首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ribosome translates the genetic information of an mRNA molecule into a sequence of amino acids. The ribosome utilizes tRNAs to connect elements of the RNA and protein worlds during protein synthesis, i.e. an anticodon as a unit of genetic information with the corresponding amino acid as a building unit of proteins. Three tRNA-binding sites are located on the ribosome, termed the A, P and E sites. In recent years the tRNA-binding sites have been localized on the ribosome by three different techniques, small-angle neutron scattering, cryo-electron microscopy and X-ray analyses of 70 S crystals. These high-resolution glimpses into various ribosomal states together with a large body of biochemical data reveal an intricate interplay between the tRNAs and the three ribosomal binding sites, providing an explanation for the remarkable features of the ribosome, such as the ability to select the correct ternary complex aminoacyl-tRNA.EF-Tu.GTP out of more than 40 extremely similar tRNA complexes, the precise movement of the tRNA(2).mRNA complex during translocation and the maintenance of the reading frame.  相似文献   

2.
A new RNA structural motif consisting of two double helices closely packed via minor grooves is found in many places in the ribosome structure. The packing requires that a GU base pair in one helix be packed against a Watson-Crick pair in the other helix. Two such motifs mediate the interaction of the P- and E-tRNA with the large ribosomal subunit. Analysis of the particular positions of these two motifs in view of the available data on occupancy of tRNA-binding sites and structural changes in the ribosome during the elongation cycle suggests a distinct role for each motif in tRNA translocation.  相似文献   

3.
A systematic study of protein environment of tRNA in ribosomes in model complexes representing different translation steps was carried out using the affinity labelling of the ribosomes with tRNA derivatives bearing aryl azide groups scattered statistically over tRNA guanine residues. Analysis of the proteins crosslinked to tRNA derivatives showed that the location of the derivatives in the aminoacyl (A) site led to the labelling of the proteins S5 and S7 in all complexes studied, whereas the labelling of the proteins S2, S8, S9, S11, S14, S16, S17, S18, S19, S21 as well as L9, L11, L14, L15, L21, L23, L24, L29 depended on the state of tRNA in A site. Similarly, the location of tRNA derivatives in the peptidyl (P) site resulted in the labelling of the proteins L27, S11, S13 and S19 in all states, whereas the labelling of the proteins S5, S7, S9, S12, S14, S20, S21 as well as L2, L13, L14, L17, L24, L27, L31, L32, L33 depended on the type of complex. The derivatives of tRNA(fMet) were found to crosslink to S1, S3, S5, S7, S9, S14 and L1, L2, L7/L12, L27. Based on the data obtained, a general principle of the dynamic functioning of ribosomes has been proposed: (i) the formation of each type of ribosomal complex is accompanied by changes in mutual arrangement of proteins - 'conformational adjustment' of the ribosome - and (ii) a ribosome can dynamically change its internal structure at each step of initiation and elongation; on the 70 S ribosome there are no rigidly fixed structures forming tRNA-binding sites (primarily A and P sites).  相似文献   

4.
Problems concerning the interaction of tRNA with Escherichia coli ribosomes in different functional states were studied. These problems deal first of all with the number of tRNA-binding sites on ribosome, the conservation of the codon-anticodon interaction at the P-site and with regions of tRNA interacting with ribosome. The problems concerning structural organization of tRNA-binding centers are discussed in more detail.  相似文献   

5.
Definition of the site of tRNA-binding to ribosomes is suggested on the basis of a free energy of tRNA-ribosome interaction. From this point of view disagreements that have arisen in recent years concerning the numbers of tRNA binding sites on the ribosome, their distribution between subunits, the properties of the third site E in ribosomes and the compatibility of new experimental data with different models of elongation cycle are discussed. The observation of the third site in the ribosome (messenger independent and with a presumably exit function) is not a refutation but an extension of Watson's model of translating ribosome.  相似文献   

6.
The key reaction of protein synthesis, peptidyl transfer, is catalysed in all living organisms by the ribosome - an advanced and highly efficient molecular machine. During the last decade extensive X-ray crystallographic and NMR studies of the three-dimensional structure of ribosomal proteins, ribosomal RNA components and their complexes with ribosomal proteins, and of several translation factors in different functional states have taken us to a new level of understanding of the mechanism of function of the protein synthesis machinery. Among the new remarkable features revealed by structural studies, is the mimicry of the tRNA molecule by elongation factor G, ribosomal recycling factor and the eukaryotic release factor 1. Several other translation factors, for which three-dimensional structures are not yet known, are also expected to show some form of tRNA mimicry. The efforts of several crystallographic and biochemical groups have resulted in the determination by X-ray crystallography of the structures of the 30S and 50S subunits at moderate resolution, and of the structure of the 70S subunit both by X-ray crystallography and cryo-electron microscopy (EM). In addition, low resolution cryo-EM models of the ribosome with different translation factors and tRNA have been obtained. The new ribosomal models allowed for the first time a clear identification of the functional centres of the ribosome and of the binding sites for tRNA and ribosomal proteins with known three-dimensional structure. The new structural data have opened a way for the design of new experiments aimed at deeper understanding at an atomic level of the dynamics of the system.  相似文献   

7.
A S Spirin 《FEBS letters》1984,165(2):280-284
An experimental system where the elongation of a polypeptide (polyphenylalanine) is performed stepwise and synchronously by purified Escherichia coli ribosome in a matrix-coupled poly (U) column is proposed for testing the number of non-overlapping tRNA binding sites on the elongating ribosome. If phenylalanyl[3H]tRNA is introduced into the column and bound with the ribosomes at the beginning of a given elongation cycle, deacylated [3H]tRNA is shown to be released from the ribosomes and comes out from the column at the translocation step of the next elongation cycle. The result obtained is fully predicted by the classical two-tRNA-site model and contradicts any model involving more than two non-overlapping high-affinity tRNA binding sites in the ribosomal elongation cycle.  相似文献   

8.
H J Rheinberger 《Biochimie》1991,73(7-8):1067-1088
During the last decade, a new model for the ribosomal elongation cycle has emerged. It is based on the finding that eubacterial ribosomes possess 3 tRNA binding sites. More recently, this has been confirmed for archaebacterial and eukaryotic ribosomes as well, and thus appears to be a universal feature of the protein synthetic machinery. Ribosomes from organisms of all 3 kingdoms harbor, in addition to the classical P and A sites, an E site (E for exit), into which deacylated tRNA is displaced during translocation, and from which it is expelled by the binding of an aminoacyl-tRNA to the A site at the beginning of the subsequent elongation round. The main features of the allosteric 3-site model of ribosomal elongation are the following: first, the third tRNA binding site is located 'upstream' adjacent to the P site with respect to the messenger, ie on the 5'-side of the P site. Second, during translocation, deacylated tRNA does not leave the ribosome from the P site, but co-translocates from the P site to the E site--when peptidyl-tRNA translocates from the A site to the P site. Third, deacylated tRNA is tightly bound to the E site in the post-translocational state, where it undergoes codon--anticodon interaction. Fourth, the elongating ribosome oscillates between 2 main conformations: (i), the pre-translocational conformer, where aminoacyl-tRNA (or peptidyl-tRNA) and peptidyl-tRNA (or deacylated tRNA) are firmly bound to the A and P sites, respectively; and (ii), the post-translocational conformer, where peptidyl-tRNA and deacylated tRNA are firmly bound to the P and E sites, respectively. The transition between the 2 states is regulated in an allosteric manner via negative cooperatively. It is modulated in a symmetrical fashion by the 2 elongation factors Tu and G. An elongating ribosome always maintains 2 high-affinity tRNA binding sites with 2 adjacent codon--anticodon interactions. The allosteric transition from the post- to the pre-translocational state is involved in the accuracy of aminoacyl-tRNA selection, and the maintenance of 2 codon--anticodon interactions helps to keep the messenger in frame during translation.  相似文献   

9.
V I Baranov  L A Ryabova 《Biochimie》1988,70(2):259-265
The release of deacylated tRNA from the ribosome as a result of translocation has been studied. Translating ribosomes prepared with poly(U)-S-S-Sepharose columns have been used. It has been shown that deacylated tRNA released from the ribosomal P site as a result of translocation rebinds with the vacated A site. Consistent with the known properties of the A site of the ribosome, this interaction is reversible, Mg2+-dependent, codon-specific and is inhibited by the antibiotic tetracycline. It has been concluded that the proposed three-site model of the ribosomal elongation cycle (Rheinberger and Nierhaus (1983) Proc. Natl. Acad. Sci. USA 80, 4213-4217) is not sound: the experimentally observed 'retention' of the deacylated tRNA on the ribosome after translocation can be explained by a codon-dependent rebinding to the A site, rather than by its transition to the 'E site', i.e., in terms of the classical two-site model.  相似文献   

10.
Alpha-sarcin cleaves one phosphodiester bond of 23S rRNA within 70S ribosomes or 50S subunits derived from E. coli. The resulting fragment was isolated and sequenced. The cleavage site was identified as being after G2661 and is located within a universally conserved dodecamer. Cleavage after G2661 specifically blocked the binding of both elongation factors, i.e. that of the ternary complex Phe-tRNA*EF-Tu*GMPPNP and of EF-G*GMPPNP, whereas all elongation-factor independent functions of the ribosome, such as association of the ribosomal subunits, tRNA binding to A and P sites, the accuracy of tRNA selection at both sites, the peptidyl transferase activity, and the EF-G independent, spontaneous translocation, were not affected at all. Control experiments with wheat germ ribosomes yielded an equivalent inhibition pattern. The data suggest that the universally conserved dodecamer containing the cleavage site G2661 is located at the presumably overlapping region of the binding sites of both elongation factors.  相似文献   

11.
Translation on the ribosome is controlled by external factors. During polypeptide lengthening, elongation factors EF-Tu and EF-G consecutively interact with the bacterial ribosome. EF-Tu binds and delivers an aminoacyl-tRNA to the ribosomal A site and EF-G helps translocate the tRNAs between their binding sites after the peptide bond is formed. These processes occur at the expense of GTP. EF-Tu:tRNA and EF-G are of similar shape, share a common binding site, and undergo large conformational changes on interaction with the ribosome. To characterize the internal motion of these two elongation factors, we used 25 ns long all-atom molecular dynamics simulations. We observed enhanced mobility of EF-G domains III, IV, and V and of tRNA in the EF-Tu:tRNA complex. EF-Tu:GDP complex acquired a configuration different from that found in the crystal structure of EF-Tu with a GTP analogue, showing conformational changes in the switch I and II regions. The calculated electrostatic properties of elongation factors showed no global similarity even though matching electrostatic surface patches were found around the domain I that contacts the ribosome, and in the GDP/GTP binding region.  相似文献   

12.
Function of the ribosomal E-site: a mutagenesis study   总被引:2,自引:2,他引:0       下载免费PDF全文
Ribosomes synthesize proteins according to the information encoded in mRNA. During this process, both the incoming amino acid and the nascent peptide are bound to tRNA molecules. Three binding sites for tRNA in the ribosome are known: the A-site for aminoacyl-tRNA, the P-site for peptidyl-tRNA and the E-site for the deacylated tRNA leaving the ribosome. Here, we present a study of Escherichia coli ribosomes with the E-site binding destabilized by mutation C2394G of the 23S rRNA. Expression of the mutant 23S rRNA in vivo caused increased frameshifting and stop codon readthrough. The progression of these ribosomes through the ribosomal elongation cycle in vitro reveals ejection of deacylated tRNA during the translocation step or shortly after. E-site compromised ribosomes can undergo translocation, although in some cases it is less efficient and results in a frameshift. The mutation affects formation of the P/E hybrid site and leads to a loss of stimulation of the multiple turnover GTPase activity of EF-G by deacylated tRNA bound to the ribosome.  相似文献   

13.
We have previously proposed a three-site model for the elongation cycle. The model is characterized by the presence of two tRNAs on the ribosome before and after translocation. We have already shown a first consequence of the model, namely that the translocation reaction is not coupled with a release of deacylated tRNA. Here we demonstrate the following conclusions. Occupation of the A site triggers the tRNA release from the E site, i.e. the A site occupation induces a drastic decrease in the affinity of the E site for deacylated tRNA. In the concentration range of deacylated tRNA in which a ribosome binds a second tRNA in addition to that one already present at the P site the deacylated tRNA does not compete for one and the same binding site with an A site ligand (AcPhe-tRNA) at 37 degrees C. It follows that the second deacylated tRNA binds to a site, the E site, which is physically distinct from the A site. When the ribosome binds a deacylated tRNA at the E site (in addition to a tRNA at the P site), the A site cannot be occupied by AcPhe-tRNA at 0 degree C and only poorly by the ternary complex elongation factor Tu . Phe-tRNA . guanyl-5'-yl imidodiphosphate. At 37 degrees C a significant A site binding is observed, with a corresponding tRNA release from the E site. In contrast, if the E site is free and only the P site occupied, the A site can bind significant amounts of charged tRNA already at 0 degree C. It follows that an occupied E site induces a low-affinity state of the A site. Thus, the ribosome always contains two high-affinity binding sites, which are A and P sites before and P and E sites after translocation. A and E sites are allosterically linked in a bidirectional manner.  相似文献   

14.
Translocation of the mRNA:tRNA complex through the ribosome is promoted by elongation factor G (EF-G) during the translation cycle. Previous studies established that modification of ribosomal proteins with thiol-specific reagents promotes this event in the absence of EF-G. Here we identify two small subunit interface proteins S12 and S13 that are essential for maintenance of a pretranslocation state. Omission of these proteins using in vitro reconstitution procedures yields ribosomal particles that translate in the absence of enzymatic factors. Conversely, replacement of cysteine residues in these two proteins yields ribosomal particles that are refractive to stimulation with thiol-modifying reagents. These data support a model where S12 and S13 function as control elements for the more ancient rRNA- and tRNA-driven movements of translocation.  相似文献   

15.
Affinity labelling of E. coli ribosomes near the donor tRNA-binding (P) site was studied with the use of photoreactive derivatives of tRNAPhe bearing arylazidogroups on N7 atoms of guanine residues (azido-tRNA). UV-irradiation of complexes 70S ribosome.poly(U).azido- tRNA(P-site) and 70S ribosome.poly(U).azido-tRNA(P-site).Phe- tRNAPhe(A-site) resulted in covalent attachment of azido-tRNA to ribosomes, both subunits being labelled. In both cases modification extent of 30S subunit was two-fold than that of the 50S one. It was shown that when the A-site was free the azido-tRNA located in P-site labelled proteins S9, S11, S12, S13, S21 and L14, L27, L31. Azido-tRNA located in P-site when the A-site was occupied with Phe-tRNAPhe labelled proteins S11, S12, S13, S14, S19, L32/L33 and possibly L23, L25. From the comparison of the sets of proteins labelled when A-site was free or occupied a conclusion was drawn that aminoacyl-tRNA located in ribosomal A-site affects the arrangement of deacylated tRNA in P-site. Data obtained allow to propose that proteins S5, S19, S20 and L24, L33 interact with guanine residues important for the tRNA tertiary structure formation.  相似文献   

16.
Yamamoto T  Izumi S  Gekko K 《FEBS letters》2006,580(15):3638-3642
The 70S ribosome from Escherichia coli is a supermacro complex (MW: 2.7MDa) comprising three RNA molecules and more than 50 proteins. We have for the first time successfully analyzed the flexibility of 70S ribosomal proteins in solution by detecting the hydrogen/deuterium exchange with mass spectrometry. Based on the deuterium incorporation map of the X-ray structure obtained at the time of each exchange, we demonstrate the structure-flexibility-function relationship of ribosome focusing on the deuterium incorporation of the proteins binding ligands (tRNA, mRNA, and elongation factor) and the relation with structural assembly processes.  相似文献   

17.
Spirin AS 《FEBS letters》2002,514(1):2-10
General principles of structure and function of the ribosome are surveyed, and the translating ribosome is regarded as a molecular conveying machine. Two coupled conveying processes, the passing of compact tRNA globules and the drawing of linear mRNA chain through intraribosomal channel, are considered driven by discrete acts of translocation during translation. Instead of mechanical transmission mechanisms and power-stroke 'motors', thermal motion and chemically induced changes in affinities of ribosomal binding sites for their ligands (tRNAs, mRNA, elongation factors) are proposed to underlie all the directional movements within the ribosomal complex. The GTP-dependent catalysis of conformational transitions by elongation factors during translation is also discussed.  相似文献   

18.
In addition to the conserved translation elongation factors eEF1A and eEF2, fungi require a third essential elongation factor, eEF3. While eEF3 has been implicated in tRNA binding and release at the ribosomal A and E sites, its exact mechanism of action is unclear. Here, we show that eEF3 acts at the mRNA–tRNA translocation step by promoting the dissociation of the tRNA from the E site, but independent of aminoacyl‐tRNA recruitment to the A site. Depletion of eEF3 in vivo leads to a general slowdown in translation elongation due to accumulation of ribosomes with an occupied A site. Cryo‐EM analysis of native eEF3‐ribosome complexes shows that eEF3 facilitates late steps of translocation by favoring non‐rotated ribosomal states, as well as by opening the L1 stalk to release the E‐site tRNA. Additionally, our analysis provides structural insights into novel translation elongation states, enabling presentation of a revised yeast translation elongation cycle.  相似文献   

19.
20.
Ribosome recycling factor (RRF) disassembles post-termination ribosomal complexes in concert with elongation factor EF-G freeing the ribosome for a new round of polypeptide synthesis. How RRF interacts with EF-G and disassembles post-termination ribosomes is unknown. RRF is structurally similar to tRNA and is therefore thought to bind to the ribosomal A site and be translocated by EF-G during ribosome disassembly as a mimic of tRNA. However, EF-G variants that remain active in GTP hydrolysis but are defective in tRNA translocation fully activate RRF function in vivo and in vitro. Furthermore, RRF and the GTP form of EF-G do not co-occupy the terminating ribosome in vitro; RRF is ejected by EF-G from the preformed complex. These findings suggest that RRF is not a functional mimic of tRNA and disassembles the post-termination ribosomal complex independently of the translocation activity of EF-G.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号