisco activities, which reflects Rubisco carbamylation), and the molar activity of fully-activated Rubisco (which primarily reflects the inhibition of Rubisco activity by carboxyarabinitol 1-phosphate, CA1P) were assayed in leaves from the cultivated species sampled at midday in full sunlight, in low light at dusk (60 to 100 mol photons m-2s-1), and after at least 4 h in darkness. Dark inhibition of Rubisco molar activity was compared in both cultivated and non-cultivated species. In all cultivated genotypes, a significant reduction of the activity ratio of Rubisco was measured in leaves sampled at low light; however, the molar activity of fully activated Rubisco was not greatly reduced in these low light samples. In darkened leaves, molar activities substantially declined in most Phaseolus species with 11 of 13 exhibiting greater than 60% reduction. In P. vulgaris, the reduction of molar activity was extensive (greater than 69%) in all genotypes studied, which included wild progenitors as well as ancient and advanced cultivars. These results indicate that at low light late in the day, modulation of Rubisco activity is primarily through changes in carbamylation state, with CA1P playing a more limited role. By contrast in the dark, binding of CA1P dominates the modulation of Rubisco activity in Phaseolus in a pattern that appears to be conserved within a species, but can vary significantly between species within a genus. The degree of CA1P inhibition in Phaseolus was associated with phylogenetic affinities within the genus, as the species with extensive dark-inhibition of Rubisco activity tended to be more closely related to each other than to species with reduced inhibition of Rubisco activity.Abbreviations CA1P carboxyarabinitol 1-phosphate - CABP carboxyarabinitol bisphosphate - PFD photon flux density between 400 and 700 nm - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase  相似文献   

11.
Catalysis by pure ribulose bisphosphate carboxylase from Rhodospirillum rubrum, which is a dimer (MW: 114,000) lacking small subunits, is inhibited by oxygen. Oxygen is a competitive inhibitor with respect to carbon dioxide. In the absence of carbon dioxide, the enzyme catalyzes the oxygenolytic cleavage of ribulose-1,5-bisphosphate with consumption of one mole of oxygen per mole of 3-phosphoglycerate produced.  相似文献   

12.
Changes in chlorophyll content, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) binding protein (RBP), Rubisco activase (RA), Rubisco large (LS) and small (SS) subunits, and electrolyte leakage were investigated in wheat leaf segments during heat stress (HS) for 1 h and for 24 h at 40 °C in darkness or in light, as well as after recovery from heat stress (HSR) for 24 h at 25 °C in light. The 24-h HS treatment in darkness decreased irreversibly photosynthetic pigments, soluble proteins, RBP, RA, Rubisco LS and SS. An increase in RA and RBP protein contents was observed under 24-h HS and HSR in light. This increase was in accordance with their role as chaperones and the function of RBP as a heat shock protein.This work was partially supported by Swiss National Science Foundation (Project 31-55289.98).  相似文献   

13.
14.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) can be divided into two branches: the “red-like type” of marine algae and the “green-like type” of cyanobacteria, green algae, and higher plants. We found that the “green-like type” rubisco from the thermophilic cyanobacterium Thermosynechococcus elongatus has an almost 2-fold higher specificity factor compared with rubiscos of mesophilic cyanobacteria, reaching the values of higher plants, and simultaneously revealing an improvement in enzyme thermostability. The difference in the activation energies at the transition stages between the oxygenase and carboxylase reactions for Thermosynechococcus elongatus rubisco is very close to that of Galdieria partita and significantly higher than that of spinach. This is the first characterization of a “green-like type” rubisco from thermophilic organism.  相似文献   

15.
Role of the small subunit in ribulose-1,5-bisphosphate carboxylase/oxygenase   总被引:13,自引:0,他引:13  
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of CO2 fixation in photosynthesis, but O2 competes with CO2 for substrate ribulose 1,5-bisphosphate, leading to the loss of fixed carbon. Interest in genetically engineering improvements in carboxylation catalytic efficiency and CO2/O2 specificity has focused on the chloroplast-encoded large subunit because it contains the active site. However, there is another type of subunit in the holoenzyme of plants, which, like the large subunit, is present in eight copies. The role of these nuclear-encoded small subunits in Rubisco structure and function is poorly understood. Small subunits may have originated during evolution to concentrate large-subunit active sites, but the extensive divergence of structures among prokaryotes, algae, and land plants seems to indicate that small subunits have more-specialized functions. Furthermore, plants and green algae contain families of differentially expressed small subunits, raising the possibility that these subunits may regulate the structure or function of Rubisco. Studies of interspecific hybrid enzymes have indicated that small subunits are required for maximal catalysis and, in several cases, contribute to CO2/O2 specificity. Although small-subunit genetic engineering remains difficult in land plants, directed mutagenesis of cyanobacterial and green-algal genes has identified specific structural regions that influence catalytic efficiency and CO2/O2 specificity. It is thus apparent that small subunits will need to be taken into account as strategies are developed for creating better Rubisco enzymes.  相似文献   

16.
Purified spinach (Spinacea oleracea L.) and barley (Hordeum vulgare L.) ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase supported 50 to 100% activation of substrate-bound Rubisco from spinach, barley, wheat (Triticum aestivum L.), soybean (Glycine max L.), pea (Pisum sativum L.), Arabidopsis thaliana, maize (Zea mays L.), and Chlamydomonas reinhardtii but supported only 10 to 35% activation of Rubisco from three Solanaceae species, tobacco (Nicotiana tabacum L.), petunia (Petunia hybrida L.), and tomato (Lycopersicon esculentum L.). Conversely, purified tobacco and petunia Rubisco activase catalyzed 75 to 100% activation of substrate-bound Rubisco from the three Solanacee species but only 10 to 25% activation of substrate-bound Rubisco from the other species. Thus, the interaction between substrate-bound Rubisco and Rubisco activase is species dependent. The species dependence observed is consistent with phylogenetic relationships previously derived from plant morphological characteristics and from nucleotide and amino acid sequence comparisons of the two Rubisco subunits. Species dependence in the Rubisco-Rubisco activase interaction and the absence of major anomalies in the deduced amino acid sequence of tobacco Rubisco activase compared to sequences in non-Solanaceae species suggest that Rubisco and Rubisco activase may have coevolved such that amino acid changes that have arisen by evolutionary divergence in one of these enzymes through spontaneous mutation or selection pressure have led to compensatory changes in the other enzyme.  相似文献   

17.
Ribulose-1,5-bisphosphate carboxylase/oxygenase [Rbu(1,5)P2CO] from plant sources shows a biphasic reaction course when assayed with more than 2 mM ribulose 1,5-bisphosphate [Rbu(1,5)P2]. In the burst, Rbu(1,5)P2CO has its substrate-binding sites occupied with Rbu(1,5)P2 for the initial few minutes, then both substrate-binding and regulatory sites are occupied by Rbu(1,5)P2 in the subsequent linear phase, at physiological concentrations of Rbu(1,5)P2 [A. Yokota (1991) J. Biochem. (Tokyo) 110, 246-252]. This study attempts the characterization of spinach Rbu(1,5)P2CO carrying Rbu(1,5)P2 at the regulatory sites and the interaction of Rbu(1,5)P2CO activase with Rbu(1,5)P2CO purified with poly(ethylene glycol) 4000 without denaturation. Binding of Rbu(1,5)P2 to the regulatory sites strongly influences the temperature dependence of the carboxylase activity of Rbu(1,5)P2CO. The activation energy of Rbu(1,5)P2CO with Rbu(1,5)P2 at the regulatory sites was 40% larger than that without Rbu(1,5)P2 over 30 degrees C, although the binding did not affect the activation energy below this temperature. This caused the almost linear reaction course of the carboxylase reaction at 50 degrees C. The optimum pH for the activity of Rbu(1,5)P2CO carrying Rbu(1,5)P2 at the sites was 8.0-8.2, and increased by about pH 0.2 from that of Rbu(1,5)P2CO without Rbu(1,5)P2. The ratio of the activity of the former form to that of the latter increased with increasing pH with an inflection point at pH 8.1. The increase in the ratio was accompanied by a decrease in the hysteric conformational change of Rbu(1,5)P2CO. The ATP-hydrolyzing activity inherent to Rbu(1,5)P2CO activase was stimulated about twofold by 3-5 mM Rbu(1,5)P2. Rbu(1,5)P2CO in the inactive complex with Rbu(1,5)P2 experienced hysteresis and bound Rbu(1,5)P2 at the regulatory sites during activation in the presence of Rbu(1,5)P2CO activase. Evidence was obtained that Rbu(1,5)P2CO activase promoted the activation of Rbu(1,5)P2CO through binding to the large subunits of Rbu(1,5)P2CO.  相似文献   

18.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) has played a central role in our understanding of chloroplast biogenesis and photosynthesis. In particular, its catalysis of the rate-limiting step of CO2 fixation, and the mutual competition of CO2 and O2 at the active site, makes Rubisco a prime focus for genetically engineering an increase in photosynthetic productivity. Although it remains difficult to manipulate the chloroplast-encoded large subunit and nuclear-encoded small subunit of crop plants, much has been learned about the structure/function relationships of Rubisco by expressing prokaryotic genes in Escherichia coli or by exploiting classical genetics and chloroplast transformation of the green alga Chlamydomonas reinhardtii. However, the complexity of chloroplast Rubisco in land plants cannot be completely addressed with the existing model organisms. Two subunits encoded in different genetic compartments have coevolved in the formation of the Rubisco holoenzyme, but the function of the small subunit remains largely unknown. The subunits are posttranslationally modified, assembled via a complex process, and degraded in regulated ways. There is also a second chloroplast protein, Rubisco activase, that is responsible for removing inhibitory molecules from the large-subunit active site. Many of these complex interactions and processes display species specificity. This means that attempts to engineer or discover a better Rubisco may be futile if one cannot transfer the better enzyme to a compatible host. We must frame the questions that address this problem of chloroplast-Rubisco complexity. We must work harder to find the answers.  相似文献   

19.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBP carboxylase, EC 4.1.1.39) has been purified from orange [ Citrus sinensis (L.) Osbeck cv. Washington Navel] leaves using sucrose gradient centrifugation in a fixed angle rotor. Following sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), two major bands corresponding to the two subunits of RuBP carboxylase were found. The large subunit coincided with the polypeptide band that has been previously reported to be preferentially mobilized during the spring and summer flush periods.
The degradation of RuBP carboxylase during autodigestion of Citrus leaf extracts, investigated by SDS-PAGE, occurred mainly at acidic (2.5-5.5) pH. The two subunits showed differences in the rate of degradation, the smaller being more rapidly hydrolyzed than the larger. At least four proteolytic activities were identified by means of inhibitor experiments: 1) a pepstatin A-sensitive activity that acts on both RuBP carboxylase subunits, 2) a mercurial ( p -hydroxymercuribenzoate and p -chloromercuriphenylsulfonate)-sensitive activity that degrades only the small subunit, 3) an EDTA-sensitive activity that hydrolyzes both the large and small subunits, and 4) a mercurial-stimulated activity that acts only on the large subunit. It is suggested that the last two proteases may be responsible for the degradation of RuBP carboxylase observed in vivo during the periods of mobilization of leaf protein in Citrus .  相似文献   

20.
Ribulose-1,5-bisphosphate (RuBP) carboxylase in lysed spinach (Spinacia oleracea L. cv virtuosa) chloroplasts that had been partly inactivated at low CO2 and Mg2+ by incubating in darkness with 4 millimolar partially purified RuBP was reactivated by light. If purified RuBP was used to inhibit dark activation of the enzyme, reactivation by light was not observed unless fructose-1,6-bisphosphate, ATP, or ADP plus inorganic phosphate were also added. Presumably, ADP plus inorganic phosphate acted as an ATP-generating system with a requirement for the generation of ΔpH across the thylakoid membrane. When the RuBP obtained from Sigma Chemical Co. was used, light did not reactivate the enzyme. There was no direct correlation between ΔpH and activation. Therefore, thylakoids are required in the ribulose-1,5-bisphosphate carboxylase activase system largely to synthesize ATP. Inactivation of RuBP carboxylase in isolated chloroplasts or in the lysed chloroplast system was not promoted simply by a transition from light to dark conditions but was caused by low CO2 and Mg2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号