首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Structural elements of the rat μ-opioid receptor important in ligand receptor binding and selectivity were examined using a site-directed mutagenesis approach. Five single amino acid mutations were made, three that altered conserved residues in the μ, δ, and κ receptors (Asn150 to Ala, His297 to Ala, and Tyr326 to Phe) and two designed to test for μ/δ selectivity (Ile198 to Val and Val202 to Ile). Mutation of His297 in transmembrane domain 6 (TM6) resulted in no detectable binding with [3H]DAMGO (3H-labeled d -Ala2, N -Me-Phe4,Gly-ol5-enkephalin), [3H]bremazocine, or [3H]ethylketocyclazocine. Mutation of Asn150 in TM3 produces a three- to 20-fold increase in affinity for the opioid agonists morphine, DAMGO, fentanyl, β-endorphin1–31, JOM-13, deltorphin II, dynorphin1–13, and U50,488, with no change in the binding of antagonists such as naloxone, naltrexone, naltrindole, and nor-binaltorphamine. In contrast, the Tyr326 mutation in TM7 resulted in a decreased affinity for a wide spectrum of μ, δ, and κ agonists and antagonists. Altering Val202 to Ile in TM4 produced no change on ligand affinity, but Ile198 to Val resulted in a four- to fivefold decreased affinity for the μ agonists morphine and DAMGO, with no change in the binding affinities of κ and δ ligands.  相似文献   

2.
Abstract: To examine whether the mitogen-activated protein kinase (MAPK) cascade and phospholipase A2 (PLA2) are involved in the signal transduction mechanism of the opioid receptor, the δ-, μ-, and κ-opioid receptors were stably expressed from cDNA in Chinese hamster ovary cells. Activation of the δ-, μ-, and κ-receptors by agonists induced a rapid and transient increase in MAPK activity accompanied by reduced electrophoretic mobility of the 42-kDa isoform of MAPK (p42), probably owing to phosphorylation. The opioid receptor-mediated increase in MAPK activity was suppressed not only by pretreatment with genistein, a tyrosine protein kinase inhibitor, but also by prolonged exposure to phorbol 12-myristate 13-acetate and pretreatment with GF 109203X, a selective protein kinase C (PKC) inhibitor, suggesting the involvement of PKC as well as tyrosine protein kinase. Furthermore, stimulation of the δ-, μ-, and κ-receptors with opioid agonists in the presence of A23187, a calcium ionophore, resulted in an increase in arachidonate release, suggesting that PLA2 is activated by the opioid receptors when the intracellular Ca2+ concentration is elevated. Both MAPK activation and increase in arachidonate release mediated by the opioid receptors were abolished by pretreatment with pertussis toxin, suggesting that these responses are mediated by Gi or Go types of GTP-binding regulatory proteins.  相似文献   

3.
Abstract: The astrocytoma cell line rat C6 glioma has been used as a model system to study the mechanism of various opioid actions. Nevertheless, the type of opioid receptor(s) involved has not been established. Here we demonstrate the presence of high-affinity U69,593, endomorphin-1, morphine, and β-endorphin binding in desipramine (DMI)-treated C6 cell membranes by performing homologous and heterologous binding assays with [3H]U69,593, [3H]morphine, or 125I-β-endorphin. Naive C6 cell membranes displayed U69,593 but neither endomorphin-1, morphine, nor β-endorphin binding. Cross-linking of 125I-β-endorphin to C6 membranes gave labeled bands characteristic of opioid receptors. Moreover, RT-PCR analysis of opioid receptor expression in control and DMI-treated C6 cells indicate that both κ- and μ-opioid receptors are expressed. There does not appear to be a significant difference in the level of μ nor κ receptor expression in naive versus C6 cells treated with DMI over a 20-h period. Collectively, the data indicate that κ- and μ-opioid receptors are present in C6 glioma cells.  相似文献   

4.
Abstract: To investigate the role of Asp114 in the cloned rat μ-opioid receptor for ligand binding, the charged amino acid was mutated to an asparagine to generate the mutant μ receptor D114N. The wild-type μ receptor and the D114N mutant were then stably expressed in human embryonic kidney 293 cells, and the binding affinities of a series of opioids were investigated. The μ-selective agonists [ d -Ala2,MePhe4,Gly-ol5]enkephalin and morphine and the endogenous peptides Met-enkephalin and β-endorphin exhibited greatly reduced affinities for the D114N mutant compared with the wild-type μ receptor, as did the potent synthetic agonist etorphine. In contrast to the full agonists, the partial agonists buprenorphine and nalorphine and the antagonists diprenorphine and naloxone bound with similar affinities to the wild-type and D114N mutant μ receptors. The reduced affinities of the full agonists for the D114N mutant did not involve an uncoupling of the receptor from G proteins because methadone and etorphine stimulated the D114N μ receptors to inhibit adenylyl cyclase. Although the Asp114 to Asn114 mutation reduced full-agonist binding, mutation of His297 to Asn297 in the μ receptor did not but, in contrast, did reduce binding affinity of the partial agonist buprenorphine and the antagonist diprenorphine. These results indicate that some partial agonists and antagonists may have different determinants for binding to the μ receptor than do the prototypical full agonists.  相似文献   

5.
6.
Abstract : Agonist-induced down-regulation of opioid receptors appears to require the phosphorylation of the receptor protein. However, the identities of the specific protein kinases that perform this task remain uncertain. Protein kinase C (PKC) has been shown to catalyze the phosphorylation of several G protein-coupled receptors and potentiate their desensitization toward agonists. However, it is unknown whether opioid receptor agonists induce PKC activation under physiological conditions. Using cultured SH-SY5Y neuroblastoma cells, which naturally express μ- and δ-opioid receptors, we investigated whether μ-opioid receptor agonists can activate PKC by measuring enzyme translocation to the membrane fraction. PKC translocation and opioid receptor densities were simultaneously measured by 3H-phorbol ester and [3H]diprenorphine binding, respectively, to correlate alterations in PKC localization with changes in receptor binding sites. We observed that μ-opioid agonists have a dual effect on membrane PKC density depending on the period of drug exposure. Exposure for 2-6 h to [ d -Ala2, N -Me-Phe4, Gly-ol]enkephalin or morphine promotes the translocation of PKC from the cytosol to the plasma membrane. Longer periods of opioid exposure (>12 h) produce a decrease in membrane-bound PKC density to a level well below basal. A significant decrease in [3H]diprenorphine binding sites is first observed at 2 h and continues to decline through the last time point measured (48 h). The opioid receptor antagonist naloxone attenuated both opioid-mediated PKC translocation and receptor down-regulation. These results demonstrate that opioids are capable of activating PKC, as evidenced by enhanced translocation of the enzyme to the cell membrane, and this finding suggests that PKC may have a physiological role in opioid receptor plasticity.  相似文献   

7.
Abstract: The effects of morphine and selective ligands for μ-, κ-, and δ-opioid receptors on the extracellular histamine (HA) concentration in the striatum of freely moving rats were examined by in vivo microdialysis. On the day after implantation of the dialysis probe, the HA output per 30-min period was measured using HPLC-fluorometry. Morphine (3.8 mg/kg, s.c.) significantly increased the HA output by ∼200% 1–3 h after treatment. This effect was completely antagonized by naltrexone (1.6 mg/kg, s.c.). The HA output decreased to a level below 10% of the basal value by 4 h after treatment with ( S )-α-fluoromethylhistidine (77 mg/kg, s.c.). In such animals, morphine (3.8 mg/kg, s.c.) had no influence on the HA output. [ d -Ala2,MePhe4,Gly(ol)5]Enkephalin (DAGO; 0.2 µg, i.c.v.), a selective μ-agonist, significantly increased the HA output by ∼150% 0.5–1.5 h after treatment, and this effect was also completely blocked by naltrexone. A selective κ-agonist, U-50,488 (3.8 and 7.6 mg/kg, s.c.), and a selective δ-agonist, [ d -Pen2, d -Pen5]enkephalin (0.5 and 2 µg, i.c.v.), had no effect on the HA output. These findings suggest that the stimulation of μ-opioid receptors by morphine and DAGO increases the extracellular HA concentration by accelerating HA release from nerve endings.  相似文献   

8.
Abstract: Opioids have been found to modulate the immune system by regulating the function of immunocompetent cells. Several studies suggest that the interaction between immune and opioid systems is not unidirectional, but rather reciprocal, in nature. In the CNS, one cellular target of immune system activation is the astrocytes. These glial cells have been shown to produce the opioid peptide, proenkephalin, to express the μ-, δ-, and κ-opioid receptors, and to respond to the immune factor interleukin-1β (IL1β) with an increased proenkephalin synthesis. To characterize more completely the astrocytic opioid response to immune factor stimulation, we examined the effect of IL1β (1 ng/ml) on the μ-receptor mRNA expression in primary astrocyte-enriched cultures derived from rat (postnatal day 1–2) cortex, striatum, cerebellum, hippocampus, and hypothalamus. A 24-h treatment with IL1β produced a 70–80% increase in the μ-receptor mRNA expression in the striatal, cerebellar, and hippocampal cultures but had no effect on this expression in the cortical and hypothalamic cultures. This observation represents one of the few demonstrated increases in levels of the μ-receptor mRNA in vitro or in vivo, since the cloning of the receptor. The enhanced μ-receptor mRNA expression, together with the previous observation that IL1β stimulates proenkephalin synthesis in astrocytes, supports the IL1β-mediated regulation of an astroglial opioid peptide and receptor in vitro, a phenomenon that may be significant in the modulation of the gliotic response to neuronal damage. Therefore, the astroglial opioid "system" may be important in the IL1β-initiated, coordinated response to CNS infection, trauma, or injury.  相似文献   

9.
Abstract: A human neuroblastoma cell line, SK-N-BE, was shown to express a substantial amount of opioid receptors (200–300 fmol/mg of protein). A ligand binding profile of these receptors revealed that they could belong to two distinct subtypes of δ-opioid receptors. Results from sucrose-gradient sedimentation experiments were compared with similar data obtained with the μ-opioid receptor of the rabbit cerebellum and the δ-opioid receptor of the hybrid NG108–15 cell line and have shown that the opioid receptor of the SK-N-BE cell line behaved hydrodynamically as an intermediate between μ-and δ-opioid receptors. Taken together, pharmacological and hydrodynamic studies suggest that the opioid receptors present in the SK-N-BE cell membranes could belong to two δ-opioid receptor subtypes interacting allosterically. Functional experiments suggest that at least one of these subtypes of δ-opioid receptor is negatively coupled to the adenylate cyclase via a Gi protein and that the opiate receptors of the SK-N-BE neuroblastoma cell line undergo a rapid down-regulation when preincubated in the presence of the high-affinity opioid agonist, etorphine.  相似文献   

10.
Abstract: The μ-opioid receptor has recently been shown to stimulate phosphoinositide-specific phospholipase C via the pertussis toxin-sensitive G16 protein. Given the promiscuous nature of G16 and the high degree of resemblance of signaling properties of the three opioid receptors, both δ- and κ-opioid receptors are likely to activate G16. Interactions of δ- and κ-opioid receptors with G16 were examined by coexpressing the opioid receptors and Gα16 in COS-7 cells. The δ-selective agonist [ d -Pen2, d -Pen5]enkephalin potently stimulated the formation of inositol phosphates in cells coexpressing the δ-opioid receptor and Gα16. The δ-opioid receptor-mediated stimulation of phospholipase C was absolutely dependent on the coexpression of simeter for quality control of blood units and irradiators. 13.   Transfusion 1993 ; 33 : 898 – 901 . [PubMed link] 14.   Butson MJ , Yu PK , Cheung T , et al . Dosimetry of blood irradiation with radiochromic film. Transfus Med 1999 ; 9 : 205 – 8 . [PubMed link] 15.   Nath R , Biggs PJ , Ling CC , et al . AAPM code of practice for radiotherapy accelerators: Report of AAPM Radiation Therapy Task Group No. 45. Med Phys  相似文献   

11.
Abstract: Radioligand binding assays and functional experiments revealed that the SK-N-BE neuroblastoma cell line expresses a similar ratio of μ- and δ-opioid receptors, both negatively coupled to adenylyl cyclase through pertussis toxin-sensitive G proteins. Our findings also indicate that some functional interaction occurred between the two opioid subtypes; in fact, long-term exposure to [ d -Ala2- N -methyl-Phe4-Gly-ol5]enkephalin (DAMGO), a μ-selective agonist, sensitized the functional response of the δ-selective agonist but not vice versa. It is interesting that in acute interaction experiments, we observed a shift to the right of the concentration-effect curve of either DAMGO or [ d -Pen2,5]enkephalin (DPDPE), a δ-selective agonist, as a result of DPDPE or DAMGO administration, respectively. In addition, low doses of naloxone, an antagonist selective for μ receptors, increased the inhibitory effect of [ d -Ala2, d -Met5]enkephalinamide (DAME), a mixed μ/δ agonist, on adenylyl cyclase activity. Taken overall, these data support the hypothesis of the existence of a cross talk between μ and δ receptors in the SK-N-BE cell line.  相似文献   

12.
Abstract: The synthesis, purification, chemical characterization, and binding properties of two 125I-labeled analogues of dermorphin and deltorphin-I are described. Native deltorphin-I and [Lys7]dermorphin sequences were elongated by an aminopentyl chain on their C-terminal amide function and alkylated with the 125I-labeled monoiodinated derivative of Bolton-Hunter reagent (BH*). The resulting radiolabeled peptides, ε-BH* [Lys7]dermorphin 5-aminopentylamide and ω-BH* deltorphin-I 5-aminopentylamide, have kept most of the original properties of the parent peptides. They bind with high selectivity and specificity to the μ- (dermorphin analogue) or δ- (deltorphin-I analogue) opioid receptors from rat brain or from cells transfected with cDNAs encoding the μ and δ receptors. The autoradiographic distribution of specific binding sites for the 125I-labeled dermorphin and deltorphin-I analogues in rat brain is in complete agreement with previously reported localizations of μ- and δ-opioid receptors. The two radiolabeled peptides are the best ligands of μ- and δ-opioid receptors currently available in terms of sensitivity, specificity, and selectivity.  相似文献   

13.
Abstract: Although it is well-established that G protein-coupled receptor signaling systems can network with those of tyrosine kinase receptors by several mechanisms, the point(s) of convergence of the two pathways remains largely undelineated, particularly for opioids. Here we demonstrate that opioid agonists modulate the activity of the extracellular signal-regulated protein kinase (ERK) in African green monkey kidney COS-7 cells transiently cotransfected with μ-, δ-, or κ-opioid receptors and ERK1- or ERK2-containing plasmids. Recombinant proteins in transfected cells were characterized by binding assay or immunoblotting. On treatment with corresponding μ- ([ d -Ala2,Me-Phe4,Gly-ol5]enkephalin)-, δ- ([ d -Pen2, d -Pen5]enkephalin)-, or κ- (U69593)-selective opioid agonists, a dose-dependent, rapid stimulation of ERK1 and ERK2 activity was observed. This activation was inhibited by specific antagonists, suggesting the involvement of opioid receptors. Pretreatment of cells with pertussis toxin abolished ERK1 and ERK2 activation by agonists. Cotransfection of cells with dominant negative mutant N17-Ras or with a βγ scavenger, CD8-β-adrenergic receptor kinase-C, suppressed opioid stimulation of ERK1 and ERK2. When epidermal growth factor was used to activate ERK1, chronic (>2-h) opioid agonist treatment resulted in attenuation of the stimulation by the growth factor. This inhibition was blocked by the corresponding antagonists and CD8-β-adrenergic receptor kinase-C cotransfection. These results suggest a mechanism involving Ras and βγ subunits of Gi/o proteins in opioid agonist activation of ERK1 and ERK2, as well as opioid modulation of epidermal growth factor-induced ERK activity.  相似文献   

14.
Abstract: A μ-opioid receptor protein (μ-ORP) purified to homogeneity from bovine striatal membranes has been functionally reconstituted in liposomes with highly purified heterotrimeric guanine nucleotide regulatory proteins (G proteins). A mixture of bovine brain G proteins, predominantly GoA, was used for most of the experiments, but some experiments were performed with individual pure G proteins, GoA, GoB, Gi1, and Gi2. Low K m GTPase was stimulated up to 150% by μ-opioid receptor agonists when both μ-ORP and a G protein (either the brain G protein mixture or a single heterotrimeric G protein) were present in the liposomes. Stimulation by a selective μ-agonist was concentration dependent and was reversed by the antagonist (−)-naloxone, but not by its inactive enantiomer, (+)-naloxone. The μ selectivity of μ-ORP was demonstrated by the inability of δ and κ agonists to stimulate GTPase in this system. High-affinity μ-agonist binding was also restored by reconstitution with the brain G protein mixture and with each of the four pure Gi and Go proteins studied. The binding of μ agonists is sensitive to inhibition by GTPγS and by sodium.  相似文献   

15.
Abstract: The cellular mechanisms underlying opioid action remain to be fully determined, although there is now growing indirect evidence that some opioid receptors may be coupled to phospholipase C. Using SH-SY5Y human neuroblastoma cells (expressing both μ-and δ-opioid receptors), we demonstrated that fentanyl, a μ-preferring opioid, caused a dose-dependent (EC50= 16 n M ) monophasic increase in inositol (1,4,5)trisphosphate mass formation that peaked at 15 s and returned to basal within 1–2 min. This response was of similar magnitude (25.4 ± 0.8 pmol/mg of protein for 0.1 μ M fentanyl) to that found in the plateau phase (5 min) following stimulation with 1 m M carbachol (18.3 ± 1.4 pmol/mg of protein), and was naloxone-, but not naltrindole-(a δ antagonist), reversible. Further studies using [ d -Ala2, MePhe4, Gly(ol)5]enkephalin and [ d -Pen2,5]enkephalin confirmed that the response was specific for the μ receptor. Incubation with Ni2+ (2.5 m M ) or in Ca2+-free buffer abolished the response, as did pretreatment (100 ng/ml for 24 h) with pertussis toxin (control plus 0.1 μ M fentanyl, 26.9 ± 1.5 pmol/mg of protein; pertussis-treated plus 0.1 μ M fentanyl, 5.1 ± 1.3 pmol/mg of protein). In summary, we have demonstrated a μ-opioid receptor-mediated activation of phospholipase C, via a pertussis toxin-sensitive G protein, that is Ca2+-dependent. This stimulatory effect of opioids on phospholipase C, and the potential inositol (1,4,5)trisphosphate-mediated rises in intracellular Ca2+, could play a part in the cellular mechanisms of opioid action.  相似文献   

16.
A binding site model for the opioid family of G-protein coupled receptors (GPCRs) is proposed based on the message-address concept of ligand recognition. Using ligand docking studies of the universal opioid antagonist, naltrexone, the structural basis for ‘message’ recognition is explored across all three receptor types, μ, δ, and κ. The binding mode proposed and basis for selectivity are also rationalized using the naltrexone-derived ligands, naltrindole (NTI) and norbinaltorphimine (nor BNI). These ligands are docked to the receptor according to the common naltrexone core or message. The resulting orientation places key ‘address’ elements in close proximity to amino acid residues critical to selectivity among receptor types. Selectivity is explained by sequence differences in the μ, δ, and κ receptors at these recognition points. Support for the model is derived from site directed mutagenesis studies and ligand binding data for the opioid receptors and other related GPCRs. Special issue dedicated to Dr. Eric J. Simon  相似文献   

17.
Abstract: We report the isolation and characterization of a rat cDNA clone encoding a μ-opioid receptor. This receptor, a 398 amino acid protein, shares 59% overall identity with the mouse Δ-and K -opioid receptors. Transient expression of the receptor in COS cells revealed high-affinity binding of μ-selective opioid antagonists and agonists, with a K D for naloxone ∼1.5 n M , and for [D-Ala2, N -Me-Phe4, Gly5-ol]-enkephalin (DAMGO) and morphine at the high-affinity site of 2–4 n M , confirming a μ-opioid pharmacological profile. Northern blotting and in situ hybridization histoohemistry revealed that the μ-opioid receptor mRNA was expressed in many brain regions, including cerebral cortex, caudate putamen, nucleus accumbens, olfactory tubercle, septal nuclei, thalamus, hippocampus, and medial habenular nucleus, in keeping with the known distribution of the μ-opioid receptor.  相似文献   

18.
Three-dimensional structures of the transmembrane, seven alpha-helical domains and extracellular loops of delta, mu, and kappa opioid receptors, were calculated using the distance geometry algorithm, with hydrogen bonding constraints based on the previously developed general model of the transmembrane alpha-bundle for rhodopsin-like G-protein coupled receptors (Biophys. J. 1997. 70:1963). Each calculated opioid receptor structure has an extensive network of interhelical hydrogen bonds and a ligand-binding crevice that is partially covered by a beta-hairpin formed by the second extracellular loop. The binding cavities consist of an inner "conserved region" composed of 18 residues that are identical in delta, mu, and kappa opioid receptors, and a peripheral "variable region," composed of 19 residues that are different in delta, mu, and kappa subtypes and are responsible for the subtype specificity of various ligands. Sixteen delta-, mu-, or kappa-selective, conformationally constrained peptide and nonpeptide opioid agonists and antagonists and affinity labels were fit into the binding pockets of the opioid receptors. All ligands considered have a similar spatial arrangement in the receptors, with the tyramine moiety of alkaloids or Tyr1 of opioid peptides interacting with conserved residues in the bottom of the pocket and the tyramine N+ and OH groups forming ionic interactions or H-bonds with a conserved aspartate from helix III and a conserved histidine from helix VI, respectively. The central, conformationally constrained fragments of the opioids (the disulfide-bridged cycles of the peptides and various ring structures in the nonpeptide ligands) are oriented approximately perpendicular to the tyramine and directed toward the extracellular surface. The results obtained are qualitatively consistent with ligand affinities, cross-linking studies, and mutagenesis data.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号