首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We have compared the frequencies of chromosomal aberrations in skin fibroblasts from persons with Down's syndrome (trisomy 21) with those from normal diploid controls exposed to 60Co γ-radiation in vitro. No difference between the chromosomal radiosensitivities of the two groups was observed, nor did the two groups differ in the background frequency of spontaneous aberrations. These data support the hypothesis that the increased in vitro chromosomal radiosensitivity of lymphocytes reported to be associated with trisomy 21 is not typical of all tissues.  相似文献   

2.
Chronological changes of chromosome aberration rates related to accumulated doses in chronically exposed humans and animals at a low-dose-rate have not been well studied. C3H female specific pathogen-free mice (8 weeks of age) were chronically irradiated. Chromosome aberration rate in mouse splenocytes after long-term exposure to low-dose-rate (LDR) gamma-rays was serially determined by conventional Giemsa method. Incidence of dicentrics and centric rings increased almost linearly up to 8000 mGy following irradiation for about 400 days at a LDR of 20 mGy/day. Clear dose-rate effects were observed in the chromosome aberration frequencies between dose rates of 20 mGy/day and 200 Gy/day. Furthermore, the frequencies of complex aberrations increased as accumulated doses increased in LDR irradiation. This trend was also observed for the incidences of micronuclei and trisomies of chromosomes 5, 13 and 18 in splenocytes, detected by micronucleus assay and metaphase fluorescence in situ hybridization (FISH) method, respectively. Incidences of 2-4 micronuclei and trisomy increased in mouse splenocytes after irradiation of 8000 mGy at a LDR of 20 mGy/day. These complex chromosome aberrations and numerical chromosome aberrations seem to be induced indirectly after radiation exposure and thus the results indicate that continuous gamma-ray irradiation for 400 days at LDR of 20 mGy/day induced chromosomal instability in mice. These results are important to evaluate the biological effects of long-term exposure to LDR radiation in humans.  相似文献   

3.
The frequency of cells with chromosome aberrations and the number of aberrations per cell have been studied by metaphase analysis in the nonirradiated progeny of irradiated human blood lymphocytes. DNA fragmentation (DNA double-stranded breaks) has been investigated by DNA comet assay. To study the adaptive response (AR), PHA-stimulated lymphocytes were irradiated by the adaptive dose (0.05 Gy) in 24 h and by challenge dose (1 Gy) in 48 h after stimulation. The first through fourth mitoses were identified by 5-bromodeoxyuridine. It was found that the frequency of chromosome aberrations and double-strand breaks were increased in all mitotic cycles after the challenge irradiation. In most individuals, the adaptive response is induced by adaptive and challenge irradiations in the first and the second mitotic cycles (48 and 72 h after stimulation, respectively); however, it is absent in the third and the fourth mitoses. In the first mitosis (1Gy in 48 h after stimulation), only chromatid aberrations are observed; chromosome aberrations were registered in subsequent mitoses. DNA comet assay showed that the adaptive response was obvious at 48–72 h, but not 96 h, after stimulation. It can be concluded that the nonirradiated progeny of irradiated lymphocytes have genomic instability. The adaptive response is manifested up to the third mitosis and is explained by the decreasing number of chromatid and chromosome aberrations and DNA fragmentation. We suppose that double-stranded DNA breaks may be damage signals for the induction of adaptive response.  相似文献   

4.
PHA-stimulated human lymphocytes in the G1 stage were irradiated with UV radiation and X-rays, and the cells were analyzed for chromosomal aberrations in the first mitotic division. The frequency of dicentric chromosomes after single X-irradiation in the G1 stage was about twice the yield in the G0 stage. No increase in the yield of dicentrics was observed after combined irradiation with UV and X-rays. This is contrary to the finding for G0 lymphocytes, where a 2-fold increase of chromosome aberrations was observed. UV irradiation of G1 lymphocytes induced chromatid-type aberrations whereas no significant yield of dicentric chromosomes was observed. This is in agreement with previous findings in Chinese hamster cells in the G1 stage [7]. Irradiation of G0 lymphocytes with UV radiation induce a low frequency of dicentric chromosomes. Thus, the present data indicate that the ratio between chromosome-type and chromatid-type aberrations is different in the G1 and G0 stages in human lymphocytes irradiated with UV radiation.  相似文献   

5.
Summary Human leukocyte cultures were irradiated with 200 R X-rays before the addition of phytohemagglutinin (PHA) in the G0-stage and at different times up to 25 h within the first G1-phase of the cell cyle after the addition of PHA. The results of the analysis of chromosomal aberrations show that the frequencies of dicentric chromosomes increase significantly when leukocytes leave the G0-stage, reaching a maximum yield of aberrations about halfway through the first G1-phase. After that, toward the end of the G1-phase, the frequencies of dicentric chromosomes decrease again, to a level similar to that found in the G0-stage. Different possible explanations for the differential chromosomal radiosensitivity of human leukocytes within the first poststimulation G1-phase are discussed.  相似文献   

6.
Short treatment (up to 1 h) of cytosine arabinoside (araC) increases the frequencies of aberrations induced by X-rays in human lymphocytes, evaluated at the first mitosis following stimulation, or as prematurely condensed chromosomes of G0 nuclei. Parallel biochemical experiments using nucleoid sedimentation technique, demonstrate that araC inhibits rejoining of DNA-strand breaks effectively. These results point out that X-ray-induced short-lived DNA strand breaks lead to chromosomal aberrations in human lymphocytes.  相似文献   

7.
Experiments were carried out using human lymphocytes in order to test the effect of pH shifts on radiosensitivity of cells irradiated in the G2 stage. In our culture conditions constant variations in medium pH over the range of 7.4–6.8 were observed as a function of incubation time after PHA stimulation; in addition the pH of the medium was adjusted in parallel cultures over the range of 5.9–8.2. Then we exposed the cultures with different pH to a treatment of X-rays delivered 2 h before fixation.

The pH of the medium was found to greatly affect the yield of induced chromatid aberrations.  相似文献   


8.
The effect of prolonged exposure to a hypertonic medium on human lymphocytes during mitogenic stimulation with phytohemagglutinin was investigated. The process of chromatin decondensation during the first 24 hrs stimulation (G0 to G1 transition) and the changes in kinetic parameters and the occurrence of chromosome aberrations from 48 hrs to 72 hrs of stimulation were studied. In HT medium, lymphocyte transition from G0 to G1 was slowed; there were fewer S-phase cells, after 48 hrs PHA stimulation, whereas after 72 hrs the resistant cells showed the same frequency of S-phase cells as the controls. The mitotic index was always smaller, and the frequency of G0/G1 cells larger. No significant increase in the frequencies of chromosome aberrations were found. These findings suggest that human peripheral lymphocytes can survive and grow in a hypertonic medium; chromosome damages, if not repaired, may be lethal, and only lymphocytes with normal karyotypes can survive for long times in the HT medium, although with modified kinetic characteristics.  相似文献   

9.
We have studied whether the decreased lymphocyte proliferative responses of AIDS lymphocytes to stimulation by mitogens and antigens may be overcome when challenged with a combination of calcium ionophore A23187 and phorbol ester PMA. Comparison of the proliferative response of lymphocytes from nine patients with AIDS with the response of lymphocytes from nine control subjects showed that the response of AIDS lymphocytes was severely decreased when stimulated with PHA and no further response could be achieved by stimulation with A23187/PMA. On the other hand, no significant difference between the PHA-induced rise of cytoplasmic free calcium concentration ([Ca2+]1) in normal and AIDS lymphocytes was observed. The percentage of cells expressing IL-2 receptors (CD25) was also normal both after addition of PHA and after addition of A23187/PMA and the expression was normal on both CD4 and CD8 cells. The production of IL-2 in normal lymphocytes stimulated with A23187/PMA was 33 times higher than that after stimulation with PHA. In AIDS lymphocytes the production of IL-2 induced by all activators was severely decreased compared to control subjects, although the production of IL-2 after stimulation with A23187/PMA was higher than that in control lymphocytes after stimulation with PHA. The present study shows that a direct activation of protein kinase C combined with mobilization of cytoplasmic calcium does not overcome the lymphocyte proliferative deficiency of AIDS lymphocytes.  相似文献   

10.
G(0) human peripheral blood lymphocytes were X-irradiated to determine whether there is a direct relationship between radiation-induced dicentric chromosomes and the triggering of apoptosis. Immediately after X-ray exposure, control and irradiated lymphocytes were analyzed for viability, apoptosis and chromosome damage using the premature chromosome condensation technique. A batch of lymphocytes was kept in liquid holding for 48 h and then loaded on Ficoll-Paque medium to separate apoptotic (high-density) and normal (normal-density) cells. Then the same end points were analyzed in high-density and normal-density fractions of control and irradiated lymphocytes. After 48 h of liquid holding, the majority of apoptotic cells contained dicentric chromosomes. These results demonstrate that in human lymphocytes, the type of chromosome damage influences the induction of programmed cell death and provide direct evidence that cells bearing dicentrics are eliminated by apoptosis. G0 lymphocytes are the most common tissue used in biodosimetry studies, and the amount of chromosomal damage detected depends on the time between exposure and sampling. Since the radiation-induced apoptotic cells show the presence of dicentrics, radiation-induced damage can be underestimated. These results may have relevance in evaluations of the efficacy of radiotherapy based on the frequencies of chromosomal aberrations.  相似文献   

11.
The results of an IAEA coordinated programme on radiation induced chromosomal aberrations in human peripheral blood lymphocytes in vitro are presented. In a master experiment, a whole blood sample from one donor was irradiated with 200 R of X-rays. Different fixation times from 46 to 82 h were used. The progression of cells into mitosis was monitored by BrdUrd incorporation. 14 investigators took part in the scoring of chromosomal aberrations. The main conclusions of this study are: (1) The mean frequencies of aberrations changed with fixation time. (2) The number of cells scored as aberrant by different laboratories was very similar, but there was variability in the number of aberrations scored per aberrant cell. (3) The differences in the frequencies of aberrations between laboratories were minimal when the scoring was restricted to the first major peak of mitotic activity and sufficient cells were scored.

It is concluded that using controlled experimental conditions, human peripheral blood lymphocytes can effectively be used as a reliable biological dosimeter for absorbed radiation dose.  相似文献   


12.
Summary Peripheral blood lymphocytes from three patients with Down syndrome (DS; trisomy 21; aged 5–6 years) and three age-matched control children were studied for the induction of chromosomal aberrations and sister chromatid exchanges (SCEs).Cells in G0 were exposed to bleomycin (20–100 g/ml) for 3 h, and then cultured in medium containing 5-bromodeoxyuridine and phytohemagglutinin for 66 h. By the sister chromatid differential staining method, chromosome analyses were performed on metaphase cells that had divided one, two, or three or more times after treatment. The results indicate that DS cells exposed to bleomycin are hypersensitive to the production of dicentric and ring chromosomes compared to normal cells. Bleomycin also led to a dose-related increase in the frequency of SCEs, but no difference was found between the SCE frequencies in DS or normal lymphocytes exposed to bleomycin.  相似文献   

13.
In February 2001 a radiation accident occurred in a radiotherapy unit of an oncology hospital in Poland. Five breast cancer patients undergoing radiotherapy received a single high dose of 8 MeV electrons. The exact doses are not known, but they were heterogeneous and may have reached about 100 Gy. To assess whether such exposure would be detectable in peripheral blood lymphocytes, chromosomal aberrations and micronuclei were analyzed in lymphocytes from the accident patients and compared to values for lymphocytes from 10 control patients who were not involved in the accident but who received similar radiotherapy treatments. Lymphocytes were harvested for analysis of chromosomal aberrations at three different culture times to determine whether heavily damaged cells reached mitosis with a delay. There was no effect of harvest time on the frequencies of chromosomal aberrations, indicating that there was no delay of heavily damaged cells in entering mitosis. A good correlation was observed between micronuclei and chromosomal aberrations. In lymphocytes from three of the accident patients, significantly enhanced frequencies of both aberrations and micronuclei were found. The great individual variability observed in the frequency of cytogenetic damage in lymphocytes from both control and accident patients precluded the unambiguous identification of all accident patients.  相似文献   

14.
Previous studies have shown that cells from subjects with trisomy 21 have enhanced sensitivity to the antiviral effects of interferon, presumably because of the location of the gene, IfRec, coding for the species-specific response to interferon on chromosome 21. Interferon is also known to have many other effects including the ability to inhibit the proliferation of many types of cells. To determine whether proliferating trisomic lymphocytes are more sensitive to the antiproliferative effect of interferon we have investigated, using healthy noninstitutionalized subjects with trisomy 21, the ability of interferon to inhibit the proliferation of lymphocytes stimulated with phytohemagglutinin P(PHA), concanavalin A (Con A), and tetanus toxoid. The trisomic subjects had normal numbers of peripheral blood leukocytes, and normal numbers and proportions of T and B lymphocytes. The production of interferon by PHA-stimulated trisomic T lymphocytes was normal. Trisomic lymphocytes also had normal proliferative responses to PHA and Con A. There were no differences between the inhibitory effects of interferon on the proliferation of PHA-stimulated trisomic and normal lymphocytes. However, trisomic lymphocytes stimulated with low doses of Con A did display significantly enhanced sensitivity to the antiproliferative effects of interferon. In contrast to normal lymphocytes, trisomic lymphocytes were not stimulated to proliferate by tetanus toxoid, and exposure to interferon resulted in enhancement, rather than inhibition, of DNA synthesis.  相似文献   

15.
In human lymphocytes low doses of X-rays can decrease the number of chromatid deletions induced by subsequent high doses of sparsely ionizing X-rays. Because of the concern with the carcinogenic effects of low doses of -particles from radon in homes, experiments were carried out to see if low doses of X-rays could also decrease the yield of chromosomal aberrations induced by subsequent exposure to radon. Human peripheral blood lymphocytes were irradiated with low doses of X-rays (2 cGy) at 48 h of culture, exposed to radon at 72 h of culture, and analyzed for the presence of chromatid aberrations at subsequent intervals. The frequency of chromatid aberrations induced by radon alone increased with time after exposure, indicating exaggerated differences in the stage sensitivity of cell cycle stages to high-LET radiation. Furthermore, the numbers of aberrations per cell did not follow a Poisson distribution but were over dispersed, as might be expected since high-LET radiations have a high relative biological effectiveness compared with low-LET radiations. Nevertheless, lymphocytes exposed to 2 cGy of X-rays before radon exposure contained approximately one-half the number of chromatid deletions compared with lymphocytes treated with radon alone and analzed at the same time. Thus, the putative chromosomal repair mechanism induced by low doses of sparsely ionizing radiation is also effective in reducing chromosomal aberrations induced by radon, which hitherto had been thought to be relatively independent of repair processes.  相似文献   

16.
We have studied the induction of chromosomal aberrations in human lymphocytes exposed in G0 to X rays or carbon ions. Aberrations were analyzed in G0, G1, G2 or M phase. Analysis during the interphase was performed by chemically induced premature chromosome condensation, which allows scoring of aberrations in G1, G2 and M phase; fusion-induced premature chromosome condensation was used to analyze the damage in G0 cells after incubation for repair; M-phase cells were obtained by conventional Colcemid block. Aberrations were scored by Giemsa staining or fluorescence in situ hybridization (chromosomes 2 and 4). Similar yields of fragments were observed in G1 and G2 phase, but lower yields were scored in metaphase. The frequency of chromosomal exchanges was similar in G0 (after repair), G2 and M phase for cells exposed to X rays, while a lower frequency of exchanges was observed in M phase when lymphocytes were irradiated with high-LET carbon ions. The results suggest that radiation-induced G2-phase block is associated with unrejoined chromosome fragments induced by radiation exposure during G0.  相似文献   

17.
Peripheral blood lymphocytes from normal human volunteers or from Down syndrome patients were pre-treated with sodium butyrate (a compound which is known to induce structural modifications in the chromatin through hyperacetylation of nucleosomal core histones) and exposed to X-irradiation or treated with bleomycin in vitro in the G0 and/or G1 stage(s) of the cell cycle. The frequencies of chromosomal aberrations in the first mitosis after treatment were scored. The results show an enhancement in the yield of aberrations in the butyrate pre-treated groups. However, the absolute frequencies of chromosomal aberrations as well as the relative increases with butyrate pre-treatment varied between blood samples from different donors suggesting the existence of inter-individual variations. There is a parallelism between the effects of X-irradiation or of combined treatments in G0 and G1 stages and between effects observed in the X-ray and bleomycin series. The increase in the yields of chromosomal aberrations in butyrate-treated and X-irradiated lymphocytes (relative to those which received X-irradiation alone) is interpreted as a consequence of the inhibition of repair of DNA damage by butyrate.  相似文献   

18.
The frequencies of chromosomal aberrations bith in human lymphocytes and in mouse marrow cells exposed to low-level radiation were higher than in their unexposed controls. However, the frequencies of chromosomal aberrations in two kinds of cells pre-exposed to low-level radiation induced by a subsequent high dose of X-rays or γ-rays were lower than those of the groups only exposed to high-level radiation. This implies that adaptive responses for cytogenetic indicators might be induced by pre-exposure to low-level radiation. The results also show the existence of possible variations between individual lymphocytes.  相似文献   

19.
David  Scott 《Cell proliferation》1969,2(4):295-305
The persistence of unstable chromosome-type aberrations in peripheral blood lymphocytes of irradiated individuals has led to the proposal that some lymphocytes survive for many years in vivo without undergoing mitosis (Fitzgerald, 1964). It has recently been shown, however, that plasma from irradiated individuals can induce chromosomal damage in cultures of normal blood lymphocytes (Hollowell & Littlefield, 1968) even when the plasma donors were irradiated 7 years earlier (Goh & Sumner, 1968). Goh (1968) has therefore suggested that ‘An alternate explanation to the “long-lived cell” theory proposed by others…would be that a substance is produced or activated by total body irradiation and remains capable of affecting the chromosomes for extensive lengths of time'. The present results show that a lymphocyte chromosome-breaking factor can be induced in the plasma of blood irradiated in vitro as well as in vivo. All of the aberrations induced by this ‘plasma factor’and those reported by other workers can be interpreted as being of the chromatid type. Before the long-lived lymphocyte hypothesis can be brought into serious disrepute, it must be shown that the plasma factor can induce aberrations of the same type as persist after in vivo irradiation (i.e. unequivocal chromosome-type aberrations, such as dicentrics and rings) and that these can be induced in vivo.  相似文献   

20.
The induction of cytotoxicity, chromosomal aberrations, and sister chromatid exchanges (SCEs) was measured in CHO K-1c cells and in isogenic X-ray-sensitive mutant xrs-6c cells that had been irradiated with X rays and alpha particles in isoleucine-deficient alpha-minimal essential medium in G1 phase of the cell cycle. There was a noticeable shoulder region on the survival curve for CHO K-1c cells irradiated with very low doses of alpha particles, whereas this feature was absent for xrs-6c cells with alpha-particle doses as low as 0.5 cGy. Higher frequencies of chromatid-type aberrations were induced in G1-phase xrs-6c cells than in G1-phase CHO K-1c cells by both gamma- and alpha-particle irradiation. Induction of nonlethal chromosomal aberrations was observed following exposure to 2-6 cGy of alpha particles, doses yielding 97-100% cell survival. Irradiation with 0.5 cGy of alpha particles induced SCE; nearly 60% of irradiated cells contained significantly increased levels of SCE. However, only 3% of the nuclei of cells exposed to 0.5 cGy of alpha-particle radiation were actually traversed by an alpha particle. The observation that a large fraction of cells apparently survive exposure to very low doses of alpha-particle radiation with persistent genetic damage manifested by both chromosomal aberrations and SCEs may have important implications for the carcinogenic hazards of high-LET radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号