首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A pot experiment was conducted to examine the effect of arbuscular mycorrhizal fungus, Glomus fasciculatum, and salinity on the growth of Acacia nilotica. Plants were grown in soil under different salinity levels (1.2, 4.0, 6.5, and 9.5 dS m−1). In saline soil, mycorrhizal colonization was higher at 1.2, 4.0, and 6.5 dS m−1 salinity levels in AM-inoculated plants, which decreased as salinity levels further increased (9.5 dS m−1). Mycorrhizal plants maintained greater root and shoot biomass at all salinity levels compared to nonmycorrhizal plants. AM-inoculated plants had higher P, Zn, and Cu concentrations than uninoculated plants. In mycorrhizal plants, nutrient concentrations decreased with the increasing levels of salinity, but were higher than those of the nonmycorrhizal plants. Mycorrhizal plants had greater Na concentration at low salinity levels (1.2, 4.0 dS m−1), which lowered as salinity levels increased (6.5, 9.5 dS m−1), whereas Na concentration increased in control plants. Mycorrhizal plants accumulated a higher concentration of K at all salinity levels. Unlike Na, the uptake of K increased in shoot tissues of mycorrhizal plants with the increasing levels of salinity. Our results indicate that mycorrhizal fungus alleviates deleterious effects of saline soils on plant growth that could be primarily related to improved P nutrition. The improved K/Na ratios in root and shoot tissues of mycorrhizal plants may help in protecting disruption of K-mediated enzymatic processes under salt stress conditions.  相似文献   

2.
Radish (Raphanus sativus L.) plants were grown at five soil salinity levels (1, 2, 4, 9 and 13 dS m-1) to analyse the effects on growth, dry matter partitioning, leaf expansion and water and nutrient use. Salinity was varied by proportionally changing the concentration of all macro nutrients. When the electrical conductivity (EC) of the soil solution increased from 1 to 13 dS m-1, the influx concentration of the nutrients absorbed by the plants (the ratio between the uptakes of nutrients and water) increased only from 1.6 to 3.5 dS m-1. The total nutrient uptake showed an optimum at an EC of the soil solution of about 4 dS m-1. The data suggest that at low salinity level (≤ 2 dS m-1) the nutrient uptake was limited by availability while at high salinity (>4 dS m-1) it was limited by the growth of the plant. Total water use by the plants decreased and water use efficiency increased at high salinity. Plant growth was optimal at 2–4 dS m-1. At salinities higher than 4 dS m-1 total plant dry weight decreased 2.8% per dS m-1. About 80% of the growth reduction at high salinity could be attributed to reduction of leaf area expansion and hence to reduction of light interception. The remaining 20% of the salinity effect on growth was most likely explained by a decrease in stomatal conductance. The small leaf area at high salinity was related to a reduced specific leaf area and increased tuber/shoot weight ratio. The latter could be attributed to tuber formation starting at a smaller plant size at high salinity. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
There has been much interest recently in central California for reusing drainage water to grow trees. A sand-culture study was conducted to investigate the accumulation of boron (B) and selenium (Se) in eight hybrid poplar (Populus) clones irrigated with synthetic agricultural effluent containing increasing levels of chloride salt, B, and Se. Electrical conductivity (EC) ranged from 1.5 to 15 dS m-1, B levels from 1 to 5 mg L-1, and Se levels from 100 to 500 μg L-1. Compared with all tree organs, the leaves accumulated the greatest concentrations of B and Se at the time of harvest. The results show that pooled leaf B concentrations were positively correlated with EC levels (r = 0.78, P < 0.001) and negatively correlated (r = -0.53, P < 0.001) with leaf dry matter for all clones at all tested B levels. Combined leaf and stem Se data show, respectively, a significant decrease (P < 0.05 level) in tissue accumulation of Se with increased salinity. Toxicity symptoms (e.g., burning leaf margins, shoot die back) occurred in most clones grown at 12 and 15 dS m-1 treatments leading to leaf abscission. Based on the data, clone 49177 (Populus trichocarpa × P. deltoidus) best tolerated the tested parameters among the clones and accumulated the greatest amount of B and Se. The moderate ability of the Populus species to remove and accumulate B and Se from saline effluent is most effective at salinity levels less than 7 dS m-1.  相似文献   

4.
Mesquite plants (Prosopis glandulosa var. Torreyana) were grown in 2-m long columns 20 cm in diameter, and provided with a constant, stable ground water source 10 cm above the sealed base of the column. Ground water contained 0, 1 or 5 mM nitrate, or a mixed salt solution (1.4, 2.8, or 5.6 dS m-1) with the ionic ratios of ground water found in a field stand of Prosopis at Harper's Well (2.8 dS m-1). Water uptake in the highly salinized columns began to decrease relative to low salt columns when soil salinity probes 30 cm above the column base read approximately 28 dS m-1, a potential threshold for mesquite salt tolerance. Prosopis growth increased with increasing nitrate, and decreased with increasing salinity. Water use efficiency was little affected by treatment, averaging approximately 2 g dry matter L-1 water used. Most fine roots were recovered from a zone about 25 cm above the ground water surface where water content and aeration appeared to be optimal for root growth. Root-shoot ratio was little affected by nitrate, but increased slightly with increasing salinity. Plant tissue P concentrations tended to increase with increasing salinity and decrease with increasing N, approaching potentially deficient foliage concentrations at 5 mM nitrate. The whole-plant leaf samples increased in sodium concentration both with added salt and with added nitrate. Foliar manganese concentrations increased with increasing salt in the absence of nitrate. Concentrations of sodium in leaves were low (<10 g kg-1), considering the high salt concentrations in the ground water. Prosopis appears to exclude sodium very effectively, especially from its younger leaves. Although Prosopis is highly salt tolerant, the degree to which it utilizes soil nitrate in place of biologically fixed N may lower its salinity tolerance and affect its nutrient relations in phreatic environments.  相似文献   

5.
The effects of soil water regime and wheat cultivar, differing in drought tolerance with respect to root respiration and grain yield, were investigated in a greenhouse experiment. Two spring wheat (Triticum aestivum) cultivars, a drought sensitive (Longchun 8139-2) and drought tolerant (Dingxi 24) were grown in PVC tubes (120 cm in length and 10 cm in diameter) under an automatic rain-shelter. Plants were subjected to three soil moisture regimes: (1) well-watered control (85% field water capacity, FWC); (2) moderate drought stress (50% FWC) and (3) severe drought stress (30% FWC). The aim was to study the influence of root respiration on grain yield under soil drying conditions. In the experiment, severe drought stress significantly (p < 0.05) reduced shoot and root biomass, photosynthesis and root respiration rate for both cultivars, but the extent of the decreases was greater for Dingxi 24 compared to that for Longchun 8139-2. Compared with Dingxi 24, 0.04 and 0.07 mg glucose m−2 s−1 of additional energy, equivalent to 0.78 and 1.43 J m−2 s−1, was used for water absorption by Longchun 8139-2 under moderate and severe drought stress, respectively. Although the grain yield of both cultivars decreased with declining soil moisture, loss was greater in Longchun 8139-2 than in Dingxi 24, especially under severe drought stress. The drought tolerance cultivar (Dingxi 24), had a higher biomass and metabolic activity under severe drought stress compared to the sensitive cultivar (Longchun 8139-2), which resulted in further limitation of grain yield. Results show that root respiration, carbohydrates allocation (root:shoot ratio) and grain yield were closely related to soil water status and wheat cultivar. Reductions in root respiration and root biomass under severe soil drying can improve drought tolerant wheat growth and physiological activity during soil drying and improve grain yield, and hence should be advantageous over a drought sensitive cultivar in arid regions.  相似文献   

6.
This study aimed to determine the effects of different rootstocks and soilless media on the plant growth and yield of cucumber and on the leaf ion (Na+, Ca++, K+ and Cl?) concentrations. Four commercial rootstocks (TZ148 F1, RS841 F1, Nun9075 F1 and Avar F1) and two local landraces (Local-1 and Local-3 belonging to Cucurbita moschata L.) were used as rootstock and grafted and non grafted plants were tested in three different salinity conditions (2.5 dS m?1, 5.0 dS m?1 and 7.5 dS m?1) on three different soilless media (cocopeat, perlite and rockwool) in spring period under greenhouse conditions. Salinity found to reduce root and shoot dry weight, and yield of plants in all growing media. TZ148, Nun9075 and Local-3 are found to improve tolerance of cucumber plants to saline conditions (5.0 and 7.5 dS m?1) when used as rootstocks. Root and shoot dry weight, yield, Ca++ in leaves and K+/Na+ ratio in leaves were significantly decreased, but Na+ and Cl? concentration in leaves were increased under salt stress. Rootstock potential of Local-3 is also found to be quite good for cucumber under saline conditions.  相似文献   

7.
Grieve  C.M.  Suarez  D.L. 《Plant and Soil》1997,192(2):277-283
Drainage water reuse systems have been proposed for the west side of the San Joaquin Valley of California in order to reduce the volumes of water requiring disposal. Implementation of this system requires development of a cropping system with successively higher salt tolerance. A major limitation is the need to identify alternate species that will be suitable as the final, most salt tolerant crop in the series. These crops must be productive when irrigated with waters that are typically high in sulfate salinity and may be contaminated with potentially toxic trace elements. This study was initiated to evaluate the interactive effects of sulfate salinity and selenium on biomass production and mineral content of purslane (Portulaca oleracea). Plants were grown in greenhouse sand cultures and irrigated four times daily. Treatments consisted of three salinity levels with electrical conductivities (ECi) of 2.1, 15.2, and 28.5 dS m–1, and two selenium levels, 0 and 2.3 mg L–1. In the initial harvests, shoot dry matter was reduced by 15 to 30% at 15.2 dS m–1 and by 80 to 90% at 28.5 dS m–1. Regrowth after clipping above the first node was vigorous and biomass from plants irrigated with 15.2 dS m–1 water was nearly double that from the 2 dS m–1 treatment. Purslane appears to be an excellent candidate for inclusion in saline drainage water reuse systems. It is (i) highly tolerant of both chloride- and sulfate-dominated salinities, (ii) a moderate selenium accumulator in the sulfate-system, and (iii) a valuable, nutritive vegetable crop for human consumption and for livestock forage.  相似文献   

8.

Scientists consider saltwater one of the effective environmental stress that negatively affects the growth and establishment of trees and shrubs worldwide. Utilizing the potential of Bio-stimulant compounds present in the brown seaweed extract is an alternative strategy to improve crop tolerance to salinity. This study focused on the application of seaweed extract as a Bio-stimulant agent to counteract the salt stress on the growth and some physiochemical aspects of milkweed seedlings. In this experiment, the seedlings were treated with seaweed extract (SWE) of Sargassum angustifolium at four concentrations (non-SWE or control, 0.5, 1.0, and 1.5%) and then exposed to salt stress at four levels (0, 7.5, 15, and 30 dS m?1 of diluted seawater) in a completely randomized design (four replications per treatment) over a time-span of 3 months. The results indicated that SWE-treated seedlings could tolerate salinity up to 15 dS m?1 and also increase the survival rate by 69%. The growth parameters like height, specific leaf area, root length and volume, root and shoot dry weight were considerably enhanced by SWE (1%) from 7.5 to 30 dS m?1. Moreover, gas exchanges and chlorophyll pigments were markedly increased using SWE (0.5%) under salt lower 15 dS m?1 than control. Also, both SWE and salt stress significantly enhanced antioxidant enzymes over control, but SWE more increased the parameters. SWEs agent at different dosages significantly decreased electrolyte leakage at all salinity levels (except in 7.5 and 15 dS m?1) compared to control. SWEs (1%) resulted in increasing K+ uptake but decreasing Na+ uptake and markedly enhancing K+/Na+ ratio in stressed-milkweed versus free-salt stress. Totally, this research illustrates the potential of SWEs (at lower dosages) for elevating milkweed tolerance to moderate salinity stress and highlights the possibility of applying it as Bio-stimulant fertilizer.

  相似文献   

9.
This study reports the effect of salinity and inoculation on growth, ion uptake and nitrogen fixation byVigna radiata. A soil ECe level of 7.5 dS m−1 was quite detrimental causing about 60% decline in dry matter and grain yield of mungbean plants whereas a soil ECe level of 10.0 dS m−1 was almost toxic. In contrast most of the studied strains of Rhizobium were salt tolerant. Nevertheless, nodulation, nitrogen fixation and total nitrogen concentration in the plant was drastically affected at high salt concentration. A noticeable decline in acetylene reduction activity occurred when salinity level increased to 7.5 dS m−1.  相似文献   

10.
Wild brown mustard (Brassica juncea) was shown in greenhouse water cultures to determine the effects of selenium (Se), salinity (salt), and boron (B) in the root media on total Se concentrations in plant tissues. The experimental design was a three-way incomplete factorial with treatments consisting of four Se concentrations (0, 2, 6, and 15 mg Se L–1 as Na2SeO4), four B concentrations (0.1, 2, 6, and 15 mg B L–1 as boric acid) and four salt treatments (0.5, 3, 10, and 15 dS m–1 as NaCl and CaCl in approximately 5:1 ratio by weight). After 40 d of growing in the respective water culture treatment, plants were harvested, separated into shoots and roots and analyzed for total tissue Se and B, and shoot sulfate (SO4) concentrations.The treatments significantly influenced yield and uptake of Se, B, and SO4 by wild mustard. Shoot and root dry weight yields were reduced by 30% and 21%, respectively. Selenium and SO4 tissue concentrations were positively related to solution Se, while the Se model was independent of solution B and salinity. Similarly, B concentrations were positively related to solution B, while the B model was independent of solution Se and salinity. Therefore mustard is reasonably salt tolerant and accumulates Se and B when grown in waters laden with Se and B.  相似文献   

11.
Above-canopy sprinkler irrigation with saline water favours the absorption of salts by wetted leaves and this can cause a yield reduction additional to that which occurs in salt-affected soils. Outdoor pot experiments with both sprinkler and drip irrigation systems were conducted to determine foliar ion accumulation and performance of maize and barley plants exposed to four treatments: nonsaline control (C), salt applied only to the soil (S), salt applied only to the foliage (F) and salt applied to both the soil and to the foliage (F+S). The EC of the saline solution employed for maize in 1993 was 4.2 dS m–1 (30 mM NaCl and 2.8 mM CaCl2) and for barley in 1994, 9.6 dS m–1 (47 mM NaCl and 23.5 mM CaCl2). The soil surface of all pots was covered so that in the F treatment the soil was not salinized by the saline sprinkling and drip irrigation supplied nutrients in either fresh (treatments C and F) or saline water (treatments S and F+S).Saline sprinkling increased leaf sap Na+ concentrations much more than did soil salinity, especially in maize, even though the saline sprinkling was given only two or three times per week for 30 min, whereas the roots of plants grown in saline soil were continuously exposed to salinity. By contrast, leaf sap Cl concentrations were increased similarly by saline sprinkling and soil salinity in maize, and more by saline sprinkling than saline soil in barley. It is concluded that barley leaves, and to a greater extent maize leaves, lack the ability to selectively exclude Na+ when sprinkler irrigated with saline water. Moreover, maize leaves selectively absorbed Na+ over Cl whereas barley leaves showed no selectivity. When foliar and root absorption processes were operating together (F+S treatment) maize and barley leaves accumulated 11–14% less Na+ and Cl than the sum of individual absorption processes (treatment F plus treatment S) indicating a slight interaction between the absorption processes. Vegetative biomass at maturity and cumulative plant water use were significantly reduced by saline sprinkling. In maize, reductions in biomass and plant water use relative to the control were of similar magnitude for plants exposed only to saline sprinkling, or only to soil salinity; whereas in barley, saline sprinkling was more detrimental than was soil salinity. We suggest that crops that are salt tolerant because they possess root systems which efficiently restrict Na+ and Cl transport to the shoot, may not exhibit the same tolerance in sprinkler systems which wet the foliage with saline water. ei]T J Flowers  相似文献   

12.
The effect of saline stress on physiological and morphological parameters in Callistemon citrinus plants was studied to evaluate their adaptability to irrigation with saline water. C. citrinus plants, grown under greenhouse conditions, were subjected to two irrigation treatments lasting 56 weeks: control (0.8 dS·m?1) and saline (4 dS·m?1). The use of saline water in C. citrinus plants decreased aerial growth, increased the root/shoot ratio and improved the root system (increased root diameter and root density), but flowering and leaf colour were not affected. Salinity caused a decrease in stomatal conductance and evapotranspiration, which may prevent toxic levels being reached in the shoot. Net photosynthesis was reduced in plants subjected to salinity, although this response was evident much later than the decrease in stomatal conductance. Stem water potential was a good indicator of salt stress in C. citrinus. The relative salt tolerance of Callistemon was related to storage of higher levels of Na+ and Cl? in the roots compared with the leaves, especially in the case of Na+, which could have helped to maintain the quality of plants. The results show that saline water (around 4 dS·m?1) could be used for growing C. citrinus commercially. However, the cumulative effect of irrigating with saline water for 11 months was a decrease in photosynthesis and intrinsic water use efficiency, meaning that the interaction of the salinity level and the time of exposure to the salt stress should be considered important in this species.  相似文献   

13.
The influence of pre-sowing seed treatment with polyamines (2.5 mM putrescine, 5.0 mM spermidine and 2.5 mM spermine) on growth, photosynthetic capacity, and ion accumulation in two spring wheat (Triticum aestivum L.) cultivars MH-97 (intolerant) and Inqlab-91 (tolerant) was examined. The primed seeds of each treatment and non-primed seeds were sown in a field containing 15 dS m−1 NaCl. Although all three polyamines were effective in improving shoot growth and grain yield in both cultivars under saline conditions, the effect of spermine was very pronounced particularly in improving grain yield. Different priming agents did not affect the net CO2 assimilation rate and transpiration rate of either cultivar. However, pre-treatment with spermidine increased stomatal conductance (gs) in the tolerant cultivar, whereas with spermine stomatal conductance decreased in the intolerant cultivar under salt stress. Priming agents had different effects on the accumulation of different ions in wheat plant tissues. When spermidine and distilled water were used as priming agents, they were effective in reducing shoot [Na+] in the tolerant and intolerant cultivars, respectively under saline conditions. Although all priming agents caused an increase in shoot [K+], distilled water was more effective in improving shoot [K+] in both cultivars under salt stress. Pre-treatment with spermidine was very effective in reducing shoot [Cl] under saline conditions particularly in the tolerant cultivar. However, the pattern of accumulation of different ions in roots due to different seed priming treatments was not consistent in either cultivar except that root Na+ decreased due to priming with spermine and spermidine in the intolerant and tolerant cultivars under saline conditions. In conclusion, although all three priming agents, spermine, spermidine and putrescine, were effective in alleviating the adverse effect of salt stress on wheat plants, their effects on altering the concentration of different ions and growth were different in the two cultivars differing in salt tolerance.  相似文献   

14.
Influence of inoculation with efficient rhizobia or nitrate fertilization in alleviating salinity (NaCl, CaCl2 and Na2SO4) stress was investigated in sand culture experiments. Shoot dry mass declined beyond salinity level corresponding to electrical conductivity (EC) 5.6 dS m?1 in control or in inoculated plants and after EC 7.4 dS m?1 in nitrate fed ones. Root growth was more sensitive and decreased at EC 3.3 dS m?1. Nitrate reductase activity in leaves reduced at EC 3.3 dS m?1 but in inoculated and nitrate fed plants it reduced at EC 5.6 dS m?1. Na+ accumulation increased at EC 5.6 and 7.4 dS m?1 in roots and, shoots, respectively. In inoculated and nitrate fed plants Na+ content in roots increased at EC 7.4 dS m?1. Content of Ca2+ increased slightly only in shoots and content of K+ was unaffected. Besides inoculation, application of small doses of nitrogen should prove beneficial for legume cultivation in saline soils.  相似文献   

15.
The effects of vesicular-arbuscular mycorrhizal (VAM) colonisation on phosphorus (P) uptake and growth of clover (Trifolium subterraneum L.) in response to soil compaction were studied in three pot experiments. P uptake and growth of the plants decreased as the bulk density of the soil increased from 1.0 to 1.6 Mg m-3. The strongest effects of soil compaction on P uptake and plant growth were observed at the highest P application (60 mg kg-1 soil). The main observation of this study was that at low P application (15 mg kg-1 soil), P uptake and shoot dry weight of the plants colonised by Glomus intraradices were greater than those of non-mycorrhizal plants at similar levels of compaction of the soil. However, the mycorrhizal growth response decreased proportionately as soil compaction was increased. Decreased total P uptake and shoot dry weight of mycorrhizal clover in compacted soil were attributed to the reduction in the root length. Soil compaction had no significant effect on the percentage of root length colonised. However, total root length colonised was lower (6.6 m pot-1) in highly compacted soil than in slightly compacted soil (27.8 m pot-1). The oxygen content of the soil atmosphere measured shortly before the plants were harvested varied from 0.18 m3m-3 in slightly compacted soil (1.0 Mg m-3) to 0.10 m3m-3 in highly compacted soil (1.6 Mg m-3).  相似文献   

16.
Summary Vesicular-arbuscular mycorrhizal fungi (VAM) are known to increase plant growth in saline soils. Previous studies, however, have not distinguished whether this growth response is due to enhanced P uptake or a direct mechanism of increased plant salt tolerance by VAM. In a glasshouse experiment onions (Allium cepa L.) were grown in sterilized, low-P sandy loam soil amended with 0, 0.8, 1.6 mmol P kg–1 soil with and without mycorrhizal inoculum. Pots were irrigated with saline waters having conductivities of 1.0, 2.8, 4.3, and 5.9 dS m–1. Onion colonized withGlomus deserticola (Trappe, Bloss, and Menge) increased growth from 394% to 100% over non-inoculated control plants when soil P was low ( 0.2 mmol kg–1 NaHCO3-extractable P) at soil saturation extract salinities from 1.1 dS m–1 to 8.8 dS m–1. When 0.8 and 1.6 mM P was added no dry weight differences due to VAM were observed, however, K and P concentrations were higher in VAM plants in saline treatments.Glomus fasciculatum (Gerdeman and Trappe) andGlomus mosseae (Nicol. and Gerd.) isolates increased growth of VAM tomato 44% to 193% in non-sterilized, saline soil (10 dS m–1 saturation extract) despite having little effect on growth in less saline conditions when soil P was low. Higher tomato water potentials, along with improved K nutrition by VAM in onion, indicate mechanisms other than increased P nutrition may be important for VAM plants growing under saline stress. These effects appear to be secondary to the effects of VAM on P uptake.  相似文献   

17.
High levels of naturally occurring selenium (Se) are often found in conjunction with different forms of salinity in central California. Plants considered for use in phytoremediation of high Se levels must therefore be salt tolerant. Selenium accumulation was evaluated for the following species under increasing salt (NaCl and CaCl) conditions:Brassica napus L. (canola),Hibiscus cannibinus L. (kenaf),Festuca arundinacea L. (tall fescue), andLotus tenuis L. (birdsfoot trefoil). The experimental design was a complete randomized block with four salt treatments of <1, 5, 10, and 20 dS m-1, four plant species, three blocks, and six replicates per treatment. Ninety days after growing in the respective salt treated soil with a Se concentration of 2 mg Se kg-1 soil, added as Na2SeO4, all plant species were completely harvested. Among the species tested, shoot and root dry matter yield of kenaf was most significantly (p<0.001) affected by the highest salt treatment and tall fescue and canola were the least affected species. Generally there was a decrease in tissue accumulation of Se with increasing salt levels, except that low levels of salinity stimulated Se accumulation in canola. Canola leaf and root tissue accumulated the highest concentrations of Se (315 and 80 mg Se kg-1 DM) and tall fescue the least (35 and 7 mg Se kg-1 DM). Total soil Se concentrations all harvest were significantly (p<0.05) lower for all species at all salt treatments. Removal of Se from soil was greatest by canola followed by birdsfoot trefoil, kenaf and tall fescue. Among the four species, canola was the best candidate for removing Se under the tested salinity conditions. Kenaf may be effective because of its large biomass production, while tall fescue and birdsfoot trefoil may be effective because they can be repeatedly clipped as perennial crops.  相似文献   

18.
Soil microorganisms are capable of producing auxins in the presence of the physiological precursor, L-tryptophan (L-TRP). This study was designed to assess the influence of L-TRP on radish (Raphanus sativus) yield when applied to soil. The amount of L-TRP added to soil to give optimum radish growth in glasshouse studies was 3.0 mg kg-1 soil which enhanced the root yield by 1.31-fold over the control. The root/shoot ratio was increased by 1.10-fold upon this amendment. One L-TRP application was sufficient to promote growth. The best time to apply L-TRP was at the onset of seedling emergence. The application of L-TRP promoted radish yield comparable to those plants treated with indole-3-acetic acid, indole-3-acetamide and indole-3-lactic acid. Foliar application of L-TRP had no effect on the root and shoot dry weight. A field study was conducted in which L-TRP applications at a rate of 20.4 and 204 mg m-2 significantly enhanced the radish yield in fertilized plots receiving fertilization. The shoot dry weight was increased by 1.29-fold and the root dry weight by 1.15-fold over the control in response to 20.4 mg L-TRP m-2. These findings indicate that L-TRP, applied at the appropriate times and concentrations, can increase radish yield. The effect of L-TRP on radish growth could be attributed to i) substrate-dependent auxin production in soil by the indigenous microflora, ii) uptake directly by plant roots followed by metabolism within their tissues, and/or iii) a change in the balance of rhizosphere microflora affecting plant growth.  相似文献   

19.
Rapeseed (Brassica napus) is a crop relatively tolerant to salt and sodium. Our objective was to study the interactions between Na, K and Ca and their relationship with its yield under the isolated effects of soil salinity or sodicity.Two experiments were carried out using pots filled with the Ah horizon of a Typic Natraquoll. There were three salinity levels (2.3 dS m-1; 6.0 dS m-1 and 10.0 dS m-1) and three sodicity levels, expressed as sodium adsorption ratios (SAR: 12; 27 and 44). The soil was kept near field capacity.As soil salinity increased, the K/Na and Ca/Na ratios in the tissues decreased markedly but yields and aerial biomass production were not affected. As soil SAR value increased, the K/Na and Ca/Na ratios in plants and K-Na and Ca-Na selectivities decreased. Plants could not maintain their Ca concentration in soil with a high SAR. The grain yield and biomass production diminished significantly in the highest SAR treatment. Our results are consistent with those showing detrimental osmotic effects of salts in Brassica napus. Conversely, under sodicity, the K/Na and Ca/Na ratios in plant tissues decreased considerably, in accordance with grain and biomass production. These results show that the effects of sodicity are different from those of salinity.  相似文献   

20.
Distichlis spicata and Suaeda aegyptiaca are two potential halophytic plant species for bioremediation of salt degraded soils, and development of saline agriculture. The physiological responses of the species to different levels of salinity (EC 0, 12, 24, 36, and 48 dS/m) in a controlled environment experiment were studied. Both species showed a high level of tolerance to elevated concentrations of salt in the irrigation water. The shoot fresh and dry weights in S. aegyptiaca increased till 36 dS/m and were sustained under 48 dS/m while in D. spicata, both parameters decreased as salinity increased. Glycine betaine accumulation did not change in D. spicata with increasing salinity, whereas proline content revealed a marked increase of 7.13 fold in 48 dS/m salinity compared to the control, which showed its critical osmoprotection role in the plant. In S. aegyptiaca, both osmolytes content significantly increased at high salinity levels (36 and 48 dS/m) up to 3.22 and 2.0 folds, respectively. Overall, S. aegyptiaca had a better potential of Na+ phytoremediation, and tolerated higher salinity compared to D. spicata. In contrast, the vigorous root and rhizome growth in D. spicata made it a proper solution for protecting the soils against further erosion under saline conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号