首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mouse cytomegalovirus M33 protein is highly homologous to mammalian G protein-coupled receptors (GPCRs) yet functions in an agonist-independent manner to activate a number of classical GPCR signal transduction pathways. M33 is functionally similar to the human cytomegalovirus-encoded US28 GPCR in its ability to induce inositol phosphate accumulation, activate NF-kappaB, and promote smooth muscle cell migration. This ability to promote cellular migration suggests a role for viral GPCRs like M33 in viral dissemination in vivo, and accordingly, M33 is required for efficient murine cytomegalovirus replication in the mouse. Although previous studies have identified several M33-induced signaling pathways, little is known regarding the membrane-proximal events involved in signaling and regulation of this receptor. In this study, we used recombinant retroviruses to express M33 in wild-type and Galpha(q/11)(-/-) mouse embryonic fibroblasts and show that M33 couples directly to the G(q/11) signaling pathway to induce high levels of total inositol phosphates in an agonist-independent manner. Our data also show that GRK2 is a potent regulator of M33-induced G(q/11) signaling through its ability to phosphorylate M33 and sequester Galpha(q/11) proteins. Taken together, the results from this study provide the first genetic evidence of a viral GPCR coupling to a specific G protein signaling pathway as well as identify the first viral GPCR to be regulated specifically by both the catalytic activity of the GRK2 kinase domain and the Galpha(q/11) binding activity of the GRK2 RH domain.  相似文献   

2.
G protein-coupled receptor kinase 2 (GRK2) and beta-arrestin 1 are key regulatory proteins that modulate the desensitization and resensitization of a wide variety of G protein-coupled receptors (GPCRs) involved in brain functions. In this report, we describe the postnatal developmental profile of the mRNA and protein levels of GRK2 and beta-arrestin 1 in rat brain. The expression levels of GRK2 and beta-arrestin 1 display a marked increase at the second and third week after birth, respectively, consistent with an involvement of these proteins in brain maturation processes. However, the expression attained at birth and during the first postnatal week with respect to adult values (45-70% for GRK2, approximately 30% for beta-arrestin 1) is relatively high compared to that reported for several GPCRs, indicating the existence of changes in the ratio of receptors to their regulatory proteins during brain development. On the other hand, we report that experimental hypothyroidism results in changes in the patterns of expression of GRK2 and beta-arrestin 1 in cerebral cortex, leading to a 25-30% reduction in GRK2 levels at several stages of development. Such changes could help to explain the alterations in GPCR signaling that occur during this pathophysiological condition.  相似文献   

3.
Characterization of the GRK2 binding site of Galphaq   总被引:1,自引:0,他引:1  
Heterotrimeric guanine nucleotide-binding proteins (G proteins) transmit signals from membrane bound G protein-coupled receptors (GPCRs) to intracellular effector proteins. The G(q) subfamily of Galpha subunits couples GPCR activation to the enzymatic activity of phospholipase C-beta (PLC-beta). Regulators of G protein signaling (RGS) proteins bind to activated Galpha subunits, including Galpha(q), and regulate Galpha signaling by acting as GTPase activating proteins (GAPs), increasing the rate of the intrinsic GTPase activity, or by acting as effector antagonists for Galpha subunits. GPCR kinases (GRKs) phosphorylate agonist-bound receptors in the first step of receptor desensitization. The amino termini of all GRKs contain an RGS homology (RH) domain, and binding of the GRK2 RH domain to Galpha(q) attenuates PLC-beta activity. The RH domain of GRK2 interacts with Galpha(q/11) through a novel Galpha binding surface termed the "C" site. Here, molecular modeling of the Galpha(q).GRK2 complex and site-directed mutagenesis of Galpha(q) were used to identify residues in Galpha(q) that interact with GRK2. The model identifies Pro(185) in Switch I of Galpha(q) as being at the crux of the interface, and mutation of this residue to lysine disrupts Galpha(q) binding to the GRK2-RH domain. Switch III also appears to play a role in GRK2 binding because the mutations Galpha(q)-V240A, Galpha(q)-D243A, both residues within Switch III, and Galpha(q)-Q152A, a residue that structurally supports Switch III, are defective in binding GRK2. Furthermore, GRK2-mediated inhibition of Galpha(q)-Q152A-R183C-stimulated inositol phosphate release is reduced in comparison to Galpha(q)-R183C. Interestingly, the model also predicts that residues in the helical domain of Galpha(q) interact with GRK2. In fact, the mutants Galpha(q)-K77A, Galpha(q)-L78D, Galpha(q)-Q81A, and Galpha(q)-R92A have reduced binding to the GRK2-RH domain. Finally, although the mutant Galpha(q)-T187K has greatly reduced binding to RGS2 and RGS4, it has little to no effect on binding to GRK2. Thus the RH domain A and C sites for Galpha(q) interaction rely on contacts with distinct regions and different Switch I residues in Galpha(q).  相似文献   

4.
5.
Cell migration requires integration of signals arising from both the extracellular matrix and messengers acting through G protein-coupled receptors (GPCRs). We find that increased levels of G protein-coupled receptor kinase 2 (GRK2), a key player in GPCR regulation, potentiate migration of epithelial cells towards fibronectin, whereas such process is decreased in embryonic fibroblasts from hemizygous GRK2 mice or upon knockdown of GRK2 expression. Interestingly, the GRK2 effect on fibronectin-mediated cell migration involves the paracrine/autocrine activation of a sphingosine-1-phosphate (S1P) Gi-coupled GPCR. GRK2 positively modulates the activity of the Rac/PAK/MEK/ERK pathway in response to adhesion and S1P by a mechanism involving the phosphorylation-dependent, dynamic interaction of GRK2 with GIT1, a key scaffolding protein in cell migration processes. Furthermore, decreased GRK2 levels in hemizygous mice result in delayed wound healing rate in vivo, consistent with a physiological role of GRK2 as a regulator of coordinated integrin and GPCR-directed epithelial cell migration.  相似文献   

6.
7.
In addition to its postsynaptic role, the dopamine D3 receptor (D3R) serves as a presynaptic autoreceptor, where it provides continuous feedback regulation of dopamine release at nerve terminals for processes as diverse as emotional tone and locomotion. D3R signaling ability is supported by an association with filamin (actin-binding protein 280), which localizes the receptor with G proteins in plasma membrane lipid rafts but is not appreciably antagonized in a classical sense by the ligand-mediated activation of G protein-coupled receptor kinases (GRKs) and beta-arrestins. In this study, we investigate GRK-mediated regulation of D3R.filamin complex stability and its effect on D3R.G protein signaling potential. Studies in HEK-293 cells show that in the absence of agonist the D3R immunoprecipitates in a complex containing both filamin A and beta-arrestin2. Moreover, the filamin directly interacts with beta-arrestin2 as assessed by immunoprecipitation and yeast two-hybrid studies. With reductions in basal GRK2/3 activity, an increase in the basal association of filamin A and beta-arrestin2 with D3R is observed. Conversely, increases in the basal GRK2/3 activity result in a reduction in the interaction between the D3R and filamin but a relative increase in the agonist-mediated interaction between beta-arrestin2 and the D3R. Our data suggest that the D3R, filamin A, and beta-arrestin form a signaling complex that is destabilized by agonist- or expression-mediated increases in GRK2/3 activity. These findings provide a novel GRK-based mechanism for regulating D3R signaling potential and provide insight for interpreting D3R autoreceptor behavior.  相似文献   

8.
G protein-coupled receptor kinase (GRK)-mediated receptor phosphorylation and beta-arrestin binding uncouple G protein-coupled receptors (GPCRs) from their respective G proteins and initiates the process of receptor internalization. In the case of the beta(2)-adrenergic receptor and lysophosphatidic acid receptor, these processes can lead to ERK activation. Here we identify a novel mechanism whereby the activity of GRK2 is regulated by feedback inhibition. GRK2 is demonstrated to be a phosphoprotein in cells. Mass spectrometry and mutational analysis localize the site of phosphorylation on GRK2 to a carboxyl-terminal serine residue (Ser(670)). Phosphorylation at Ser(670) impairs the ability of GRK2 to phosphorylate both soluble and membrane-incorporated receptor substrates and dramatically attenuates Gbetagamma-mediated activation of this enzyme. Ser(670) is located in a peptide sequence that conforms to an ERK consensus phosphorylation sequence, and in vitro, in the presence of heparin, ERK1 phosphorylates GRK2. Inhibition of ERK activity in HEK293 cells potentiates GRK2 activity, whereas, conversely, ERK activation inhibits GRK2 activity. The discovery that ERK phosphorylates and inactivates GRK2 suggests that ERK participates in a feedback regulatory loop. By negatively regulating GRK-mediated receptor phosphorylation, beta-arrestin-mediated processes such as Src recruitment and clathrin-mediated internalization, which are required for GPCR-mediated ERK activation, are inhibited, thus dampening further ERK activation.  相似文献   

9.
Penela P  Elorza A  Sarnago S  Mayor F 《The EMBO journal》2001,20(18):5129-5138
G-protein-coupled receptor kinase 2 (GRK2) plays a key role in the regulation of G-protein-coupled receptors (GPCRs). GRK2 expression is altered in several pathological conditions, but the molecular mechanisms that modulate GRK2 cellular levels are largely unknown. We recently have described that GRK2 is degraded rapidly by the proteasome pathway. This process is enhanced by GPCR stimulation and is severely impaired in a GRK2 mutant that lacks kinase activity (GRK2-K220R). In this report, we find that beta-arrestin function and Src-mediated phosphorylation of GRK2 are critically involved in GRK2 proteolysis. Overexpression of beta-arrestin triggers GRK2-K220R degradation based on its ability to recruit c-Src, since this effect is not observed with beta-arrestin mutants that display an impaired c-Src interaction. The presence of an inactive c-Src mutant or of tyrosine kinase inhibitors strongly inhibits co-transfected or endogenous GRK2 turnover, respectively, and a GRK2 mutant with impaired phosphorylation by c-Src shows a markedly retarded degradation. This pathway for the modulation of GRK2 protein stability puts forward a new feedback mechanism for regulating GRK2 levels and GPCR signaling.  相似文献   

10.
G protein-coupled receptors (GPCRs) mediate diverse signaling processes, including olfaction. G protein-coupled receptor kinases (GRKs) are important regulators of G protein signal transduction that specifically phosphorylate activated GPCRs to terminate signaling. Despite previously described roles for GRKs in GPCR signal downregulation, animals lacking C. elegans G protein-coupled receptor kinase-2 (Ce-grk-2) function are not hypersensitive to odorants. Instead, decreased Ce-grk-2 function in adult sensory neurons profoundly disrupts chemosensation, based on both behavioral analysis and Ca(2+) imaging. Although mammalian arrestin proteins cooperate with GRKs in receptor desensitization, loss of C. elegans arrestin-1 (arr-1) does not disrupt chemosensation. Either overexpression of the C. elegans Galpha subunit odr-3 or loss of eat-16, which encodes a regulator of G protein signaling (RGS) protein, restores chemosensation in Ce-grk-2 mutants. These results demonstrate that loss of GRK function can lead to reduced GPCR signal transduction and suggest an important role for RGS proteins in the regulation of chemosensation.  相似文献   

11.
G protein-coupled receptors (GPCRs) transduce cellular signals from hormones, neurotransmitters, light, and odorants by activating heterotrimeric guanine nucleotide-binding (G) proteins. For many GPCRs, short term regulation is initiated by agonist-dependent phosphorylation by GPCR kinases (GRKs), such as GRK2, resulting in G protein/receptor uncoupling. GRK2 also regulates signaling by binding G alpha(q/ll) and inhibiting G alpha(q) stimulation of the effector phospholipase C beta. The binding site for G alpha(q/ll) resides within the amino-terminal domain of GRK2, which is homologous to the regulator of G protein signaling (RGS) family of proteins. To map the Galpha(q/ll) binding site on GRK2, we carried out site-directed mutagenesis of the RGS homology (RH) domain and identified eight residues, which when mutated, alter binding to G alpha(q/ll). These mutations do not alter the ability of full-length GRK2 to phosphorylate rhodopsin, an activity that also requires the amino-terminal domain. Mutations causing G alpha(q/ll) binding defects impair recruitment to the plasma membrane by activated G alpha(q) and regulation of G alpha(q)-stimulated phospholipase C beta activity when introduced into full-length GRK2. Two different protein interaction sites have previously been identified on RH domains. The G alpha binding sites on RGS4 and RGS9, called the "A" site, is localized to the loops between helices alpha 3 and alpha 4, alpha 5 and alpha 6, and alpha 7 and alpha 8. The adenomatous polyposis coli (APC) binding site of axin involves residues on alpha helices 3, 4, and 5 (the "B" site) of its RH domain. We demonstrate that the G alpha(q/ll) binding site on the GRK2 RH domain is distinct from the "A" and "B" sites and maps primarily to the COOH terminus of its alpha 5 helix. We suggest that this novel protein interaction site on an RH domain be designated the "C" site.  相似文献   

12.
The endocytic pathway of the secretin receptor, a class II GPCR, is unknown. Some class I G protein-coupled receptors (GPCRs), such as the beta(2)-adrenergic receptor (beta(2)-AR), internalize in clathrin-coated vesicles and this process is mediated by G protein-coupled receptor kinases (GRKs), beta-arrestin, and dynamin. However, other class I GPCRs, for example, the angiotensin II type 1A receptor (AT(1A)R), exhibit different internalization properties than the beta(2)-AR. The secretin receptor, a class II GPCR, is a GRK substrate, suggesting that like the beta(2)-AR, it may internalize via a beta-arrestin and dynamin directed process. In this paper we characterize the internalization of a wild-type and carboxyl-terminal (COOH-terminal) truncated secretin receptor using flow cytometry and fluorescence imaging, and compare the properties of secretin receptor internalization to that of the beta(2)-AR. In HEK 293 cells, sequestration of both the wild-type and COOH-terminal truncated secretin receptors was unaffected by GRK phosphorylation, whereas inhibition of cAMP-dependent protein kinase mediated phosphorylation markedly decreased sequestration. Addition of secretin to cells resulted in a rapid translocation of beta-arrestin to plasma membrane localized receptors; however, secretin receptor internalization was not reduced by expression of dominant negative beta-arrestin. Thus, like the AT(1A)R, secretin receptor internalization is not inhibited by reagents that interfere with clathrin-coated vesicle-mediated internalization and in accordance with these results, we show that secretin and AT(1A) receptors colocalize in endocytic vesicles. This study demonstrates that the ability of secretin receptor to undergo GRK phosphorylation and beta-arrestin binding is not sufficient to facilitate or mediate its internalization. These results suggest that other receptors may undergo endocytosis by mechanisms used by the secretin and AT(1A) receptors and that kinases other than GRKs may play a greater role in GPCR endocytosis than previously appreciated.  相似文献   

13.
The beta-arrestins, a small family of G protein-coupled receptor (GPCR)-binding proteins involved in receptor desensitization, have been shown to bind extracellular signal-regulated kinases 1 and 2 (ERK1/2) and function as scaffolds for GPCR-stimulated ERK1/2 activation. To better understand the mechanism of beta-arrestin-mediated ERK1/2 activation, we compared ERK1/2 activation by the wild-type neurokinin 1 (NK1) receptor with a chimeric NK1 receptor having beta-arrestin1 fused to the receptor C terminus (NK1-betaArr1). The NK1 receptor couples to both G(s) and G(q/11), resides on the plasma membrane, and mediates rapid ERK1/2 activation and nuclear translocation in response to neurokinin A. In contrast, NK1-betaArr1 is a G protein-uncoupled "constitutively desensitized" receptor that resides almost entirely in an intracellular endosomal compartment. Despite its inability to respond to neurokinin A, we found that NK1-betaArr1 expression caused robust constitutive activation of cytosolic ERK1/2 and that endogenous Raf, MEK1/2, and ERK1/2 coprecipitated in a complex with NK1-betaArr1. While agonist-dependent ERK1/2 activation by the NK1 receptor was independent of protein kinase A (PKA) or PKC activity, NK1-betaArr1-mediated ERK1/2 activation was completely inhibited when basal PKA and PKC activity were blocked. In addition, the rate of ERK1/2 dephosphorylation was slowed in NK1-betaArr1-expressing cells, suggesting that beta-arrestin-bound ERK1/2 is protected from mitogen-activated protein kinase phosphatase activity. These data suggest that beta-arrestin binding to GPCRs nucleates the formation of a stable "signalsome" that functions as a passive scaffold for the ERK1/2 cascade while confining ERK1/2 activity to an extranuclear compartment.  相似文献   

14.
G protein-coupled receptors (GPCRs) are regulated by multiple families of kinases including GPCR kinases (GRKs). GRK4 is constitutively active towards GPCRs, and polymorphisms of GRK4γ are linked to hypertension. We examined, through co-immunoprecipitation, the interactions between GRK4γ and the Gα and Gβ subunits of heterotrimeric G proteins. Because GRK4 has been shown to inhibit Gαs-coupled GPCR signaling and lacks a PH domain, we hypothesized that GRK4γ would interact with active Gαs, but not Gβ. Surprisingly, GRK4γ preferentially interacts with inactive Gαs and Gβ to a greater extent than active Gαs. GRK4γ also interacts with inactive Gα13 and Gβ. Functional studies demonstrate that wild-type GRK4γ, but not kinase-dead GRK4γ, ablates isoproterenol-mediated cAMP production indicating that the kinase domain is responsible for GPCR regulation. This evidence suggests that binding to inactive Gαs and Gβ may explain the constitutive activity of GRK4γ towards Gαs-coupled receptors.  相似文献   

15.
beta-adrenergic receptors (beta-ARs), prototypic G-protein-coupled receptors (GPCRs), play a critical role in regulating numerous physiological processes. The GPCR kinases (GRKs) curtail G-protein signaling and target receptors for internalization. Nitric oxide (NO) and/or S-nitrosothiols (SNOs) can prevent the loss of beta-AR signaling in vivo, but the molecular details are unknown. Here we show in mice that SNOs increase beta-AR expression and prevent agonist-stimulated receptor downregulation; and in cells, SNOs decrease GRK2-mediated beta-AR phosphorylation and subsequent recruitment of beta-arrestin to the receptor, resulting in the attenuation of receptor desensitization and internalization. In both cells and tissues, GRK2 is S-nitrosylated by SNOs as well as by NO synthases, and GRK2 S-nitrosylation increases following stimulation of multiple GPCRs with agonists. Cys340 of GRK2 is identified as a principal locus of inhibition by S-nitrosylation. Our studies thus reveal a central molecular mechanism through which GPCR signaling is regulated.  相似文献   

16.
G protein-coupled receptor kinases (GRKs) mediate agonist-induced phosphorylation and desensitization of various G protein-coupled receptors (GPCRs). We investigate the role of GRK2 on epidermal growth factor (EGF) receptor signaling, including EGF-induced extracellular signal-regulated kinase and mitogen-activated protein kinase (ERK/MAPK) activation and EGFR internalization. Immunoprecipitation and immunofluorescence experiments show that EGF stimulates GRK2 binding to EGFR complex and GRK2 translocating from cytoplasm to the plasma membrane in human embryonic kidney 293 cells. Western blotting assay shows that EGF-induced ERK/MAPK phosphorylation increases 1.9-fold, 1.1-fold and 1.5fold (P〈0.05) at time point 30, 60 and 120 min, respectively when the cells were transfected with GRK2,suggesting the regulatory role of GRK2 on EGF-induced ERK/MAPK activation. Flow cytometry experiments show that GRK2 overexpression has no effect on EGF-induced EGFR internalization, however, it increases agonist-induced G protein-coupled δ5 opioid receptor internalization by approximately 40% (P〈0.01). Overall,these data suggest that GRK2 has a regulatory role in EGF-induced ERK/MAPK activation, and that the mechanisms underlying the modulatory role of GRK2 in EGFR and GPCR signaling pathways are somewhat different at least in receptor internalization.  相似文献   

17.
18.
19.
Hypertension, elevated arterial pressure, occurs as the consequence of increased peripheral resistance. G protein-coupled receptors (GPCRs) contribute to the regulation of vasodilator and vasoconstrictor responses, and their activity is regulated by a family of GPCR kinases (GRKs). GRK2 expression is increased in hypertension and this facilitates the development of the hypertensive state by increasing the desensitization of GPCRs important for vasodilation. We demonstrate here, that genetic knockdown of GRK2 using a small hairpin (sh) RNA results in altered vascular reactivity and the development of hypertension between 8–12 weeks of age in shGRK2 mice due to enhanced Gαq/11 signaling. Vascular smooth muscle cells (VSMCs) cultured from shGRK2 knockdown mice show increases in GPCR-mediated Gαs and Gαq/11 signaling, as the consequence of reduced GRK2-mediated desensitization. In addition, agonists and biased agonists exhibited age-dependent alterations in ERK1/2 and Akt signaling, as well as cell proliferation and migration responses in shGRK2 knockdown VSMCs when cultured from mice that are either 3 months or 6 months of age. Changes in angiotensin II-stimulated ERK1/2 phosphorylation are observed in VSMCs derived from 6-week-old shGRK2 mice prior to the development of the hypertensive phenotype. Thus, our findings indicate that the balance between mechanisms regulating vascular tone are shifted to favor vasoconstriction in the absence of GRK2 expression and that this leads to the age-dependent development of hypertension, as a consequence of global alterations in GPCR signaling. Consequently, therapeutic strategies that target GRK2 activity, not expression, may be more effective for the treatment of hypertension.  相似文献   

20.
Sherrill JD  Miller WE 《Life sciences》2008,82(3-4):125-134
Members of the herpesvirus family, including human cytomegalovirus (HCMV) and Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8), encode G protein-coupled receptor (GPCR) homologs, which strongly activate classical G protein signal transduction networks within the cell. In animal models of herpesvirus infection, the viral GPCRs appear to play physiologically important roles by enabling viral replication within tropic tissues and by promoting reactivation from latency. While a number of studies have defined intracellular signaling pathways activated by herpesviral GPCRs, it remains unclear if their physiological function is subjected to the process of desensitization as observed for cellular GPCRs. G protein-coupled receptor kinases (GRK) and arrestin proteins have been recently implicated in regulating viral GPCR signaling; however, the role that these desensitization proteins play in viral GPCR function in vivo remains unknown. Here, we review what is currently known regarding viral GPCR desensitization and discuss potential biological ramifications of viral GPCR regulation by the host cell desensitization machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号