首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Huang EY  Chen CM  Tao PL 《Peptides》2004,25(4):577-583
Two potent endogenous opioid peptides, endomorphin-1 (EM-1) and -2 (EM-2), which are selective micro-opioid agonists, have been identified from bovine and human brain. These endomorphins were demonstrated to produce a potent anti-allodynic effect at spinal level. In the present study, we further investigated their supraspinal anti-allodynic effects and rewarding effects. In a neuropathic pain model (sciatic nerve crush in rats), EM-1 and -2 (15 microg, i.c.v.) both showed significant suppressive effects in the cold-water allodynia test, but EM-1 showed a longer duration than EM-2. Naltrexone (NTX; 15 microg) and naloxonazine (NLZ; 15 microg) were both able to completely block the anti-allodynic effects of EM-1 and -2. In the tests of conditioned place preference (CPP), only EM-2 at the dose of 30 microg showed significant positive rewarding effect, whereas both endomorphins did not induce any reward at the dose of 15 microg. Due to the low solubility and the undesired effect (barrel rotation of the body trunk), EM-1 was not tested for the dose of 30 microg in the CPP tests. It was also found that acute EM-2 (30 microg) administration increased dopamine turnover in the shell of nucleus accumbens in the microdialysis experiments. From these results, it may suggest that EM-1 and -2 could be better supraspinal anti-allodynic agents compared with the other opioid drugs, although they may also induce rewarding.  相似文献   

2.
Two recently isolated peptides, endomorphin-1 (Tyr-Pro-Trp-Phe-NH2) and endomorphin-2 (Tyr-Pro-Phe-Phe-NH2), are highly selective micro-opioid receptor agonists with analgesic actions in the tail-flick test. To further assess the analgesic properties of these peptides, the effects of endomorphin-1, endomorphin-2, and morphine were examined in the formalin test. Male Swiss Webster mice were injected i.c.v. with endomorphin-1, endomorphin-2, or morphine (0, 1, 3, 10 microg) 5 min before injection of 20 microl of 5% formalin s.c. into the plantar surface of one hind-paw. The mice were observed for 60 min after formalin injection. Endomorphin-1 and endomorphin-2 produced dose-dependent analgesia that was shorter in duration than for morphine. Increased locomotion was observed after morphine, but not after endomorphin-1 or endomorphin-2. These findings extend previous results and suggest that endomorphins may have therapeutic potential for the treatment of acute pain.  相似文献   

3.
In this study, we evaluated the effects of intrathecally administered agonists of mu- and delta-opioid receptor and their analogs on the pain-induced behavior and expression of c-Fos immunoreactivity in the spinal cord, elicited by intraplantar injection of 12% formalin to the hindpaw of the rat. Previous report from our laboratory and other author's study indicated that intrathecal administration of mu agonists morphine and endomorphin-2 and delta-opioid agonist deltorphin II produced a dose-dependent antinociceptive effects in acute and inflammatory pain. In this study, intrathecal injection of morphine (10 microg), endomorphin-2 (5 microg) and its analog Dmt-endomorphin-2 (10 microg) significantly decreased the formalin-induced pain behavior, and lowered a number of c-Fos positive neurons in the laminae I, II and III of the spinal cord by about 40%, 30% and 40%, respectively. Significant reduction of formalin-induced behavioral responses was also observed after i.th. administration of deltorphin II (15 microg) and its analog ile-deltorphin II (15 microg). Agonists of delta-opioid receptor significantly reduced a number of c-Fos positive neurons by about 28% and 40%, respectively. Analog of endomorphin-2 and analog of deltorphin II suppressed more potently expression of c-Fos in the dorsal horn of the spinal cord than the parent peptides. Our study indicates that new analogs of mu- and delta-opioid receptor exhibit strong antinociceptive potency similar or even higher than the parent peptides, and that their effect is positively correlated with the inhibition of c-Fos expression.  相似文献   

4.
To pursue further the possible de novo biosynthetic pathway of endomorphins in rat brain we raised antibodies to endomorphin-2 conjugate in rabbits. Antiserum R1 recognized endomorphin-2 with good selectivity as compared to endomorphin-1 with a median detection value of 65.5+/-7.5 pg/tube (n=7), whereas R4 antiserum recognized both endomorphins with similar sensitivity. Neither antisera recognized YP-related di- or tripeptides or YGGF-related opioid sequences (enkephalins, beta-endorphin, dynorphin). Using the same rat brain extraction-RP-HPLC-gradient separation paradigm as previously, antisera detected 144.6+/-40.0 (n=3) pg/g wet brain weight endomorphin-2-like immunoreactivity in the fraction corresponding to standard endomorphin-2 retention time and also in the fraction matching endomorphin-2-OH standard retention time (179.1+/-30.1 pg/g). Since R1 failed to recognize authentic endomorphin-2-OH, the second immunoreactive species must be different from both endomorphin-2 and endomorphin-2-OH. Possible biosynthetic intermediates to endomorphins, synthetic YPFFG and YPWFG had retention times close to the parent endomorphin standards in RP-HPLC gradient separation profile. The former was a mu-opioid receptor agonist of medium potency in the in vitro assays (rat brain RBA>P gamma S binding and mouse vas deferens), whereas the latter was a weak mu-opioid receptor agonist with a significant delta-opioid receptorial action as well and a definite indication of partial agonism.  相似文献   

5.
The effects of intracerebroventricularly administered endomorphin-2 (EM2) on open-field activity and the hypothalamo-pituitary-adrenal (HPA) system were investigated. EM2 (0.25-1 microg) significantly increased both the locomotor and the rearing activity, resulting in a bell-shaped dose-response curve. EM2 also enhanced corticosterone release, with an even more profound downturn phase at higher concentrations. The corticotropin-releasing hormone (CRH) antagonist alpha-helical CRH9-41 completely abolished the EM2-evoked endocrine and behavioral responses. These findings reinforce the hypothesis that the endomorphins may play a significant role in the regulation of locomotion, rearing activity and the HPA system through the release of CRH.  相似文献   

6.
The present study investigated the effect of highly selective mu-opioid receptor (OR) agonists on lordosis behavior in ovariectomized rats treated with 3 microg of estradiol benzoate followed 48 h later by 200 microg of progesterone. Ventricular infusion of the endogenous mu-OR agonists endomorphin-1 and -2 suppressed receptive behavior in a time- and dose-dependent fashion. At 6 microg, both endomorphin-1 and -2 inhibited lordosis behavior within 30 min. However, while the effect of endomorphin-1 lasted 60 min, endomorphin-2 inhibition lasted up to 120 min after infusion. Pretreatment with naloxone (5 mg/kg sc) was able to block both endomorphin-1 and endomorphin-2 effects on lordosis. Site-specific infusions of endomorphin-1 or endomorphin-2 into the medial preoptic area (mPOA), the ventromedial nucleus of the hypothalamus (VMH), or into the mesencephalic central gray did not affect receptivity. In contrast, infusion of 1 mug of either compound into the medial septum/horizontal diagonal band of Broca inhibited lordosis in a pattern very similar to that seen after intraventricular infusions. Infusion of the potent synthetic mu-OR agonist [D-Ala(2),N-Me-Phe(4),Gly-ol(5)]-enkephalin (0.08 microg) into the VMH and mPOA inhibited lordosis behavior for at least 60 min after infusion. The nonspecific opioid receptor antagonist naloxone was able to facilitate lordosis in partially receptive female rats when infused into the mPOA but not when infused into the VMH. The behavioral effects of the agonists and antagonist used in this study suggest that the endogenous mu-opioid system modulates estrogen and progesterone-induced lordosis behavior.  相似文献   

7.
The presence of mu-opioid receptors and endomorphins has been demonstrated in the general area encompassing the rostral ventrolateral medullary pressor area (RVLM). This investigation was carried out to test the hypothesis that endomorphins in the RVLM may have a modulatory role in regulating cardiovascular function. Blood pressure and heart rate (HR) were recorded in urethane-anesthetized male Wistar rats. Unilateral microinjections of endomorphin-2 (0.0125-0.5 mmol/l) into the RVLM elicited decreases in mean arterial pressure (16-30 mmHg) and HR (12-36 beats/min), which lasted for 2-4 min. Bradycardia was not vagally mediated. The effects of endomorphin-2 were mediated via mu-opioid receptors because prior microinjections of naloxonazine (1 mmol/l) abolished these responses; the blocking effect of naloxonazine lasted for 15-20 min. Unilateral stimulations of aortic nerve for 30 s (at frequencies of 5, 10, and 25 pulses/s; each pulse 0.5 V and 1-ms duration) elicited depressor and bradycardic responses. These responses were significantly attenuated by microinjections of endomorphin-2 (0.2 and 0.4 mmol/l). The inhibitory effect of endomorphin-2 on baroreflex responses was prevented by prior microinjections of naloxonazine. Microinjections of naloxonazine alone did not affect either baseline blood pressure and HR or baroreflex responses. These results indicate that endomorphin-2 elicits depressor and bradycardic responses and inhibits baroreflex function when injected into the RVLM. These effects are consistent with the known hyperpolarizing effect of opioid peptides on RVLM neurons.  相似文献   

8.
Chen JC  Tao PL  Li JY  Wong CH  Huang EY 《Peptides》2003,24(3):477-481
In 1997, endomorphin-1 (EM-1) and -2 (EM-2) were identified as the most specific endogenous mu-opioid ligands. These two peptides have shown analgesic effects and many other opioid functions. In the present study, we attempt to investigate the possible ability of endomorphins to induce naloxone-precipitated withdrawal in comparison with that induced by morphine. Using the previously established scoring system in rats, 12 withdrawal signs (chewing, sniffing, grooming, wet-dog shakes, stretching, yawning, rearing, jumping, teeth grinding, ptosis, diarrhea, and penile erection) were observed and scored following naloxone (4 mg/kg, i.p.) challenge. Compared with the sham control, EM-1 and EM-2 (20 microg, i.c.v., b.i.d. for 5 days) both produced significant naloxone-induced withdrawal syndromes with similar severity to that induced by the same dose of morphine. There was no significant difference between EM-1, EM-2, and morphine-treated group for naloxone-induced withdrawal signs, except for grooming. EM-1 and EM-2 induced more grooming than that caused by morphine. Although EM-1 and EM-2 both led to the withdrawal, they displayed different potency for certain signs and suggest their distinct regulations. The present results indicate EM-1 and EM-2 could initiate certain mechanism involved opiate dependence.  相似文献   

9.
Hao S  Takahata O  Iwasaki H 《Life sciences》2000,66(15):PL195-PL204
It is known that spinal morphine produces antinociception that is modulated by alpha 2-adrenoceptors. Endomorphin-1, a newly-isolated endogenous opioid ligand, shows the greatest selectivity and affinity for the mu-opiate receptor of any endogenous substance found to date and may serve as a natural ligand for the mu-opiate receptor. We examined the antinociceptive effects of endomorphin-1 administered intrathecally (i.t.) in the rat tail flick, tail pressure and formalin tests. Intrathecal endomorphin-1 produced dose-dependent antinociceptive effects in the three tests. ED50 (CI95) values for antinociception of i.t. endomorphin-1 in the tail flick test and tail pressure test were 1.9 (0.96-3.76) nmol and 1.8 (0.8-4.2) nmol, respectively. ED50 (CI95) values for phase 1 and phase 2 in the formalin test were 12.5 (7.9-19.8) nmol and 17.5 (10.2-30) nmol, respectively. Pretreatment with i.t. beta-funaltrexamine (a mu-opioid receptor selective antagonist) significantly antagonized the antinociceptive effects of endomorphin-1 in the three tests. Beta-funaltrexamine alone had not effects on the three tests. The antinociceptive effects of endomorphin-1 were also antagonized by i.t. yohimbine (an alpha 2-adrenoceptor selective antagonist). The combination of ineffective doses of i.t. clonidine (an alpha 2-adrenoceptor agonist) and endomorphin-1 produced a significant antinociception in the three tests. The results showed that intrathecal endomorphin-1 produced antinociception in a dose-dependent manner in the rat tail flick, tail pressure and formalin tests, which was mediated by spinal mu-opioid receptors and modulated by alpha 2-adrenoceptors.  相似文献   

10.
Tömböly C  Péter A  Tóth G 《Peptides》2002,23(9):1573-1580
The catabolism of the endomorphins was investigated in detail. The endomorphins were degraded relatively slowly in the rat brain homogenate (t1/2(endomorphin-1)=4.94 min; t1/2(endomorphin-2)=3.81 min). The inhibition of metalloproteases and aminopeptidases stabilised the endomorphins to the greatest extent. The digestion of endomorphins tritiated specifically on Tyr(1), Pro(2) or Phe(3) established also that only the aminopeptidase pathways were essential for inactivation of the endomorphins, and that the tetrapeptides were degraded by cleavage of the Pro(2)-Trp(3) or Pro(2)-Phe(3) bond. The end-products of the catabolism were amino acids; the fragments Tyr-Pro-OH and Pro-Trp-Phe-NH2 were present as intermediates. Metabolites produced by brain carboxypeptidases were not detected.  相似文献   

11.
It has been demonstrated that the antinociception induced by i.t. or i.c.v. administration of endomorphins is mediated through mu-opioid receptors. Moreover, though endomorphins do not have appreciable affinity for kappa-opioid receptors, pretreatment with the kappa-opioid receptor antagonist nor-binaltorphimine markedly blocks the antinociception induced by i.c.v.- or i.t.-injected endomorphin-2, but not endomorphin-1. These evidences propose the hypothesis that endomorphin-2 may initially stimulate the mu-opioid receptors, which subsequently induces the release of dynorphins acting on kappa-opioid receptors to produce antinociception. The present study was performed to determine whether the release of dynorphins by i.c.v.-administered endomorphin-2 is mediated through mu-opioid receptors for producing antinociception. Intracerebroventricular pretreatment with an antiserum against dynorphin A, but not dynorphin B or alpha-neo-endorphin, and s.c. pretreatment with kappa-opioid receptor antagonist nor-binaltorphimine dose-dependently attenuated the antinociception induced by i.c.v.-administered endomorphin-2, but not endomorphin-1 and DAMGO. The attenuation of endomorphin-2-induced antinociception by pretreatment with antiserum against dynorphin A or nor-binaltorphimine was dose-dependently eliminated by additional s.c. pretreatment with a selective mu-opioid receptor antagonist beta-funaltrexamine or a selective mu(1)-opioid receptor antagonist naloxonazine at ultra low doses, which are inactive against mu-opioid receptor agonists in antinociception, suggesting that endomorphin-2 stimulates distinct subclass of mu(1)-opioid receptor that induces the release of dynorphin A acting on kappa-opioid receptors in the brain. It concludes that the antinociception induced by supraspinally administered endomorphin-2 is in part mediated through the release of endogenous kappa-opioid peptide dynorphin A, which is caused by the stimulation of distinct subclass of mu(1)-opioid receptor.  相似文献   

12.
Kina VA  Villarreal CF  Prado WA 《Life sciences》2005,76(17):1939-1951
The modulation by spinal nitric oxide (NO) of descending pathways travelling through the dorsal lateral funiculus (DLF) is a mechanism proposed for the antinociceptive effects of drugs that changes the NO metabolism. In this study we confirm that a surgical incision in the mid-plantar hind paw of rats reduces the threshold to mechanical stimulation with von Frey filaments. The incisional pain was further increased in rats with ipsilateral DLF lesion. Intrathecal L-NOARG (50-300 microg), or SIN-1 (0.1-5.0 microg) reduced, while SIN-1 (10 and 20 microg) intensified the incisional pain in rats with sham or effective lesion of the DLF. Stimulation of the dorsal raphe (DRN) or anterior pretectal (APtN) nuclei with stepwise increased electrical currents (7, 14, 21, 28 and 35 microA r.m.s.) produced a current-related reduction of the incisional pain. These nuclei activate pain inhibitory pathways that descend to the spinal cord mainly through the DLF. Intrathecal SIN-1 (5 microg) reduced, SIN-1 (20 microg) decreased and L-NOARG (150 microg) did not change the EC50 for the DRN or APtN stimulation-induced reduction of incisional pain. We conclude that the antinociceptive effects of L-NOARG or low doses of SIN-1 are independent on the activity of descending pain control pathways travelling via the DLF, but the antinociceptive effect of stimulating electrically the DRN or APtN can be summated to the effect of low dose of SIN-1 or overcome by the high dose of SIN-1.  相似文献   

13.
The midbrain periaqueductal gray matter (PAG) is an important brain region for the coordination of mu-opioid-induced pharmacological actions. The present study was designed to determine whether newly isolated mu-opioid peptide endomorphins can activate G proteins through mu-opioid receptors in the PAG by monitoring the binding to membranes of the non-hydrolyzable analog of GTP, guanosine-5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS). An autoradiographic [(35)S]GTPgammaS binding study showed that both endomorphin-1 and -2 produced similar anatomical distributions of activated G proteins in the mouse midbrain region. In the mouse PAG, endomorphin-1 and -2 at concentrations from 0.001 to 10 microM increased [(35)S]GTPgammaS binding in a concentration-dependent manner and reached a maximal stimulation of 74.6+/-3.8 and 72.3+/-4.0%, respectively, at 10 microM. In contrast, the synthetic selective mu-opioid receptor agonist [D-Ala(2),NHPhe(4), Gly-ol]enkephalin (DAMGO) had a much greater efficacy and produced a 112.6+/-5.1% increase of the maximal stimulation. The receptor specificity of endomorphin-stimulated [(35)S]GTPgammaS binding was verified by coincubating membranes with endomorphins in the presence of specific mu-, delta- or kappa-opioid receptor antagonists. Coincubation with selective mu-opioid receptor antagonists beta-funaltrexamine or D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Phe-Thr-NH(2) (CTOP) blocked both endomorphin-1 and-2-stimulated [(35)S]GTPgammaS binding. In contrast, neither delta- nor kappa-opioid receptor antagonist had any effect on the [(35)S]GTPgammaS binding stimulated by either endomorphin-1 or -2. These findings indicate that both endomorphin-1 and -2 increase [(35)S]GTPgammaS binding by selectively stimulating mu-opioid receptors with intrinsic activity less than that of DAMGO and suggest that these new endogenous ligands might be partial agonists for mu-opioid receptors in the mouse PAG.  相似文献   

14.
The partial mu-opioid receptor pool inactivation strategy in isolated mouse vas deferens was used to determine partial agonism of endomorphins and their analogs (endomorphin-1-ol, 2',6'-dimethyltyrosine (Dmt)-endomorphin-1, endomorphin-2-ol and (D-Met2)-endomorphin-2) using morphine, normorphine, morphiceptin, (D-Ala2,MePhe4,Gly5-ol)-enkephalin (DAMGO) and its amide (DAMGA) as reference opioid agonists. Agonist affinities (KA) and efficacies were assessed both by the "null" and the "operational" method. The KA values determined by the two methods correlated significantly with each other and also with the displacing potencies against 3H-naloxone in the receptor binding assay in the presence of Na+. DAMGO and DAMGA were full agonist prototypes, morphine, endomorphin-1, endomorphin-1-ol, Dmt-endomorphin-1, endomorphin-2-ol and (D-Met2)-endomorphin-2 were found by both methods to be partial agonists whereas the parameters for normorphine, morphiceptin and endomorphin-2 were intermediate.  相似文献   

15.
A series of position 4-substituted endomorphin-2 (Tyr-Pro-Phe-Phe-NH2) analogs containing 3-(1-naphthyl)-alanine (1-Nal) or 3-(2-naphthyl)-alanine (2-Nal) in L- or D-configuration, was synthesized. The opioid activity profiles of these peptides were determined in the mu-opioid receptor representative binding assay and in the Guinea-Pig Ileum assay/Mouse Vas Deferens assay (GPI/MVD) bioassays in vitro, as well as in the mouse hot-plate test of analgesia in vivo. In the binding assay the affinity of all new analogs for the mu-opioid receptor was reduced compared with endomorphin-2. The two most potent analogs were [D-1-Nal(4)]- and [D-2-Nal4]endomorphin-2, with IC50 values 14 +/- 1.25 and 19 +/- 2.1 nM, respectively, compared with 1.9 +/- 0.21 nM for endomorphin-2. In the GPI assay these analogs were found to be weak antagonists and they were inactive in the MVD assay. The in vitro GPI assay results were in agreement with those obtained in the in vivo hot-plate test. Antinociception induced by endomorphin-2 was reversed by concomitant intracerebroventricula (i.c.v.) administration of [D-1-Nal4]- and [D-2-Nal4]-endomorphin-2, indicating that these analogs were mu-opioid antagonists. Their antagonist activity was compared with that of naloxone. At a dose 5 microg per animal naloxone almost completely inhibited antinociceptive action of endomorphin-2, while [D-1-Nal4]endomorphin-2 in about 46%.  相似文献   

16.
Janecka A  Staniszewska R  Gach K  Fichna J 《Peptides》2008,29(11):2066-2073
Centrally acting plant opiates, such as morphine, are the most frequently used analgesics for the relief of severe pain, even though their undesired side effects are serious limitation to their usefulness. The search for new therapeutics that could replace morphine has been mainly focused on the development of peptide analogs or peptidomimetics with high selectivity for one receptor type and high bioavailability, that is good blood-brain barrier permeability and enzymatic stability. Drugs, in order to be effective, must be able to reach the target tissue and to remain metabolically stable to produce the desired effects. The study of naturally occurring peptides provides a rational and powerful approach in the design of peptide therapeutics. Endogenous opioid peptides, endomorphin-1 and endomorphin-2, are two potent and highly selective mu-opioid receptor agonists, discovered only a decade ago, which display potent analgesic activity. However, extensive studies on the possible use of endomorphins as analgesics instead of morphine met with failure due to their instability. This review deals with the recent investigations that allowed determine degradation pathways of endomorphins in vitro and in vivo and propose modifications that will lead to more stable analogs.  相似文献   

17.
In spite of concentrated efforts, the biosynthetic route of mu-opioid receptor agonist brain tetrapeptide endomorphins (Tyr-Pro-Trp-Phe-NH2 and Tyr-Pro-Phe-Phe-NH2), discovered in 1997, is still obscure. We report presently that 30 min after intracerebroventricular injection of 20 or 200 microCi [3H]Tyr-Pro (49.9 Ci mmol(-1)) the incorporated radioactivity was found in endomorphin-related tetra- and tripeptides in rat brain extracts. As detected by the combination of HPLC with radiodetection, a peak corresponding to endomorphin-2-OH could be identified in two of four extracts of "20 microCi" series. Radioactive peaks in position of Tyr, Tyr-Pro, Tyr-Pro-Phe or Tyr-Pro-Trp appeared regularly in both series and also in the "tetrapeptide cluster" constituted by endomorphins and their free carboxylic forms. In one of the four extracts in the "200 microCi" series a robust active peak in the position of endomorphin 2 could be detected. Intracerebroventricularly injected 100 nmol, but not 10 or 1000 nmol cold Tyr-Pro (devoid of opioid activity in vitro), caused a naloxone-reversible prolongation of tail-flick latency in rats, peaking between 15 and 30 min. We suggest that Tyr-Pro may serve as a biosynthetic precursor to endomorphin synthesis.  相似文献   

18.
Antisense oligodeoxynucleotides (ODN) were used to investigate the supraspinal antinociceptive effects of endomorphin-1, an endogenous peptide whose analgesic profile suggests that it is a ligand at the mu-opioid receptor. To selectively restrict the expression of this receptor, five ODN targeting distinct exons of the gene sequence were injected subchronically by the intracerebroventricular route (i.c.v.) into mice. The antinociception induced by endomorphin-1 was greatly reduced in animals receiving the ODN directed to nucleotides 677-697, which code for a sequence located on the second extracellular loop of the mu receptor. ODN-mu(un), one of the two antisense ODN directed to exon 1, also impaired endomorphin-1 antinociception. ODN targeting exons 2 and 4 were totally inactive. In contrast, all five ODN blocked the antinociception induced by morphine and beta-casomorphin. The analgesic potency of endomorphin-1, morphine, and beta-casomorphin remained unaltered by administration of an ODN to nucleotides 29-46 of the murine delta-opioid receptor gene sequence of a random-sequence ODN. This suggest the existence of diverse molecular forms for the mu-opioid receptor that mediate the antinociceptive effects of endomorphin-1 and morphine/beta-casomorphin.  相似文献   

19.
Liu J  Yu Y  Fan YZ  Chang H  Liu HM  Cui Y  Chen Q  Wang R 《Peptides》2005,26(4):607-614
Endomorphins, the endogenous, potent and selective mu-opioid receptor agonists, have been shown to decrease systemic arterial pressure (SAP) in rats. In the present study, responses to endomorphins were investigated in systemic vascular bed of alloxan-induced diabetic rats and in non-diabetic rats. Diabetes was induced by alloxan (220 mg/kg, i.p.) in male Wistar rats. At 4-5 weeks after the onset of diabetes, intravenous injections of endomorphins (1-30 nmol/kg) led to an increase of SAP and heart rate (HR) consistently and dosed-dependently. SAP increased 7.68+/-3.73, 11.19+/-4.55, 21.19+/-2.94 and 27.48+/-6.21% from the baseline at the 1, 3, 10 and 30 nmol/kg dose, respectively, of endomorphin 1 (n=4; p<0.05), and similar changes were observed in response to endomorphin 2. The hypertension could be antagonized markedly by i.p. 2 mg/kg of naloxone. On the other hand, bilateral vagotomy would attenuate the effects of hypertension and diminished the changes of HR in response to endomorphins. With diabetic rats, 6-10 weeks after the induction of diabetes, intravenous injections of endomorphins produced non-dose-related various changes in SAP, such as a single decrease, or a single increase, or biphasic changes characterized by an initial decrease followed by a secondary increase, or no change at all. These results suggest that diabetes may lead to the dysfunction of the cardiovascular system in response to endomorphins. Furthermore, the diabetic rats of 4-5 weeks after alloxan-treatment, the increase in SAP and HR caused by i.v. endomorphins might be explained by a changed effect of vagus and by a naloxone-sensitive mechanism.  相似文献   

20.
Nociceptin/orphanin FQ (N/OFQ) modulates various biological functions, including nociception, via selective stimulation of the N/OFQ peptide receptor (NOP). Here we used the NOP selective antagonist UFP-101 to characterize the receptor involved in the spinal antinociceptive effects of N/OFQ evaluated in the mouse tail withdrawal assay and to investigate the mechanism underlying this action by assessing excitatory postsynaptic currents (EPSC) in laminas I and II of the mouse spinal cord dorsal horn with patch-clamp techniques. Intrathecal (i.t.) injection of N/OFQ in the range of 0.1-10 nmol produced a dose dependent antinociceptive effect, which was prevented by UFP-101, but not by naloxone. In contrast the antinociceptive effect of the mu-opioid peptide receptor agonist endomorphin-1 was blocked by naloxone but not by UFP-101. Moreover, N/OFQ and endomorphin-1 induced a significant antinociceptive effect in wild type mice while in mice knockout for the NOP receptor gene only endomorphin-1 was found to be active. In mouse spinal cord slices 1 microM N/OFQ reduced EPSC to 60+/-4% of control values. This inhibitory effect was reversed in a concentration dependent manner by UFP-101 (pA2 value 6.44). The present results demonstrate that N/OFQ-induced spinal antinociception in vivo and inhibition of spinal excitatory transmission in vitro are mediated by receptors of the NOP type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号