首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The prion consists essentially of PrPSc, a misfolded and aggregated conformer of the cellular protein PrPC. Whereas PrPC deficient mice are clinically healthy, expression of PrPC variants lacking its central domain (PrPΔCD), or of the PrP-related protein Dpl, induces lethal neurodegenerative syndromes which are repressed by full-length PrP. Here we tested the structural basis of these syndromes by grafting the amino terminus of PrPC (residues 1–134), or its central domain (residues 90–134), onto Dpl. Further, we constructed a soluble variant of the neurotoxic PrPΔCD mutant that lacks its glycosyl phosphatidyl inositol (GPI) membrane anchor. Each of these modifications abrogated the pathogenicity of Dpl and PrPΔCD in transgenic mice. The PrP-Dpl chimeric molecules, but not anchorless PrPΔCD, ameliorated the disease of mice expressing truncated PrP variants. We conclude that the amino proximal domain of PrP exerts a neurotrophic effect even when grafted onto a distantly related protein, and that GPI-linked membrane anchoring is necessary for both beneficial and deleterious effects of PrP and its variants.  相似文献   

2.
Transmissible spongiform encephalopathies in mammals are believed to be caused by scrapie form of prion protein (PrP(Sc)), an abnormal, oligomeric isoform of the monomeric cellular prion protein (PrP(C)). One of the proposed functions of PrP(C) in vivo is a Cu(II) binding activity. Previous studies revealed that Cu(2+) binds to the unstructured N-terminal PrP(C) segment (residues 23-120) through conserved histidine residues. Here we analyzed the Cu(II) binding properties of full-length murine PrP(C) (mPrP), of its isolated C-terminal domain mPrP(121-231) and of the N-terminal fragment mPrP(58-91) in the range of pH 3-8 with electron paramagnetic resonance spectroscopy. We find that the C-terminal domain, both in its isolated form and in the context of the full-length protein, is capable of interacting with Cu(2+). Three Cu(II) coordination types are observed for the C-terminal domain. The N-terminal segment mPrP(58-91) binds Cu(2+) only at pH values above 5.0, whereas both mPrP(121-231) and mPrP(23-231) already show identical Cu(II) coordination in the pH range 3-5. As the Cu(2+)-binding N-terminal segment 58-91 is not required for prion propagation, our results open the possibility that Cu(2+) ions bound to the C-terminal domain are involved in the replication of prions, and provide the basis for further analytical studies on the specificity of Cu(II) binding by PrP.  相似文献   

3.
Polymorphic basic residues near the C terminus of the prion protein (PrP) in humans and sheep appear to protect against prion disease. In heterozygotes, inhibition of prion formation appears to be dominant negative and has been simulated in cultured cells persistently infected with scrapie prions. The results of nuclear magnetic resonance and mutagenesis studies indicate that specific substitutions at the C-terminal residues 167, 171, 214, and 218 of PrP(C) act as dominant-negative, inhibitors of PrP(Sc) formation (K. Kaneko et al., Proc. Natl. Acad. Sci. USA 94:10069-10074, 1997). Trafficking of substituted PrP(C) to caveaola-like domains or rafts by the glycolipid anchor was required for the dominant-negative phenotype; interestingly, amino acid replacements at multiple sites were less effective than single-residue substitutions. To elucidate which domains of PrP(C) are responsible for dominant-negative inhibition of PrP(Sc) formation, we analyzed whether N-terminally truncated PrP(Q218K) molecules exhibited dominant-negative effects in the conversion of full-length PrP(C) to PrP(Sc). We found that the C-terminal domain of PrP is not sufficient to impede the conversion of the full-length PrP(C) molecule and that N-terminally truncated molecules (with residues 23 to 88 and 23 to 120 deleted) have reduced dominant-negative activity. Whether the N-terminal region of PrP acts by stabilizing the C-terminal domain of the molecule or by modulating the binding of PrP(C) to an auxiliary molecule that participates in PrP(Sc) formation remains to be established.  相似文献   

4.
Prion diseases are fatal neurodegenerative disorders associated with conformational conversion of the cellular prion protein, PrP(C), into a misfolded, protease-resistant form, PrP(Sc). Here we show, for the first time, the oligomerization and fibrillization of the C-terminal domain of murine PrP, mPrP-(121-231), which lacks the entire unstructured N-terminal domain of the protein. In particular, the construct we used lacks amino acid residues 106-120 from the so-called amyloidogenic core of PrP (residues 106-126). Amyloid formation was accompanied by acquisition of resistance to proteinase K digestion. Aggregation of mPrP-(121-231) was investigated using a combination of biophysical and biochemical techniques at pH 4.0, 5.5, and 7.0 and at 37 and 65 degrees C. Under partially denaturing conditions (65 degrees C), aggregates of different morphologies ranging from soluble oligomers to mature amyloid fibrils of mPrP-(121-231) were formed. Transmission electron microscopy analysis showed that roughly spherical aggregates were readily formed when the protein was incubated at pH 5.5 and 65 degrees C for 1 h, whereas prolonged incubation led to the formation of mature amyloid fibrils. Samples incubated at 65 degrees C at pH 4.0 or 7.0 presented an initial mixture of oligomers and protofibrils or fibrils. Electrophoretic analysis of samples incubated at 65 degrees C revealed formation of sodium dodecyl sulfate-resistant oligomers (dimers, trimers, and tetramers) and higher molecular weight aggregates of mPrP-(121-231). These results demonstrate that formation of an amyloid form with physical properties of PrP(Sc) can be achieved in the absence of the flexible N-terminal domain and, in particular, of residues 106-120 of PrP and does not require other cellular factors or a PrP(Sc) template.  相似文献   

5.
《朊病毒》2013,7(3):107-111
Prion protein (PrP)-like molecule, doppel (Dpl), is neurotoxic in mice, causing Purkinje cell degeneration. In contrast, PrP antagonizes Dpl in trans, rescuing mice from Purkinje cell death. We have previously shown that PrP with deletion of the N-terminal residues 23-88 failed to neutralize Dpl in mice, indicating that the N-terminal region, particularly that including residues 23-88, may have trans-protective activity against Dpl. Interestingly, PrP with deletion elongated to residues 121 or 134 in the N-terminal region was shown to be similarly neurotoxic to Dpl, indicating that the PrP C-terminal region may have toxicity which is normally prevented by the N-terminal domain in cis. We recently investigated further roles for the N-terminal region of PrP in antagonistic interactions with Dpl by producing three different types of transgenic mice. These mice expressed PrP with deletion of residues 25-50 or 51-90, or a fusion protein of the N-terminal region of PrP with Dpl. Here, we discuss a possible model for the antagonistic interaction between PrP and Dpl .  相似文献   

6.
Mice expressing a C-terminal fragment of the prion protein instead of wild-type prion protein die from massive neuronal degeneration within weeks of birth. The C-terminal region of PrPc (PrP121-231) expressed in these mice has an intrinsic neurotoxicity to cultured neurones. Unlike PrPSc, which is not neurotoxic to neurones lacking PrPc expression, PrP121-231 was more neurotoxic to PrPc-deficient cells. Human mutations E200K and F198S were found to enhance toxicity of PrP121-231 to PrP-knockout neurones and E200K enhanced toxicity to wild-type neurones. The normal metabolic cleavage point of PrPc is approximately amino-acid residue 113. A fragment of PrPc corresponding to the whole C-terminus of PrPc (PrP113-231), which is eight amino acids longer than PrP121-231, lacked any toxicity. This suggests the first eight amino residues of PrP113-121 suppress toxicity of the toxic domain in PrP121-231. Addition to cultures of a peptide (PrP112-125) corresponding to this region, in parallel with PrP121-231, suppressed the toxicity of PrP121-231. These results suggest that the prion protein contains two domains that are toxic on their own but which neutralize each other's toxicity in the intact protein. Point mutations in the inherited forms of disease might have their effects by diminishing this inhibition.  相似文献   

7.
The kinetics of folding of mPrP(121-231), the structured 111-residue domain of the murine cellular prion protein PrP(C), were investigated by stopped-flow fluorescence using the variant F175W, which has the same overall structure and stability as wild-type mPrP(121-231) but shows a strong fluorescence change upon unfolding. At 22 degrees C and pH 7.0, folding of mPrP(121-231)-F175W is too fast to be observable by stopped-flow techniques. Folding at 4 degrees C occurs with a deduced half-life of approximately 170 micros without detectable intermediates, possibly the fastest protein-folding reaction known so far. Thus, propagation of the abnormal, oligomeric prion protein PrP(Sc), which is supposed to be the causative agent of transmissible spongiform encephalopathies, is unlikely to follow a mechanism where kinetic folding intermediates of PrP(C) are a source of PrP(Sc) subunits.  相似文献   

8.
Previous studies identified two mammalian prion protein (PrP) polybasic domains that bind the disease-associated conformer PrP(Sc), suggesting that these domains of cellular prion protein (PrP(C)) serve as docking sites for PrP(Sc) during prion propagation. To examine the role of polybasic domains in the context of full-length PrP(C), we used prion proteins lacking one or both polybasic domains expressed from Chinese hamster ovary (CHO) cells as substrates in serial protein misfolding cyclic amplification (sPMCA) reactions. After ~5 rounds of sPMCA, PrP(Sc) molecules lacking the central polybasic domain (ΔC) were formed. Surprisingly, in contrast to wild-type prions, ΔC-PrP(Sc) prions could bind to and induce quantitative conversion of all the polybasic domain mutant substrates into PrP(Sc) molecules. Remarkably, ΔC-PrP(Sc) and other polybasic domain PrP(Sc) molecules displayed diminished or absent biological infectivity relative to wild-type PrP(Sc), despite their ability to seed sPMCA reactions of normal mouse brain homogenate. Thus, ΔC-PrP(Sc) prions interact with PrP(C) molecules through a novel interaction mechanism, yielding an expanded substrate range and highly efficient PrP(Sc) propagation. Furthermore, polybasic domain deficient PrP(Sc) molecules provide the first example of dissociation between normal brain homogenate sPMCA seeding ability from biological prion infectivity. These results suggest that the propagation of PrP(Sc) molecules may not depend on a single stereotypic mechanism, but that normal PrP(C)/PrP(Sc) interaction through polybasic domains may be required to generate prion infectivity.  相似文献   

9.
Several lines of evidence suggest that the normal form of the prion protein, PrP(C), exerts a neuroprotective activity against cellular stress or toxicity. One of the clearest examples of such activity is the ability of wild-type PrP(C) to suppress the spontaneous neurodegenerative phenotype of transgenic mice expressing a deleted form of PrP (Δ32-134, called F35). To define domains of PrP involved in its neuroprotective activity, we have analyzed the ability of several deletion mutants of PrP (Δ23-31, Δ23-111, and Δ23-134) to rescue the phenotype of Tg(F35) mice. Surprisingly, all of these mutants displayed greatly diminished rescue activity, although Δ23-31 PrP partially suppressed neuronal loss when expressed at very high levels. Our results pinpoint the N-terminal, polybasic domain as a critical determinant of PrP(C) neuroprotective activity, and suggest that identification of molecules interacting with this region will provide important clues regarding the normal function of the protein. Small molecule ligands targeting this region may also represent useful therapeutic agents for treatment of prion diseases.  相似文献   

10.
The aqueous solution structure of the full-length recombinant ovine prion protein PrP(25-233), together with that of the N-terminal truncated version PrP(94-233), have been studied using vibrational Raman optical activity (ROA) and ultraviolet circular dichroism (UVCD). A sharp positive band at approximately 1315 cm(-1) characteristic of poly(L-proline) II (PPII) helix that is present in the ROA spectrum of the full-length protein is absent from that of the truncated protein, together with bands characteristic of beta-turns. Although it is not possible similarly to identify PPII helix in the full-length protein directly from its UVCD spectrum, subtraction of the UVCD spectrum of PrP(94-233) from that of PrP(25-233) yields a difference UVCD spectrum also characteristic of PPII structure and very similar to the UVCD spectrum of murine PrP(25-113). These results provide confirmation that a major conformational element in the N-terminal region is PPII helix, but in addition show that the PPII structure is interspersed with beta-turns and that little PPII structure is present in PrP(94-233). A principal component analysis of the ROA data indicates that the alpha-helix and beta-sheet content, located in the structured C-terminal domain, of the full-length and truncated proteins are similar. The flexibility imparted by the high PPII content of the N-terminal domain region may be an essential factor in the function and possibly also the misfunction of prion proteins.  相似文献   

11.
All inherited forms of human prion diseases are linked with mutations in the prion protein (PrP) gene. Here we have investigated the stability and Cu(II) binding properties of three recombinant variants of murine full-length PrP(23-231)-containing destabilizing point mutations that are associated with human Gerstmann-Str?ussler-Scheinker disease (F198S), Creutzfeld-Jakob disease (E200K), and fatal familial insomnia (D178N) by electron paramagnetic resonance and circular dichroism spectroscopy. Furthermore, we analyzed the variants H140S, H177S, and H187S of the isolated C-terminal domain of murine PrP, mPrP(121-231), to test a role of the histidine residues in Cu(II) binding. The F198S and E200K variants of PrP(23-231) differed in Cu(II) binding from the wild-type mPrP(23-231). However, circular dichroism spectroscopy indicated that the variants and the wild type did not undergo conformational changes in the presence of Cu(II). The D178N variant showed a high tendency to aggregate at pH 7.4 both with and without Cu(II). At lower pH values, it showed the same Cu(II) binding behavior as the wild type. The analysis allowed for a better location of the Cu(II) binding sites in the C-terminal part of the protein. Our present data indicate that hereditary forms of prion diseases cannot be rationalized on the basis of altered Cu(II) binding or mutation-induced protein destabilization alone.  相似文献   

12.
The PrP-like Doppel (Dpl) protein causes apoptotic death of cerebellar neurons in transgenic mice, a process prevented by expression of the wild type (wt) cellular prion protein, PrP(C). Internally deleted forms of PrP(C) resembling Dpl such as PrPDelta32-121 produce a similar PrP(C)-sensitive pro-apoptotic phenotype in transgenic mice. Here we demonstrate that these phenotypic attributes of wt Dpl, wt PrP(C), and PrPDelta132-121 can be accurately recapitulated by transfected mouse cerebellar granule cell cultures. This system was then explored by mutagenesis of the co-expressed prion proteins to reveal functional determinants. By this means, neuroprotective activity of wt PrP(C) was shown to be nullified by a deletion of the N-terminal charged region implicated in endocytosis and retrograde axonal transport (PrPDelta23-28), by deletion of all five octarepeats (PrPDelta51-90), or by glycine replacement of four octarepeat histidine residues required for selective binding of copper ions (Prnp"H/G"). In the case of Dpl, overlapping deletions defined a requirement for the gene interval encoding helices B and B' (DplDelta101-125). These data suggest contributions of copper binding and neuronal trafficking to wt PrP(C) function in vivo and place constraints upon current hypotheses to explain Dpl/PrP(C) antagonism by competitive ligand binding. Further implementation of this assay should provide a fuller understanding of the attributes and subcellular localizations required for activity of these enigmatic proteins.  相似文献   

13.
A mutant of mouse prion protein (PrPC) carrying a deletion of residues 114-121 (PrPDelta114-121) has previously been described to lack convertibility into the scrapie-associated isoform of PrP (PrPSc) and to exhibit a dominant-negative effect on the conversion of wild-type PrPC into PrPSc in living cells. Here we report the characterization of recombinantly expressed PrPDelta114-121 by Fourier-transformation infrared spectroscopy (FTIR) and circular dichroism (CD) spectroscopy. The analysis of spectra revealed an increased antiparallel beta-sheet content in the deletion mutant compared to wild-type PrPC. This additional short beta-sheet stabilized the fold of the mutant protein by DeltaDeltaG(0)'=3.4+/-0.3 kJ mol(-1) as shown by chemical unfolding experiments using guanidine hydrochloride. Secondary structure predictions suggest that the additional beta-sheet in PrPDelta114-121 is close to the antiparallel beta-sheet in PrPC. The high-affinity Cu2+-binding site outside the octarepeats, which is located close to the deletion and involves His110 as a ligand, was not affected, as detected by electron paramagnetic resonance (EPR) spectroscopy, suggesting that Cu2+ binding does not contribute to the protection of PrPDelta114-121 from conversion into PrPSc. We propose that the deletion of residues 114-121 stabilizes the mutant protein. This stabilization most likely does not obstruct the interaction of PrPDelta114-121 with PrPSc but represents an energy barrier that blocks the conversion of PrPDelta114-121 into PrPSc.  相似文献   

14.
The infectious prion protein, PrP(Sc), a predominantly beta-sheet aggregate, is derived from PrP(C), the largely alpha-helical cellular isoform of PrP. Conformational conversion of PrP(C) into PrP(Sc) has been suggested to involve a chaperone-like factor. Here we report that the bacterial chaperonin GroEL, a close homolog of eukaryotic Hsp60, can catalyze the aggregation of chemically denatured and of folded, recombinant PrP in a model reaction in vitro. Aggregates form upon ATP-dependent release of PrP from chaperonin and have certain properties of PrP(Sc), including a high beta-sheet content, the ability to bind the dye Congo red, detergent-insolubility and increased protease-resistance. A conserved sequence segment of PrP (residues 90-121), critical for PrP(Sc) generation in vivo, is also required for chaperonin-mediated aggregate formation in vitro. Initial binding of refolded, alpha-helical PrP to chaperonin is mediated by the unstructured N-terminal segment of PrP (residues 23-121) and is followed by a rearrangement of the globular PrP core-domain. These results show that chaperonins of the Hsp60 class can, in principle, mediate PrP aggregation de novo, i.e. independently of a pre-existent PrP(Sc) template.  相似文献   

15.
Elucidation of structure and biological properties of the prion protein scrapie (PrP(Sc)) is fundamental to an understanding of the mechanism of conformational transition of cellular (PrP(C)) into disease-specific isoforms and the pathogenesis of prion diseases. Unfortunately, the insolubility and heterogeneity of PrP(Sc) have limited these studies. The observation that a construct of 106 amino acids (termed PrP106 or miniprion), derived from mouse PrP and containing two deletions (Delta 23-88, Delta 141-176), becomes protease-resistant when expressed in scrapie-infected neuroblastoma cells and sustains prion replication when expressed in PrP(0/0) mice prompted us to generate a corresponding synthetic peptide (sPrP106) to be used for biochemical and cell culture studies. sPrP106 was obtained successfully with a straightforward procedure, which combines classical stepwise solid phase synthesis with a purification strategy based on transient labeling with a lipophilic chromatographic probe. sPrP106 readily adopted a beta-sheet structure, aggregated into branched filamentous structures without ultrastructural and tinctorial properties of amyloid, exhibited a proteinase K-resistant domain spanning residues 134-217, was highly toxic to primary neuronal cultures, and induced a remarkable increase in membrane microviscosity. These features are central properties of PrP(Sc) and make sPrP106 an excellent tool for investigating the molecular basis of the conformational conversion of PrP(C) into PrP(Sc) and prion disease pathogenesis.  相似文献   

16.
The recent introduction of bank vole (Clethrionomys glareolus) as an additional laboratory animal for research on prion diseases revealed an important difference when compared to the mouse and the Syrian hamster, since bank voles show a high susceptibility to infection by brain homogenates from a wide range of diseased species such as sheep, goats, and humans. In this context, we determined the NMR structure of the C-terminal globular domain of the recombinant bank vole prion protein (bvPrP) [bvPrP(121-231)] at 20 °C. bvPrP(121-231) has the same overall architecture as other mammalian PrPs, with three α-helices and an antiparallel β-sheet, but it differs from PrP of the mouse and most other mammalian species in that the loop connecting the second β-strand and helix α2 is precisely defined at 20 °C. This is similar to the previously described structures of elk PrP and the designed mouse PrP (mPrP) variant mPrP[S170N,N174T](121-231), whereas Syrian hamster PrP displays a structure that is in-between these limiting cases. Studies with the newly designed variant mPrP[S170N](121-231), which contains the same loop sequence as bvPrP, now also showed that the single-amino-acid substitution S170N in mPrP is sufficient for obtaining a well-defined loop, thus providing the rationale for this local structural feature in bvPrP.  相似文献   

17.
Transmissible spongiform encephalopathies in mammals are believed to be caused by PrPSc, the insoluble, oligomeric isoform of the cellular prion protein PrPC. PrPC and the subunits of PrPSc have identical covalent but different tertiary structure. To address the question of whether parts of the structure of PrPC are sufficiently stable to be retained in PrPSc, we have constructed two deletion variants of the C-terminal PrPC domain, PrP(121-231), which is the only part of recombinant PrP with defined tertiary structure. One of the variants, H2-H3, comprises the last two alpha-helices of PrP(121-231) that have been proposed to be preserved in models of PrP(Sc). In the other variant, PrP(121-231)-deltaH1, the first alpha-helix of PrP(121-231) was deleted and replaced by introduction of the beta-turn dipeptide Asn-Gly between the strands of the single beta-sheet of PrP(121-231). Although both deletion constructs still show alpha-helical CD-spectra, they are more disordered and thermodynamically strongly destabilized compared to PrP(121-231), with free energies of folding close to zero. These data demonstrate that the tertiary structure context is critical for the conformation of the segment comprising alpha-helix 2 and 3 in the solution structure of recombinant PrP.  相似文献   

18.
A soluble, oligomeric beta-sheet-rich conformational variant of recombinant full-length prion protein, PrP beta, was generated that aggregates into amyloid fibrils, PrP betaf. These fibrils have physico-chemical and structural properties closely similar to those of pathogenic PrP Sc in scrapie-associated fibrils and prion rods, including a closely similar proteinase K digestion pattern and Congo red birefringence. The conformational transition from PrP C to PrP beta occurs at pH 5.0 in bicellar solutions containing equimolar mixtures of dihexanoyl-phosphocholine and dimyristoyl-phospholipids, and a small percentage of negatively charged dimyristoyl-phosphoserine. The same protocol was applicable to human, cow, elk, pig, dog and mouse PrP. Comparison of full-length hPrP 23-230 with the N-terminally truncated human PrP fragments hPrP 90-230, hPrP 96-230, hPrP 105-230 and hPrP 121-230 showed that the flexible peptide segment 105-120 must be present for the generation of PrP beta. Dimerization of PrP C represents the rate-limiting step of the PrP C-to-PrP beta conformational transition, which is dependent on the amino acid sequence. The activation enthalpy of dimerization is about 130 kJ/mol for the recombinant full-length human and bovine prion proteins, and between 260 and 320 kJ/mol for the other species investigated. The in vitro conversion assay described here permits direct molecular characterization of processes that might be closely related to conformational transitions of the prion protein in transmissible spongiform encephalopathies.  相似文献   

19.
Liemann S  Glockshuber R 《Biochemistry》1999,38(11):3258-3267
Transmissible spongiform encephalopathies (TSEs) are caused by a unique infectious agent which appears to be identical with PrPSc, an oligomeric, misfolded isoform of the cellular prion protein, PrPC. All inherited forms of human TSEs, i.e., familial Creutzfeldt-Jakob disease, Gerstmann-Str?ussler-Scheinker syndrome, and fatal familial insomnia, segregate with specific point mutations or insertions in the gene coding for human PrP. Here we have tested the hypothesis that these mutations destabilize PrPC and thus facilitate its conversion into PrPSc. Eight of the disease-specific amino acid replacements are located in the C-terminal domain of PrPC, PrP(121-231), which constitutes the only part of PrPC with a defined tertiary structure. Introduction of all these replacements into PrP(121-231) yielded variants with the same spectroscopic characteristics as wild-type PrP(121-231) and similar to full-length PrP(23-231), which excludes the possibility that the exchanges a priori induce a PrPSc-like conformation. The thermodynamic stabilities of the variants do not correlate with specific disease phenotypes. Five of the amino acid replacements destabilize PrP(121-231), but the other variants have the same stability as the wild-type protein. These data suggest that destabilization of PrPC is neither a general mechanism underlying the formation of PrPSc nor the basis of disease phenotypes in inherited human TSEs.  相似文献   

20.
Copper is reported to promote and prevent aggregation of prion protein. Conformational and functional consequences of Cu(2+)-binding to prion protein (PrP) are not well understood largely because most of the Cu(2+)-binding studies have been performed on fragments and truncated variants of the prion protein. In this context, we set out to investigate the conformational consequences of Cu(2+)-binding to full-length prion protein (PrP) by isothermal calorimetry, NMR, and small angle x-ray scattering. In this study, we report altered aggregation behavior of full-length PrP upon binding to Cu(2+). At physiological temperature, Cu(2+) did not promote aggregation suggesting that Cu(2+) may not play a role in the aggregation of PrP at physiological temperature (37 °C). However, Cu(2+)-bound PrP aggregated at lower temperatures. This temperature-dependent process is reversible. Our results show two novel intra-protein interactions upon Cu(2+)-binding. The N-terminal region (residues 90-120 that contain the site His-96/His-111) becomes proximal to helix-1 (residues 144-147) and its nearby loop region (residues 139-143), which may be important in preventing amyloid fibril formation in the presence of Cu(2+). In addition, we observed another novel interaction between the N-terminal region comprising the octapeptide repeats (residues 60-91) and helix-2 (residues 174-185) of PrP. Small angle x-ray scattering studies of full-length PrP show significant compactness upon Cu(2+)-binding. Our results demonstrate novel long range inter-domain interactions of the N- and C-terminal regions of PrP upon Cu(2+)-binding, which might have physiological significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号