首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ion exchange resins and glass microscope slides were used to investigate factors affecting attachment of nitrifying bacteria to solid surfaces and the effect of attachment on inhibition ofNitrobacter by potassium ethyl xanthate. The ammonium oxidizerNitrosomonas attached preferentially to cation exchange resins while the nitrite oxidizerNitrobacter colonized anion exchange resins more extensively. Colonization was always associated with growth, and the site of substrate (NH4 + or NO2 ) adsorption was the major factor in attachment and colonization. The specific growth rate of cells colonizing either ion exchange resin beads or glass surfaces was greater than that of freely suspended cells, butNitrobacter populations colonizing glass surfaces were more sensitive to the inhibitor potassium ethyl xanthate. The findings indicate that surface growth alone does not protect soil nitrifying bacteria from inhibition by potassium ethyl xanthate and explain different patterns of inhibition for ammonium and nitrite oxidizers in the soil.  相似文献   

2.
Immobilization of enzymes on some solid supports has been used to stabilize enzymes in organic solvents. In this study, we evaluated applications of genetically immobilized Rhizopus oryzae lipase displayed on the cell surface of Saccharomyces cerevisiae in organic solvents and measured the catalytic activity of the displayed enzyme as a fusion protein with α-agglutinin. Compared to the activity of a commercial preparation of this lipase, the activity of the new preparation was 4.4 × 104-fold higher in a hydrolysis reaction using p-nitrophenyl palmitate and 3.8 × 104-fold higher in an esterification reaction with palmitic acid and n-pentanol (0.2% H2O). Increased enzyme activity may occur because the lipase displayed on the yeast cell surface is stabilized by the cell wall. We used a combination of error-prone PCR and cell surface display to increase lipase activity. Of 7,000 colonies in a library of mutated lipases, 13 formed a clear halo on plates containing 0.2% methyl palmitate. In organic solvents, the catalytic activity of 5/13 mutants was three- to sixfold higher than that of the original construct. Thus, yeast cells displaying the lipase can be used in organic solvents, and the lipase activity may be increased by a combination of protein engineering and display techniques. Thus, this immobilized lipase, which is more easily prepared and has higher activity than commercially available free and immobilized lipases, may be a practical alternative for the production of esters derived from fatty acids.  相似文献   

3.
Precipitation of Ca phosphates negatively affects recovery by plants of P fertilizer applied to calcareous soils, but organic matter slows the precipitation of poorly soluble Ca phosphates. To study the effect of high molecular weight organic compounds on the recovery of applied P, a mixture of humic and fulvic acids was applied to calcareous soils with different levels of salinity and Na saturation which were fertilized with 200 and 2000 mg P kg–1 as NH4H2PO4. Recovery was measured as the ratio of increment in Olsen P-to-applied P after 30, 60 and 150 days, and associated P forms were studied using sequential chemical fractionation and 31P NMR spectroscopy. Application of the humic-fulvic acid mixture (HFA) increased the amount of applied P recovered as Olsen P in all the soils except in one soil with the highest Na saturation. In soils with high Ca saturation and high Olsen P, recovery increased from < 15% in the absence of amendment to > 40% at a 5 g HFA kg–1 amendment rate (30 days incubation and 200 mg P kg–1 fertilizer rate). This is ascribed to inhibition of the precipitation of poorly soluble Ca phosphates, consistent with the sequential chemical extraction (reduction of the HCl extractable P) and P concentration in 0.01 M CaCl2 (1:10 soil:solution ratio) extracts. 31P NMR spectra revealed that in non-amended samples, most spectral shifts were due to poorly soluble P compounds (carbonate apatite); on the other hand, at the 5 g HFA kg–1 rate, significant amounts of amorphous Ca phosphate and dicalcium phosphate dihydrate (DCDP) were identified. The increase in the recovery of applied P due to HFA reveals a positive effect of the application of organic matter as soil amendments on the efficiency of P fertilizers and also explains that manures and other organic sources of P were more efficient increasing available P than inorganic P fertilizers in calcareous soils.  相似文献   

4.
A greenhouse study was undertaken to determine the nitrogen and phosphorus fertilization requirements for raising mycorrhizal seedlings in soil in containers. Seedlings of Leucaena leucocephala were grown for 40 days in dibble tubes containing fumigated or nonfumigated soil uninoculated or inoculated with Glomus aggregatum. The soil was fertilized with NH4NO3 solution to obtain 25–200 mg N kg-1 soil, and with a KH2PO4 solution to establish target soil solution P concentrations of 0.015–0.08 mg P l-1. At the end of 40 days, seedlings were transplanted into pots containing 5-kg portions of fumigated soil. Posttransplant vesicular arbuscular mycorrhizal fungal (VAMF) effectiveness, measured as pinnule P content, plant height, shoot dry weight and tissue N and P concentrations, was significantly increased by pretransplant VAMF colonization in both soils. The best posttransplant mycorrhizal colonization and mycorrhizal growth responses were observed if the nonfumigated pretransplant soil was amended with 50 mg N kg-1 soil and 0.04 mg P l-1 or if the fumigated pretransplant soil was amended with 100 mg N kg-1 soil and 0.04 mg P 1-1. There was no relationship between NP ratios of nutrients added to the pretransplant soil medium and shoot NP ratios observed after transplanting. Shoot NP ratio was also not correlated with root colonization level.Contribution from the Hawaii Institute of Tropical Agriculture and Human Resources Journal Series No. 4025  相似文献   

5.
Mineralization of 2,4-dichlorophenoxyacetic acid (2,4-D) by two Alcaligenes eutrophus strains and one Pseudomonas cepacia strain containing the 2,4-D degrading plasmids pJP4 or pRO101 (=pJP4::Tn1721) was tested in 50 g (wet wt) samples of non-sterile soil. Mineralization was measured as 14C-CO2evolved during degradation of uniformly-ring-labelled 14C-2,4-D. When the strains were inoculated to a level of approximately 108 CFU/g soil, between 20 and 45% of the added 2,4-D (0.05 ppm, 10 ppm or 500 ppm) was mineralized within 72 h. Mineralization of 0.05 ppm and 10 ppm, 2,4-D by the two A. eutrophus strains was identical and rapid whereas mineralization by P. cepacia DBO1(pRO101) occurred more slowly. In contrast, mineralization of 500 ppm 2,4-D by the two A. eutrophus strains was very slow whereas mineralization by P. cepacia DBO1 was more rapid. Comparison of 2,4-D mineralization at different levels of inoculation with P. cepacia DBO1(pRO101) (6×104, 6×106 and 1×108 CFU/g soil) revealed that the maximum mineralization rate was reached earlier with the high inoculation levels than with the low level. The kinetics of mineralization were evaluated by nonlinear regression analysis using five different models. The linear or the logarithmic form of a three-half-order model were found to be the most appropriate models for describing 2,4-D mineralization in soil. In the cases in which the logarithmic form of the three-half-order model was the most appropriate model we found, in accordance with the assumptions of the model, a significant growth of the inoculated strains.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - CFU colony forming units - PTYG peptone, tryptone, yeast & glucose - DPM disintegrations per minute  相似文献   

6.
The role of phosphorus (P) status in root-zone CO2 utilisation for organic acid synthesis during Al3+ toxicity was assessed. Root-zone CO2 can be incorporated into organic acids via Phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31). P-deficiency and Al3+ toxicity can induce organic acid synthesis, but it is unknown how P status affects the utilisation of PEPC-derived organic acids during Al3+ toxicity. Two-week-old Solanum lycopersicum seedlings were transferred to hydroponic culture for 3 weeks. The hydroponic culture consisted of a standard Long Ashton nutrient solution containing either 0.1 μM or 1 mM P. Short-term Al3+ toxicity was induced by a 60-min exposure to a pH-buffered solution (pH 4.5) containing 2 mM CaSO4 and 50 μM AlCl3. Al3+ toxicity induced a decline in root respiration, adenylate concentrations and an increase in root-zone CO2 utilisation for both P sufficient and P-deficient plants. However during Al3+ toxicity, P deficiency enhanced the incorporation and metabolism of root-zone CO2 via PEPC. Moreover, P deficiency led to a greater proportion of the PEPC-derived organic acids to be exuded during Al3+ toxicity. These results indicate that P-status can influence the response to Al3+ by inducing a greater utilisation of PEPC-derived organic acids for Al3+ detoxification.  相似文献   

7.
The feeding of propionic acid for production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] by Alcaligenes eutrophus ATCC17697 was optimized using a fed-batch culture system. The concentration of propionic acid was maintained at 3 g l–1 as growth was inhibited by propionic acid in the broth. A pH-stat substrate feeding system was used in which propionic acid was fed automatically to maintain a pH of the culture broth at 7.0. By feeding a substrate solution containing 20% (w/v) propionic acid, 4.9% (w/v) ammonia water [at a molar ratio of carbon to nitrogen (C/N molar ratio) of 10] in cell growth phase, the concentration of propionic acid in the broth was maintained at 3 g l–1 giving a specific growth rate of 0.4 h–1. To promote P(3HB-co-3HV) production, two stage fed-batch culture which consisted of the stage for the cell growth and the stage for the P(3HB-co-3HV) accumulation was carried out. When the substrate solution whose C/N molar ratio was 50 was fed in P(3HB-co-3HV) accumulation phase, the cell concentration and the P(3HB-co-3HV) content in the cells reached 64 g l–1 and 58% (w/w) in 55.5 h, respectively.  相似文献   

8.
The effect of 3 different species of vesicular-arbuscular mycorrhizal fungi on the growth of Stylosanthes guianensis (Aubl.) Sw. cultivated in a sterilized acid and dystrophic soil (Quartzipsament), with 4 levels of lime (0; 0.27; 0.63 and 1.10 meq Ca2+/100 g air-dried soil, as Ca(OH)2) and 2 P levels (0 and 20 mg P/kg soil, as KH2PO4) was evaluated under greenhouse conditions. Plants were harvested 40, 60, and 80 days after planting. Stylosanthes guianensis was highly mycotrophic, especially in soil without P fertilization. Mycotrophism was highest in plants inoculated with Acaulospora scrobiculata in soil receiving no P fertilizer and with 0.63 meq Ca2+/100 g air-dried soil. Shoot growth increment was as high as 5129% at the third harvest. Inoculation with Glomus macrocarpum presented intermediate results, whereas inoculation with Gigaspora margarita had no significant effect on plant growth. Root per cent colonization and shoot dry weight, as well as root percent colonization and shoot to root ratio were significantly correlated. The occurrence of S. guianensis in very acid and dystropic soils, containing toxic levels of Al3+, requires the association with VAM fungi for the plant tolerate such conditions.  相似文献   

9.
The aim of this work was to develop a biosensor for toxic amides using whole cells of Pseudomonas. aeruginosa containing amidase activity, which catalyses the hydrolysis of amides such as acrylamide producing ammonia and the corresponding organic acid. Whole cells immobilized in several types of membrane in the presence of glutaraldehyde and an ammonium ion-selective electrode, were used for biosensor development. This biosensor exhibited a linear response in the range of 0.1–4.0×10?3 M of acrylamide, a detection limit of 4.48×10?5 M acrylamide, a response time of 55 s, a sensitivity of 58.99 mV mM?1 of acrylamide and a maximum t1/2 of 54 days. The selectivity of this biosensor towards other amides was investigated, which revealed that it cross-reacted with acetamide and formamide, but no activity was detected with phenylacetamide, p-nitrophenylacetamide and acetanilide. It was successfully used for quantification of acrylamide in real industrial effluents and recovery experiments were carried out which revealed an average substrate recovery of 93.3%. The biosensor is cheap since whole cells of P. aeruginosa can be used as source of amidase activity.  相似文献   

10.
The solubilization and biodegradation of whole microbial cells by an aerobic thermophilic microbial population was investigated over a 72 h period. Various parameters were followed including total suspended solids reduction, changes in the dissolved organic carbon, protein and carbohydrate concentrations, and carboxylic acid production and utilisation. From the rates of removal of the various fractions a simple model for the biodegradation processes is proposed and verified with respect to acetic acid production and utilization, and total suspended solids removal. The process is initiated by enzymic degradation of the substrate microbe cell walls followed by growth on the released soluble substrates at low dissolved oxygen concentration with concommitant carboxylic acid production. Subsequent utilization of the unbranched, lower molecular weight carboxylic acids allows additional energy supply following exhaustion of the easily utilisable soluble substrate from microbial cell hydrolysis.List of Symbols Y Xp/Xs kg/kg yield process microbes on substrate yeast cells - Y Xp/Ac kg/kg yield process microbes on acetate - Y Ac/Ss kg/kg yield acetate produced by process microbes growing on substrate yeast cells - Y Ss/Xs kg/kg yield soluble substrate from lysis of yeast cells - Y Ss/Xp kg/kg yield soluble substrate from lysis of process microbes - Y P/Xs kg/kg yield particulates from lysis of yeast cells - Y P/Xp kg/kg yield particulates from lysis of process microbes - max (Ss) h–1 maximum specific growth rate constant for growth of process microbes on soluble substrate - max (Ac) h–1 maximum specific growth rate constant for growth of process microbes on acetate - Ks Ss kg/m3 saturation coefficient for growth of process microbes on soluble substrate - Ks Ac kg/m3 saturation coefficient for growth of process microbes on acetate - K d h–1 death/lysis rate constant for process microbes - K i kg/m3 inhibition constant for growth of process microbes on acetate - K L h–1 lysis rate constant for whole yeast cells - K h h–1 hydrolysis rate constant for particulate biomass  相似文献   

11.
The objective of this study was to determine patterns of ectomycorrhizas (ECM) and arbuscular mycorrhizas (AM) colonization associated with Alnus acuminata (Andean alder), in relation to soil parameters (electrical conductivity, field H2O holding capacity, pH, available P, organic matter, and total N) at two different seasons (autumn and spring). The study was conducted in natural forests of A. acuminata situated in Calilegua National Park (Jujuy, Argentina). Nine ECM morphotypes were found on A. acuminata roots. The ECM colonization was affected by seasonality and associated positively with field H2O holding capacity, pH, and total N and negatively associated with organic matter. Two morphotypes (Russula alnijorullensis and Tomentella sp. 3) showed significant differences between seasons. Positive and negative correlations were found between five morphotypes (Alnirhiza silkacea, Lactarius omphaliformis, Tomentella sp. 1, Tomentella sp. 3, and Lactarius sp.) and soil parameters (total N, pH, and P). A significant negative correlation was found between field H2O holding capacity and organic matter with AM colonization. Results of this study provide evidence that ECM and AM colonization of A. acuminata can be affected by some soil chemical edaphic parameters and indicate that some ECM morphotypes are sensitive to changes in seasonality and soil parameters.  相似文献   

12.
Subsurface sediment samples, collected from three boreholes ranging in depths from 0.1 to 260 m, were used in substrate mineralization studies to examine the aerobic metabolic potential of microbial populations indigenous to the deep subsurface. Mineralization was measured by quantifying the amount of 14CO2 released from radiolabeled acetate, phenol, or 4‐methoxybenzoate added to subsurface sediments at 10 μg g‐1. Mineralization of the three compounds was observed in all but a few of the subsurface samples and did not decrease with depth. In addition, mineralization data collected from similar geologic formations from the different boreholes indicated that there was significant lateral continuity of microbial activity. Regression analyses were performed to determine which environmental factors were related to microbial metabolic potential. Mineralization was positively correlated with heterotrophic abundance as measured by plate counts. Other parameters that appeared to influence metabolic potential included pH and clay content.  相似文献   

13.
ABSTRACT

Formation of gel-like surface sediments has been observed during spring and autumn in small watersheds in boreal areas with pH <5.7 and concentrations of humic substances above 3 mg L?1. This structure efficiently accumulates dissolved, colloidal and particulate constituents. The gel consists of ferric (hydr)oxides and fulvic acid and has high viable counts of bacteria (notably Gallionella spp.) as well as fungal hyphae. The solid/solution distribution (log Kd; l kg?1) for trace metals (Cd, Cu, Pb, V, Zn) ranges from 4 to 6.5 which indicate an efficient accumulation during periods with gel. The concentrations of adsorbable organic halogens in the gel were not different from forest soils in general.  相似文献   

14.
The aims of this study were to investigate the structure and composition of the invertebrate community during the detritus decomposition (colonization features) of the two most abundant aquatic macrophytes Typha domingensis Pers. and Nymphaea ampla in Jurubatiba Lagoon and verify if the chemical composition of the substratum has any influence on invertebrate colonization and which are the functional groups possibly affected by these compounds. The substratum T. domingensis had higher percentages of cell wall fraction (F= 108.33; p < 0.0001) and organic matter (F= 225.77; p < 0.0001), while nitrogen (F= 408.61; p < 0.0001) and phosphorus (F= 224.59; p < 0.0001) contents were higher in N. ampla. These differences in the chemical composition of the substrata influenced the decomposition rate, and the detritus of N. ampla(4.37% DW day–1) decomposed approximately 26 times faster than the T. domingensis(0.17% DW day–1) detritus. The main groups of invertebrates that colonized both substrate were Chironomidae, with more than 50% of the total, followed by Oligochaeta, Nematoda, Copepoda and Cladocera. The results showed that the slow breakdown rate of T. domingensis detritus provided a higher probability for colonization and that the main driving force structuring the invertebrates' community was degradative ecological succession (DES).  相似文献   

15.
Ingrowth cores in the field were used to compare fine root characteristics of hinoki cypress (Chamaecyparis obtusa) among rooting substrate in the form of needle leaf litter, decomposing organic material, and mineral soil. Fine root growth, morphology, arbuscular mycorrhizal (AM) associations, and tissue C and N concentration were determined. The inorganic N leaching from each soil substrate was taken as a measure of N availability. Although there was no significant difference in total N leaching among substrates, more NH + 4 -N leached from the decomposing organic material than other substrates. Rapid fine root production was observed in the organic material, whereas root production in the litter substrate was suppressed. Annual net fine root productions in litter, organic material, and mineral soil were 51, 193, and 132 g m−2, respectively. In the leaf litter substrate, AM colonization was suppressed and specific root length was higher than in the other substrates, indicating severe nutrient limitation in the litter. These responses of hinoki cypress roots seemed to be a soil exploitation pattern whereby absorptive fine roots were arranged to maximize nutrient acquisition.  相似文献   

16.
[3H]palmitic acid was metabolically incorporated into the viral fusion protein (F) of Edmonston or freshly isolated measles virus (MV) during infection of human lymphoid or Vero cells. The uncleaved precursor F0 and the F1 subunit from infected cells and extracellular virus were both labeled, indicating that palmitoylation can take place prior to F0 cleavage and that palmitoylated F protein was incorporated into virus particles. [3H]palmitic acid was released from F protein upon hydroxylamine or dithiothreitol treatment, indicating a thioester linkage. In cells transfected with the cloned MV F gene, in which the cysteines located in the intracytoplasmic and transmembrane domains (Cys 506, 518, 519, 520, and 524) were replaced by serine, a major reduction of [3H]palmitic acid incorporation was observed for F mutated at Cys 506 and, to a lesser extent, at Cys 518 and Cys 524. We also observed incorporation of [3H]palmitic acid in the F1 subunit of canine distemper virus F protein. Cell fusion induced by cotransfection of cells with MV F and H (hemagglutinin) genes was significantly reduced after replacement of Cys 506 or Cys 519 with serine in the MV F gene. Transfection with the F gene with a mutation for Cys 518 abolished cell fusion, although less mutant protein was detected on the cell surface. These results suggest that the F protein transmembrane domain cysteines 506 and 518 participate in structures involved in cell fusion, possibly mediated by palmitoylation.  相似文献   

17.
Phosphate-starved Chlorella pyrenoidosa cells formed polyphosphate bodies (PB) upon transfer into nutrient solutions containing phosphate and potassium, or another monovalent cation, such as Na+, NH4+, Li+, or Rb+. The phenomenon was studied by chemical analyses, light microscopy, and electron microscopy.

When the P-starved cells were transferred into a complete nutrient solution containing 100 micromolar P, they accumulated large quantities of P and K within several hours. The accumulation was accompanied by a corresponding appearance of PB in the cells. The absence of K from the medium prevented appreciable P accumulation and PB formation, but omitting Ca or Mg did not.

The P-starved cells exposed to a simple solution of at least 20 micromolar H3PO4 and 100 micromolar KHCO3 responded in a similar manner as the cells exposed to the complete nutrient solution. However, the PB appeared structurally different.

It is proposed that monovalent cations are essential for PB formation in C. pyrenoidosa. K is suggested to be a major component of PB formed in K-sufficient media.

  相似文献   

18.
Role of lakes for organic carbon cycling in the boreal zone   总被引:6,自引:0,他引:6  
We calculated the carbon loss (mineralization plus sedimentation) and net CO2 escape to the atmosphere for 79 536 lakes and total running water in 21 major Scandinavian catchments (size range 437–48 263 km2). Between 30% and 80% of the total organic carbon that entered the freshwater ecosystems was lost in lakes. Mineralization in lakes and subsequent CO2 emission to the atmosphere was by far the most important carbon loss process. The withdrawal capacity of lakes on the catchment scale was closely correlated to the mean residence time of surface water in the catchment, and to some extent to the annual mean temperature represented by latitude. This result implies that variation of the hydrology can be a more important determinant of CO2 emission from lakes than temperature fluctuations. Mineralization of terrestrially derived organic carbon in lakes is an important regulator of organic carbon export to the sea and may affect the net exchange of CO2 between the atmosphere and the boreal landscape.  相似文献   

19.
Summary Bacillus licheniformis S 1684 is able to produce an alkaline serine protease exocellularly. In glucose-limited chemostat cultures the specific rate of protease production was maximal at a -value of 0.22. Above this growth rate protease production was repressed. Dependent on 10–20% of the glucose input was used for exocellular product formation. The degree of reduction of exocellular products was 4.1.Maximum molar growth yields were high and indicate a high efficiency of growth. The values of Y glu max and YO 2 max were 83.8 and 53.3, respectively. When Y glu max was corrected for the amount of glucose used for product formation a value of 100.3 was obtained. These high maximum molar growth yields are most probably caused by a high Y ATP max . Anaerobic batch experiments showed a Y ATP of 14.6.Sometimes the used strain was instable in cell morphology and protease production. Non-protease producing cells most probably develop from producing cells by mutation in the rel-gene. Producing cells most probably are relaxed (rel -) and non-producing cells stringent (rel +).Glossary specific growth rate (h-1) - Y sub growth yield permol substrate (g biomass/mol) - Y max maximum molar growth yield, corrected for maintenance requirements (g biomass/mol) - Y max(corr) Y max corrected for product formation (g biomass/mol) - m sub maintenance requirements (mol/g biomass·h) - m sub(corr) maintenance requirements corrected for product formation (mol/g biomass·h) - Y c fraction of organic substrate converted in biomass - z fraction of organic substrate converted in exocellular products - d fraction of organic substrate converted in CO2 (g mol/g atom C) - Crec% carbon recovery % - average degree of reduction of exocellular products - P/O amount of ATP produced during electron-transport of 2 electrons to oxygen  相似文献   

20.
Seasonal dynamics in the mineralization of glutamic acid enantiomers in soils from selected ecosystems was determined and subjected to a range of treatments: ambient x elevated CO2 level and meadow x dense x thinned forest environment. Mineralization of glutamic acid was determined by incubation of the soil with 2 mg L‐ or D‐glutamic acid g‐1 of dry soil to induce the maximum respiration rate. Mineralization of glutamic acid enantiomers in soils fluctuates over the course of a vegetation season, following a similar trend across a range of ecosystems. Mineralization is affected by environmental changes and management practices, including elevated CO2 level and thinning intensity. L‐glutamic acid metabolism is more dependent on soil type as compared to metabolism of its D‐enantiomer. The results support the hypothesis that the slower rate of D‐ compared to L‐ amino acid mineralization is due to different roles in anabolism and catabolism of the soil microbial community. Chirality 27:104–108, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号