首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
An enantioselective high-performance liquid chromatographic method for the determination of E3810, a new anti-ulcer agent, in Beagle dog plasma and rat plasma has been developed. After extraction from plasma with ethyl acetate. E3810 enantiomer were measured by reversed-phase high-performance liquid chromatography on a Chiralcel OD-R column. The enantiomers were detected by ultraviolet absorbance detection at 290 nm. The recoveries of E3810 enantiomers and internal standard were greater than 91%. The calibration curves were linear from 0.03 to 20 μg/ml for Beagle dog plasma and from 0.1 to 100 μg/ml for rat plasma. The limits of quantification of both enantiomers were 0.03 μg/ml for Beagle dog plasma and 0.1 μg/ml for rat plasma. The intra- and inter-day accuracy and precision data showed good reproducibility of the method. The assay was applied for the analysis of E3810 enantiomers in plasma after intravenous administration of racemic E3810 to Beagle dogs and rats. This method should be very useful for enantioselective pharmacokinetic studies of E3810.  相似文献   

2.
The development and validation of a high-performance liquid chromatographic (HPLC) assay for determination of busulfan concentrations in human plasma for pharmacokinetic studies is described. Plasma samples containing busulfan and 1,6-bis(methanesulfonyloxy)hexane, and internal standard, were prepared by derivatization with sodium diethyldithio-carbamate (DDTC) followed by addition of methanol and extraction with ethyl acetate. The extract was dried under nitrogen and the samples reconstituted with 100 μl of methanol prior to HPLC determination. Chromatography was accomplished using a Waters NovaPak octadecylsilyl (ODS) (150×3.9 mm I.D.) analytical column, NovaPak ODS guard column, and mobile phase of methanol-water (80:20, v/v) at a flow-rate of 0.8 ml/min with UV detection at 251 nm. The limit of detection was 0.0200 μg/ml (signal-to-noise ratio of 6) with a limit of quantitation (LOQ) of 0.0600 μg/ml for busulfan in plasma. Calibration curves were linear from 0.0600 to 3.00 μg/ml in plasma (500 μl) using a weighting scheme. Precision of the assay, as represented by C.V. of the observed peak area ration values, ranged from 4.41 to 13.5% (13.5% at LOQ). No day-to-day variability was observed in predicted concentration values and the bias was low for all concentrations evaluated (bias: 0 to 4.76%; LOQ: 2.91%). The mean derivatization and extraction yield observed for busulfan in plasma at 0.200, 1.20 and 2.00 μg/ml was 98.5% (range 93.4 to 107%). Plasma samples containing potential busulfan metabolites and co-administered drugs, which may be present in clinical samples, provided no response indicating this assay procedure is selective for busulfan. This method was used to analyze plasma concentrations following administration of a 1 mg/kg oral busulfan dose.  相似文献   

3.
The stability of the experimental anti-tumour agent pancratistatin in human plasma has been investigated. A solid-phase extraction technique and an HPLC assay with external standards have been developed and validated. Extraction was performed using C18 cartridges and HPLC, analysis was performed on a 15 cm Hypersil BDS column using isocratic elution with 13% acetonitrile and aqueous solution of 1% (w/v) acetic acid. The lower limit of quantification for pancratistatin in 5% DMF–95% water was found to be 0.58 ng/ml (±10.58%) and 2.3 ng/ml (±9.2%) following extraction from human plasma. Mean recovery of 89.4% (±4.73%) was obtained over the concentration range 0.0023–9.45 μg/ml for a five day validation study. Pancratistatin was stable at room temperature in light or dark for at least 15 days, in the refrigerator at 4°C for at least 16 days and in the freezer at −20°C or −80°C for at least 28 days. Under all conditions monitored, % recovery of pancratistatin from human plasma was greater than 95% and no evidence of degradation had occurred. There also was no loss of pancratistatin after three cycles of freezing and thawing.  相似文献   

4.
Abouthiouzine is a newly synthesized antithyroid agent with a proposed less adverse effects profile than other currently used drugs. A simple and rapid reversed phase high performance liquid chromatography assay was developed to determine the concentration of abouthiouzine in human plasma. The procedure involved extraction of the drug and propranolol (internal standard) from the plasma using ethylacetate. The extract was evaporated under nitrogen and the residue was constituted with the mobile phase and injected onto micro-Bondapack phenyl column (10 microm, 3.9 mm x 150 mm). The mobile phase consisted of 10 mM potassium dihydrogen phosphate buffer, acetonitrile, and methanol in the ratio of 60:25:15 (v/v/v, pH=3.0), which was delivered at a rate of 1.5 ml/min. Abouthiouzine and the internal standard were monitored using UV detection at 240 nm; the run time was less than 5 min. The detection limit of abouthiouzine is 0.5 microg/ml. The within- and between-day coefficients of variation were less than 7%. Our method has been successfully used to measure abouthiouzine plasma concentrations in a rabbit model following an intravenous administration of the drug.  相似文献   

5.
6.
Endralazine (I) is a new antihypertensive which is chemically and pharmacologically related to hydralazine and dihydralazine. A sensitive high-performance liquid chromatographic-fluorescence assay for the drug and two of its metabolites [methyltriazoloendralazine (VII) and hydroxymethyltriazoloendralazine (VIII)] in human plasma was developed. After conversion of I and its internal standard to triazolopyridopyridazine derivatives the latter and metabolites were separated by high-performance liquid chromatography and detected using their fluorescence. The limits of detection of the assay were 1 nmol/l for I and VII and 0.1 nmol/l for VIII. Intra-assay coefficients of variation were 2.5–5.1% for I (range 1000–10 nmol/l), 4.2–4.5% for VII (range 100–5 nmol/l) and 3.4–5.7% for VIII (range 100–1 nmol/l). Following oral administration of 5 and 10 mg of I to two normal volunteers (slow acetylators) peak plasma levels of I occurred between 0.75 and 1 h after the dose, and declined in a biexponential fashion. The terminal half-life ranged from 2.8–3.7 h. These results contrast with those obtained for hydralazine in plasma where in vitro and in vivo half-lives were 30 min.  相似文献   

7.
A sensitive high-performance liquid chromatographic (HPLC) method for the quantitation of famotidine in human plasma is described. Clopamide was used as the internal standard. Plasma samples were extracted with diethyl ether to eliminate endogenous interferences. Plasma samples were then extracted at alkaline pH with ethyl acetate. Famotidine and the internal standard were readily extracted into the organic solvent. After evaporation of ethyl acetate, the residue was analysed by HPLC. The chromatographic separation was accomplished with an isocratic mobile phase consisting of acetonitrile—water (12:88, v/v) containing 20 mM disodium hydrogenphosphate and 50 mM sodium dodecyl sulphate, adjusted to pH 3. The HPLC microbore column was packed with 5 μm ODS Hypersil. Using ultraviolet detection at 267 nm, the detection limit for plasma famotidine was 5 ng/ml. The calibration curve was linear over the concentration range 5–500 ng/ml. The inter- and intra-assay coefficients of variation were found to be less than 10%. Applicability of the method was demonstrated by a bioavailability/pharmacokinetic study in normal volunteers who received 80 mg famotidine orally.  相似文献   

8.
An automated high-performance liquid chromatographic method for the determination of the diuretic drug furosemide has been established. Dog plasma was injected directly into a two-column system with a BSA—ODS (ODS column coated with bovine serum albumin) precolumn and a C18 analytical column for the separation of furosemide. The two columns were automatically switched. Furosemide remained trapped on the precolumn while proteins were eluted to waste. After column switching, furosemide was washed onto the analytical column and analysed without interference. The greatest advantage of the method is its easy performance without manual sample preparation; it requires no extraction or deproteinization. The method allows determination of 0.1–10 μg/ml of furosemide with accuracy and precision comparable with previously reported values. The coefficients of variation obtained from replicate measurements of 1 μg/ml and 5 μg/ml samples were 1.65% and 2.40%, respectively. This method was used to measure the plasma levels of furosemide in beagle dogs to whom the drugs was administered, as a reference, in a toxicological study.  相似文献   

9.
A reversed-phase liquid chromatographic method with ultraviolet detection has been developed to determine busulfan concentrations in plasma of children undergoing bone marrow transplantation. Plasma samples (200 μl) containing busulfan and 1,6-bis(methanesulfonyloxy)hexane as an internal standard were prepared by a simple derivatization method with diethyldithiocarbamate followed by extraction with ethyl acetate and solid-phase purification on C8 columns conditioned with methanol and water and eluted with acetonitrile (recovery 99%). Chromatography was accomplished using a Hypersil octadecylsilyl column (10 cm×4.6 mm I.D.) and a mobile phase of acetonitrile, tetrahydrofuran and distilled water (65:5:30, v/v). The limit of detection was 25 ng/ml (signal-to-noise ratio of 5). Calibration curves were linear up to 25 000 ng/ml. Intra-day and inter-day coefficients of variation of the assay were ≤5%. This method was used to analyse busulfan plasma concentrations after oral administration within the framework of therapeutic drug monitoring and pharmacokinetic studies in children.  相似文献   

10.
A new drug, quick-acting anti-motion capsule (QAAMC) composed of d-amphetamine sulfate, dimenhydrinate and ginger extraction has been studied for anti-motion-sickness use. We have developed a sensitive, specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the quantitative determination of d-amphetamine and diphenhydramine, the main effective components of the QAAMC, using pseudoephedrine as the internal standard. The analytes and internal standard were isolated from 200 microL plasma samples by a simple liquid-liquid extraction (LLE). Reverse-phase HPLC separation was accomplished on a Zorbax SB-C18 column (100 mm x 3.0 mm, 3.5 microm) with a mobile phase composed of methanol-water-formic acid (65:35:0.5, v/v/v) at a flow rate of 0.2 mL/min. The method had a chromatographic total run time of 5 min. A Varian 1200 L electrospray tandem mass spectrometer equipped with an electrospray ionization source was operated in selected reaction monitoring (SRM) mode with the precursor-to-product ion transitions m/z 136.0-->91.0 (D-amphetamine), 256.0-->167.0 (diphenhydramine) and 166.1-->148.0 (IS) used for quantitation. The method was sensitive with a lower limit of quantitation (LLOQ) of 0.5 ng/mL for d-amphetamine and 1 ng/mL for diphenhydramine, with good linearity in the range 0.5-200 ng/mL for D-amphetamine and 1-500 ng/mL for diphenhydramine (r(2)> or =0.9990). All the validation data, such as accuracy, precision, and inter-day repeatability, were within the required limits. The method was successfully applied to pharmacokinetic study of the QAAMC in beagle dogs.  相似文献   

11.
A reversed-phase high-performance liquid chromatography method was developed and validated for the quantitation of pemetrexed (LY231514, ALIMTA) in human urine and plasma. Plasma samples were spiked with the internal standard lometrexol and extracted using Certify II columns. Pemetrexed was assayed in diluted urine by an external calibration method. A C8 column was used for the separation of analytes with a mobile phase composed of sodium formate buffer and acetonitrile. Between- and within-day precision and accuracy were acceptable down to the limit of quantitation of 5 ng/ml in plasma. This method was used successfully for an investigation of the disposition of pemetrexed in patients receiving 500 mg/m2 as a 10-min infusion.  相似文献   

12.
Atomoxetine is the first, non-stimulant alternative to other stimulant medications used for the treatment of Attention-Deficit/Hyperactivity Disorder (ADHD). Reported methods for the determination of atomoxetine include expensive liquid chromatography tandem mass spectrometry (LCMS) and high performance liquid chromatography (HPLC) with liquid scintillation counting (LSC) detection. Till date, no method has been reported in literature to determine atomoxetine using HPLC with UV detection. In this paper, we describe a new HPLC method for the determination of atomoxetine using liquid-liquid extraction with tertiary butyl methyl ether and UV detector. This method was found to be linear over the concentration range of 0.05-3.0 microg/ml. The limit of quantification was 0.05 microg/ml. Intra- and inter-day precision was <15% and accuracy was in the range of 95.67-108.80%. Stability studies showed that atomoxetine was stable in human plasma for short- and long-term period for sample preparation and analysis. This method was used for sample analysis in a pharmacokinetic study of atomoxetine (25mg) in five healthy adult female volunteers. The observed mean+/-S.D. pharmacokinetic parameters Cmax, Tmax and AUC(0-t) were 0.40+/-0.06 microg/ml, 3.40+/-0.42 h and 1.34+/-0.52 microg h/ml, respectively.  相似文献   

13.
A sensitive, specific and stability-indicating high-performance liquid chromatographic (HPLC) assay, involving pre-column derivatization and solid-phase extraction (SPE), was developed and validated for the quantitation of busulfan (BU) in aqueous and plasma samples. The linearity of the assay was in the concentration ranges of 0.15–10 μg/ml and 0.15–3 μg/ml for aqueous and plasma samples, respectively. The within-day and between-day variations were 2.90 and 3.31%, respectively, for the aqueous samples, and 9.24 and 14.56%, respectively, for the plasma samples. The overall recovery, derivatization yield and SPE efficiency of BU from plasma samples were 82.03, 108.01 and 86.69%, respectively. Forced degraded samples, either in highly acidic, neutral or basic medium, produced no interfering peaks in the chromatogram. The reported assay requires only 0.2 ml of plasma for the analysis, and its sensitivity is 150 ng/ml by monitoring samples at a wavelength of 254 nm, sufficient to study the plasma pharmacokinetics of BU in rats after a clinically relevant oral dose. Moreover, the sensitivity of the assay can be significantly increased to 30 ng/ml by monitoring samples at a wavelength of 278 nm. The applications of the assay were demonstrated with BU solubility measurements in two aqueous systems and with plasma samples from a Sprague–Dawley rat for an in vivo pharmacokinetic study. In addition, the assay has been employed in the development of a patented intravenous formulation, and in evaluations of stability, preclinical pharmacokinetics in rats and dogs, and clinical phase I trial of the formulation. The assay is readily adaptable to clinical therapeutic drug monitoring.  相似文献   

14.
A high-performance liquid chromatographic (HPLC) assay suitable for the analysis of the enantiomers of ketoprofen (KT), a 2-arylpropionic acid (2-APA) non-steroidal antiinflammatory drug (NSAID), in plasma and urine was developed. Following the addition of racemic fenoprofen as internal standard (I.S.), plasma containing the KT enantiomers and I.S. was extracted by liquid-liquid extraction at an acidic pH. After evaporation of the organic layer, the drug and I.S. were reconstituted in mobile phase and injeted into the HPLC system. The enantiomers were separated at ambient temperature on a commercially available 250 × 4.3 mm amylose carbamate-packed chiral column (Chiralpak AD) column with hexane-isopropyl alcohol-trifluoroacetic acid (80:19.9:0.1, v/v/v) as the mobile phase pumped at 1.0 ml/min. The enantiomers of KT were quantified by ultraviolet detection with the wavelength set at 254 nm. The assay described allows for the direct quantification of KT enantiomers without pre-column derivatization, and is suitable for clinical studies of KT enantiomers in human plasma and urine after administration of therapeutic doses.  相似文献   

15.
Bestatin is a low molecular weight aminopeptidase inhibitor originally isolated from culture filtrates of Streptomyces olivoreticuli. We have developed a sensitive, specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the quantitative determination of bestatin in rat plasma using granisetron as the internal standard. The analyte and internal standard were isolated from 50 microL plasma samples by solid phase extraction (SPE). Reverse-phase HPLC separation was accomplished on a Lichrospher C18 column (4.6 mm x 50 mm, 5 microm) with a mobile phase composed of methanol-water-formic acid (70:30:0.5, v/v/v) at a flow rate of 0.8 mL/min. The method had a chromatographic total run time of 3 min. A Varian 1200L electrospray tandem mass spectrometer equipped with an electrospray ionization source was operated in selected reaction monitoring (SRM) mode with the precursor-to-product ion transitions m/z 309.2-->120.0 (bestatin) and 313.4-->138.0 (granisetron) used for quantitation. The method was sensitive with a lower limit of quantitation (LLOQ) of 5 ng/mL, with good linearity (r2 >or= 0.999) over the linear range of 5-2000 ng/mL. All the validation data, such as accuracy, precision, and inter-day repeatability, were within the required limits. The method was successfully applied to pharmacokinetic study of bestatin in rats.  相似文献   

16.
A column-switching high-performance liquid chromatography (HPLC) method for the determination of aloesin in rat plasma using column-switching and ultraviolet (UV) absorbance detection is described. Plasma was directly injected onto the HPLC system consisting of a clean-up column, a concentrating column, and an analytical column, which were connected with a six-port switching valve. The determination of aloesin was accurate and repeatable, with a limit of quantitation of 10 ng/ml in plasma. The standard calibration curve for aloesin was linear (r=0.998) over the concentration range of 10–1000 ng/ml in rat plasma. The intra- and inter-day assay variabilities of aloesin ranged from 1.0 to 4.7% and 1.1 to 8.8%, respectively. This highly sensitive and simple method has been successfully applied to a pharmacokinetic study after oral administration of aloesin to rats.  相似文献   

17.
18.
A rapid and selective high-performance liquid chromatographic (HPLC) assay for the quantitative determination of ketoconazole, an orally active antifungal agent, in human plasma is described. After extraction of the drug from plasma, the compound is separated by HPLC using a reversed-phase column and detected by UV light at 205 nm. Quantitation is accomplished by external standardization and the determination of peak areas is performed with the aid of an integrating computer. The average recovery of ketoconazole over a concentration range of 0.1–20.0 μg/ml was 88.2 ± 4.07% S.D. The maximum sensitivity of the assay is less than 0.1 μg/ml. The assay is suitable for use in pharmacokinetic studies following the administration of therapeutic doses of ketoconazole to humans.  相似文献   

19.
Physostigmine, an anticholinergic drug, and its metabolite eseroline can be quantitated by high-performance liquid chromatography (HPLC) with photodiode-array detection. After addition of the structurally related internal standard (-)-N-methylphysostigmine, rat plasma samples were extracted and cleaned using a Varian Bond Elut C(18) column. The methanol-ammonia (98:2) eluate was evaporated to dryness and reconstituted with 0.01 M sodium dihydrogenphosphate (pH 3). Physostigmine and eseroline were separated on an Alltech Ultrasphere Silica column (250x4.6 mm I.D.; particle size 5 micrometer) at a flow-rate of 1 ml/min, with a mobile phase of 0.01 M sodium dihydrogenphosphate (pH 3)-acetonitrile (85:15). The limits of detection were 10 and 25 ng/ml for physostigmine and eseroline, respectively; the signal-to-noise ratio for this concentration was approximately 3:1. Spiked rat plasma containing 0.1-2.5 microgram/ml of physostigmine and eseroline gives good linearity. The average percentage recovery from five spiked plasma samples was 88.0+/-2.9 and 61.1+/-5.6% for physostigmine and eseroline, respectively. Within the concentration range 0.1-2.5 microgram/ml, the within-day precision was 1.9-8.3 and 3.0-7.7% for physostigmine and eseroline, respectively, and the between-day precision was 4.1-9.3 and 3.7-11% for physostigmine and eseroline, respectively. The method is rapid, simple and reliable, thus it is suitable for pharmacokinetic studies in the rat.  相似文献   

20.
Vitamin B6, measured as pyridoxal 5′-phosphate (PLP), is a co-enzyme in the transsulfuration pathway of homocysteine metabolism. Since depletion of PLP has been suggested as an independent risk factor for coronary artery disease, PLP is frequently measured to guide patient care. By a change and utilization of an Aquasil C18 column and the addition of an acetonitrile clean-up gradient to the potassium phosphate, with sodium perchlorate and bisulfite buffer between samples we report the modification of a previously described method for analysis of PLP. The result is a more practical, efficient, reliable and robust method for daily clinical use. We also determined and report that it is critical to protect freshly prepared standard PLP samples from light exposure during assay preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号