首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Terbium (Tb3+) fluorescence was used to investigate the interaction of cisplatin with GH3/B6 pituitary tumor cells. The binding of cisplatin to GH3/B6 cells quenched the fluorescence intensity of bound Tb3+. The IC50 for cisplatin inhibition of Tb3+-GH3/B6 fluorescence was determined to be 190 microM. Cisplatin was found to non-competitively inhibit the cellular binding of Tb3+, causing a dramatic decrease in the maximum number of high-affinity Tb3+ binding sites (by 33%), without markedly affecting their binding affinity. The half-life for the cellular binding of cisplatin was calculated to be 2.7 min. It was suggested that the plasma membrane of GH3/B6 cells contain a specific protein receptor for binding cisplatin.  相似文献   

2.
In the present report, we demonstrate that Tb3+ binds to protein kinase C and serves as a luminescent reporter of certain cationic metal-binding sites. Tb3+ titration of 50 nM protein kinase C results in a 20-fold enhancement of Tb3+ luminescence which is half-maximal at 12 microM Tb3+. A Kd of approximately 145 nM was determined for Tb3+ binding to the enzyme. The excitation spectrum of bound Tb3+ exhibits a peak at 280 nm characteristic of energy transfer from protein tryptophan or tyrosine residues. The luminescence of this complex can be markedly decreased by other metals, including Pb2+ (IC50 = 25 microM), La3+ (IC50 = 50 microM), Hg2+ (IC50 = 300 microM), Ca2+ (IC50 = 6 mM), and Zn2+ (IC50 greater than 10 mM), and chelation of Tb3+ by 2 mM EGTA. Tb3+ binding to protein kinase C is correlated with its inhibition of protein kinase activity (IC50 = 8 microM), r = 0.99) and phorbol ester binding (IC50 = 15 microM, r = 0.98). Tb3+ inhibition of protein kinase C activity cannot be overcome by excess Ca2+, but can be partially overcome with excess phosphatidylserine or by chelation of Tb3+ with EGTA. Tb3+ noncompetitively inhibits phorbol ester binding by decreasing the maximal extent of binding without significantly altering binding affinity. The results suggest that the Tb3(+)-binding site is at or allosterically related to the enzyme's phosphatidylserine-binding site, but is distinct from the phorbol ester-binding domain and the Ca2(+)-binding site that regulates enzyme activity.  相似文献   

3.
The interaction of the lanthanide Tb3+ with washed, human platelets was examined. When bound to the platelet surface, the fluorescence of this Ca2+ analog was increased approximately 200-fold, most likely by a F?rster mechanism involving platelet surface protein aromatic residues. The binding of Tb3+ to the unactivated platelet was specific and saturable with an apparent approximate Kd of 195 microM. Both Ca2+ and La3+ effectively displaced Tb3+ from platelet surface sites, but neither cation did so completely. Plasmin treatment of the platelet surface reduced Tb3+ fluorescence by 68% at saturation without significantly affecting the approximate apparent Kd. Activating washed, aspirinated platelets with ADP induced a 78% increase in Tb3+ fluorescence at saturation. Tb3+ competed effectively and completely for platelet surface-bound 45Ca2+ with an approximate IC50 of 10 microM. These data indicate the potential utility of this fluorescent lanthanide in characterizing Ca2+-binding sites on the human platelet.  相似文献   

4.
Five series totalling 51 of sinapyl alcohol derivatives were designed and synthesized. Their cytotoxicity analyses were performed on six human tumor cell lines such as PC-3, CNE, KB, A549, BEL-7404, and HeLa. Certain sinapyl alcohol derivatives showed significant cytotoxic activities. Compound 14d exhibited especially potent cytotoxicity against the BEL-7404 cell line with an IC50 value of 0.7 microM, which showed more cytotoxic activity than the positive control, cisplatin. The structure-cytotoxicity relationships were discussed and the CoMFA analysis was performed using the cytotoxic data against HeLa cells as a template.  相似文献   

5.
The interactions of Tb3+ and sarcoplasmic reticulum (SR) were investigated by inhibition of Ca2+-activated ATPase activity and enhancement of Tb3+ fluorescence. Ca2+ protected against Tb3+ inhibition of SR ATPase activity. The apparent association constant for Ca2+, determined from the protection, was about 6 x 10(6) M-1, suggesting that Tb3+ inhibits the ATPase activity by binding to the high affinity Ca2+ binding sites. Mg2+ did not protect in the 2-20 mM range. The association constant for Tb3+ binding to this Ca2+ site was estimated to be about 1 x 10(9) M-1. No cooperativity was observed for Tb3+ binding. No enhancement of Tb3+ fluorescence was detected. A second group of binding sites, with weaker affinity for Tb3+, was observed by monitoring the enhancement of Tb3+ fluorescence (lambda ex 285 nm, lambda em 545 nm). The fluorescence intensity increased 950-fold due to binding. Ca2+ did not complete for binding at these sites, but Mg2+ did. The association constant for Mg2+ binding was 94 M-1, suggesting that this may be the site that catalyzes phosphorylation of the ATPase by inorganic phosphate. For vesicles, Tb3+ binding to these Mg2+ sites was best described as binding to two classes of binding sites with negative cooperativity. If the SR ATPase was solubilized in the nonionic detergent C12E9 (dodecyl nonaoxyethylene ether alcohol), in the absence of Ca2+, only one class of Tb3+ binding sites was observed. The total number of sites appeared to remain constant. If Ca2+ was included in the solubilization step, Tb3+ binding to these Mg2+ binding sites displayed positive cooperativity (Hill coefficient, 2.1). In all cases, the apparent association constant for Tb3+, in the presence of 5 mM MgCl2, was in the range of 1-5 x 10(4) M-1.  相似文献   

6.
In the present study we have developed a simple method to elucidate the melanin binding ability of different chemotherapeutic agents. The anthracyclines, doxorubicin and daunorubicin, or the alkylating agent cisplatin were preincubated with melanin (Sepia). Melanin and free drug was then separated through centrifugation and the cytotoxic effects of corresponding drug were evaluated in a MTT (3-(4,5-dimetyltiazol-2-yl)-2,5-difenyl-tetrazoliumbromide) assay using MOLT-4 cells. Our results show that melanin pretreatment shifted the IC50 value for doxorubicin from 0.06 to 0.97 microM and for daunorubicin from 0.04 to 0.80 microM. In contrast, the IC50 values of cisplatin was not influenced by melanin pre-treatment indicating that cisplatin does not bind to melanin. By comparing equi-active concentrations from concentration-response curves with or without melanin pretreatment an approximate binding capacity of melanin could be estimated. Our results show that melanin binds about 900 nmol/mg doxorubicin and 760 nmol/mg daunorubicin. Chloroquine, which is known to bind to melanin with high affinity, was found to inhibit melanin binding of both daunorubicin and doxorubicin, thereby leading to an increased sensitivity of the anthracyclines. The clinical implications of melanin binding regarding unwanted accumulation of anthracyclines in the skin as well as chemoprotective effects against chemotherapy are discussed.  相似文献   

7.
beta 1-Bungarotoxin has only one tryptophan residue, namely Trp-19 in the phospholipase A2 subunit. The environment of Trp-19 was studied by intrinsic fluorescence and solute quenching. The native protein showed an emission peak at 330 nm. About 90% of the fluorescent tryptophan was accessible to quenching by either acrylamide or KI but not to CsCl. A red-shift in the emission peak occurred between 2.0 M- and 4.0 M-guanidinium chloride, and the helix-coil transition of the polypeptide backbone occurred between 4.0 M- and 6.0 M-guanidinium chloride. These results suggested that Trp-19 was in a less polar medium but near a positive charge. The local conformation around Trp-19 could be disturbed by binding of Tb3+ or Ca2+ or Sr2+ to the toxin molecule. Tb3+ a tervalent lanthanide ion, effectively substituted for Ca2+ in stimulating the phospholipase A2 activity of beta 1-bungarotoxin. Upon the binding of Tb3+ to the toxin, the Tb3+ fluorescence in the 450-650 nm region was enhanced. This resulted from the energy transfer from Trp-19 to Tb3+. The distance between the energy-transfer pair was estimated to be 0.376-0.473 nm at pH 7.6 and 0.486-0.609 nm at pH 6.3. Assuming that there were two Tb3+-binding sites on the toxin molecule, at pH 7.6 the association constants of the high-affinity and the low-affinity sites were determined to be 3.82 x 10(3) M-1 and 2.85 x 10(2) M-1 respectively. At between pH 6.0 and 7.0 Tb3+ bound to the high-affinity site decreased greatly but did not disappear entirely. Both Ca2+ and Sr2+ competed with Tb3+ at the high-affinity sites, but Sr2+ could not substitute for Ca2+ in stimulating the phospholipase A2 activity.  相似文献   

8.
The luminescent isomorphous Ca2+ analogue, Tb3+, can be bound in the 12-amino acid metal binding sites of proteins of the EF hand family, and its luminescence can be enhanced by energy transfer from a nearby aromatic amino acid. Tb3+ can be used as a sensitive luminescent probe of the structure and function of these proteins. The effect of changing the molecular environment around Tb3+ on its luminescence was studied using native Cod III parvalbumin and site-directed mutants of both oncomodulin and calmodulin. Titrations of these proteins showed stoichiometries of fill corresponding to the number of Ca2+ binding loops present. Tryptophan in binding loop position 7 best enhanced Tb3+ luminescence in the oncomodulin mutant Y57W, as well as VU-9 (F99W) and VU-32 (T26W) calmodulin. Excitation spectra of Y57F, F102W, Y65W oncomodulin, and Cod III parvalbumin revealed that the principal Tb3+ luminescence donor residues were phenylalanine or tyrosine located in position 7 of a loop, despite the presence of other nearby donors, including tryptophan. Spectra also revealed conformational differences between the Ca2+- and Tb(3+)-bound forms. An alternate binding loop, based on Tb3+ binding to model peptides, was inserted into the CD loop of oncomodulin by cassette mutagenesis. The order of fill of Tb3+ in this protein reversed, with the mutated loop binding Tb3+ first. This indicates a much higher affinity for the consensus-based mutant loop. The mutant loop inserted into oncomodulin had 32 times more Tb3+ luminescence than the identical synthetic peptide, despite having the same donor tryptophan and metal binding ligands. In this paper, a ranking of sensitivity of luminescence of bound Tb3+ is made among this subset of calcium binding proteins. This ranking is interpreted in light of the structural differences affecting Tb3+ luminescence enhancement intensity. The mechanism of energy transfer from an aromatic amino acid to Tb3+ is consistent with a short-range process involving the donor triplet state as described by Dexter (Dexter, D. L. (1953) J. Chem. Phys. 21, 836). This cautions against the use of the F?rster equation in approximating distances in these systems.  相似文献   

9.
The plasma membrane of yeasts contains an H+-ATPase similar to the other cation transport ATPases of eukaryotic organisms. This enzyme has been purified and shows H+ transport in reconstituted vesicles. In the presence of Mg2+, formycin triphosphate (FTP) is hydrolyzed by the H+-ATPase and supports H+ transport. When combined with terbium ion, FTP (Tb-FTP) and ATP (Tb-ATP) are no longer hydrolyzed. Competition between Mg-ATP and Tb-FTP for ATP hydrolysis indicates that terbium-associated nucleotides bind to the catalytic site of the H+-ATPase. The fluorescent properties of the Tb-FTP complex were used to study the active site of the H+-ATPase. Fluorescence of Tb-FTP is greatly enhanced upon binding into the nucleotide site of H+-ATPase with a dissociation constant of 1 microM. Tb-ATP, Tb-ADP, and Tb-ITP are competitive inhibitors of Tb-FTP binding with Ki = 4.5, 5.0, and 6.0 microM, respectively. Binding of Tb-FTP is observed only in the presence of an excess of Tb3+ with an activation constant Ka = 25 microM for Tb3+. Analysis of the data reveals that the sites for Tb-FTP and Tb3+ binding are independent entities. In standard conditions these sites would be occupied by Mg-ATP and Mg2+, respectively. These findings suggest an important regulatory role of divalent cations on the activity of H+-ATPase. Replacement of H2O by D2O in the medium suggests the existence of two types of nucleotide binding sites differing by the hydration state of the Tb3+ ion in the bound Tb-FTP complex.  相似文献   

10.
铽(Ⅲ)与人血清脱铁转铁蛋白结合的荧光光谱研究   总被引:5,自引:0,他引:5  
在pH7.40.1mol/LHepes及室温条件下,使用荧光光谱进行了Tb3+对人血清脱铁转铁蛋白的滴定.结果表明Tb3+与人血清脱铁转铁蛋白结合后,其549nm处的荧光强度增强约105倍.在549nm处Tb3+-脱铁转铁蛋白络合物的摩尔荧光强度是(9.65±0.05)×104mol-1L,Tb3+可占据脱铁转铁蛋白的两个金属离子结合部位,优先占据脱铁转铁蛋白的C端结合部位,条件平衡常数是lgKC=9.96±0.20,lgKN=6.37±0.16.Tb3+与R3+E(RE=Nd、Sm、Eu和Gd)间的线性自由能关系表明稀土离子占据脱铁转铁蛋白的C端结合部位时受离子大小的影响  相似文献   

11.
Two 12-residue peptides were synthesized by the solid-phase method as structural analogs of a Ca2+-binding loop of rabbit skeletal troponin C. The sequence of the analogs corresponds to the binding loop of the Ca2+-specific low affinity binding site II (residues 63-74) but with two amino acid substitutions. In one analog, Phe-72 was replaced by tyrosine. In the other Gly-66 was substituted by serine and Phe-72 by tyrosine. The intrinsic fluorescence of the peptides was enhanced upon addition of Tb3+ or large excess of Ca2+. From the enhancement of Tb3+ emission association constants in the range (2-3) X 10(5) M-1 and a binding stoichiometry of 1 were determined for Tb3+ binding to the peptides. Large excess of Ca2+ displaced Tb3+ from the Tb3+-peptide complexes and from these results apparent stability constants of 500-700 M-1 were deduced for Ca2+ binding. Preliminary proton nuclear magnetic resonance results on one of the peptides indicated that La3+ induced considerable perturbation of the amide proton resonances of several residues, including the aspartate at position 3, the tyrosine at position 10, and the two glutamates at the C-terminus. The results suggest involvement of these residues in cation coordination.  相似文献   

12.
Transitional cell carcinoma (TCC), which is the most common type of bladder cancer, shows resistance to chemotherapeutic agents due to the overexpression of drug efflux pumps. In this study, the effects of feselol, a sesquiterpene coumarin extracted from Ferula badrakema, on cisplatin cytotoxicity were investigated in 5637 cells, a TCC subline. Cell viability and DNA lesion were evaluated by thiazolyl blue tetrazolium bromide and comet assays, respectively. Feselol had no significant cytotoxic effect in 5637 cells but at 32 microg/mL it increased the cytotoxicity of 1 microg/mL cisplatin by 37% after 24 h. Furthermore, the comet assay revealed that DNA damage induced by cisplatin in 5637 cells is enhanced by 31% when used in combination with feselol. Therefore, feselol might be considered as an effective reversal agent for future in vivo and clinical studies.  相似文献   

13.
Effects of ionic strength and temperature on the interaction between Tb3+ and porcine intestinal brush-border membrane vesicles were studied. When Tb3+ was added to the vesicle suspension, Tb3+ fluorescence increased with increasing concentration of Tb3+, showing a saturation. The apparent dissociation constant of one of at least two components of this binding reaction was estimated to be about 12.5 microM at 25 degrees C, pH 7.4. But the affinity of Tb3+ for the membrane vesicles was variable with changes of ionic strength and temperature. The affinity was lowered by addition of KCl to medium and by increase of temperature above 30 degrees C. In addition, temperature-induced change in the affinity of Tb3+ for the membranes was reversible over a temperature range from 13 to 46 degrees C. Temperature-dependence profiles of the excimer formation efficiency of pyrene-labeled membranes and of the harmonic mean of the rotational relaxation times of pyrene molecules in the membranes revealed that the phase transition of the membrane lipids occurs at about 30 degrees C. Based on these results, characteristics of Tb3+ binding to the membranes are discussed in relation to the nature of lipid phase and surface charges of the membranes.  相似文献   

14.
In cells exposed in vitro to the cytotoxic and mutagenic antitumor drug cisplatin (cis-Pt(NH3)2Cl2), various adducts with nuclear DNA are formed. A comparative study was made of the influence of temperature variation during treatment of cultured Chinese hamster ovary (CHO) cells with cisplatin on cytotoxicity, mutation induction and Pt-DNA adduct formation. Before and after treatment (1 h at 32, 37 or 40 degrees C) cells were kept at 37 degrees C. Cytotoxicity increased with temperature; D0 values were 29.6 +/- 1.6, 21.1 +/- 1.2 and 11.4 +/- 0.6 microM at 32, 37 and 40 degrees C, respectively. Pt-DNA binding to DNA at 40 degrees C was 2.0 (+/- 0.3) times as high as at 32 degrees C. This factor remained practically constant over a 24-h post-treatment incubation of the cells, during which about 60% of DNA-bound Pt were removed. As the increase in cytotoxicity between 32 and 40 degrees C was roughly in proportion to that in Pt binding, no substantial changes in the spectrum of adducts appeared to occur. The induction of DNA interstrand cross-links, studied at 32 and 40 degrees C, varied linearly with dose. Influence of temperature on cross-link formation was comparable to that on total Pt binding. Amounts of cross-links highly increased during 24 h after treatment. Plots of cross-links against survival after treatments at 32 and 40 degrees C almost coincided. Induction of 6-thioguanine-resistant (HGPRT) mutants at various cisplatin concentrations did not show a clear temperature dependency. Consequently, equitoxic treatments were significantly more mutagenic at 32 degrees C than at 40 degrees C, the opposite of what has been reported for E. coli.  相似文献   

15.
K Chiba  T Mohri 《Biochemistry》1987,26(3):711-715
The fluorescence of 1-anilino-8-naphthalenesulfonate (ANS) is progressively enhanced with increasing concentration of it, showing a proportionate blue shift of the emission maximum, by the interaction with the porcine intestinal Ca2+-binding protein (CaBP) in the absence of Ca2+. The apo-CaBP has a single binding site for ANS as determined by the fluorescence change, the apparent dissociation constant (Kd) estimated at 49.1 microM. Addition of Ca2+ or Tb3+ to the ANS-apo-CaBP system is capable of enhancing its fluorescence up to about 2- or 5-fold, respectively, causing further blue shift of the emission maximum. These metal ions do not affect the capacity of ANS binding, but Ca2+ slightly increases the Kd value. Increase of the fluorescence of the ANS-CaBP complex by increasing binding of Ca2+ to it was monophasic, while that with Tb3+ was biphasic, both saturated at the same molar ratio, 2, of added cations to the complex. Biphasic change of response has also been observed in UV absorption of the CaBP with increasing concentration of Tb3+. With a half-saturating concentration of Tb3+, Ca2+ can induce a much higher enhancement of the ANS fluorescence than excess Ca2+ alone. All these results indicate that the CaBP molecule contains a single ANS binding site and the conformation and/or microenvironment surrounding bound ANS of the protein is altered reversibly with binding of Ca2+ or Tb3+ to it and that there are differences between Ca2+- and Tb3+-induced conformation changes around the ANS-binding site and the tyrosine residue of it.  相似文献   

16.
(1) Tb3+ binding to mitochondrial membranes can be monitored by enhanced ion fluorescence at 545 nm with excitation at 285 nm. At low protein concentrations (less than 30 mug/ml) no inner filter effects are observed. (2) This binding is localized at the external surface of the inner membrane and is unaffected by inhibitors of respiration or oxidative phosphorylation. (3) A soluble Ca2+ binding protein isolated according to Lehninger, A.L. ((1971) Biochem. Biophys. Res. Commun. 42, 312-317) also binds Tb3+ with enhanced ion fluorescence upon excitation at 285 nm. The excitation spectrum of the isolated protein and of the intact mitochondria are indicative of an aromatic amino acid at the cation binding site. (4) Further characterization of the Tb3+-protein interaction revealed that there is more than one binding site per protein molecule and that these sites are clustered (less than 20 A). Neuraminidase treatment or organic solvent extraction of the protein did not affect fluorescent Tb3+ binding. (5) pH dependency studies of Tb3+ binding to the isolated protein or intact mitochondria demonstrated the importance of an ionizable group of pK greater than 6. At pH less than 7.5 the amount of Tb3+ bound to the isolated protein decreased with increase in pH as monitored by Tb3+ fluorescence. With intact mitochondria the opposite occurred with a large increase in Tb3+ fluorescence at higher pH. This increase was not observed when the mitochondria were preincubated with antimycin A and rotenone.  相似文献   

17.
Prostaglandins are secreted by a variety of tumor cell lines. The prostaglandin synthesis inhibitor indomethacin (IND) inhibits 3LL tumor growth after both intramuscular or intrasplenic transplantation (45 and 72%, respectively). Moreover, when tumor cells were cultured with IND, the sensitivity of 3LL cells to natural cytotoxic (NC) effector cells was increased (30%) and a higher cytotoxicity was reached when both target and effector cells were treated. This effect was reversed partially or totally when the assay was performed in the presence of laminin or an octapeptide from the laminin B1 chain. In addition, we correlate the increased cytotoxicity mediated by IND with an enhanced ability of 3LL tumor cells to bind labeled laminin (55%). In summary, our results show that the blockage or modulation of cell surface laminin binding components could be directly correlated with the sensitivity of tumor target cells to be eliminated by way of natural cytotoxicity.  相似文献   

18.
We tested whether zoledronic acid, a biphosphonate with proposed apoptotic activity, augmented the cytotoxicity of cisplatin and/or gemcitabine in A549 lung cancer cell line. This cell line was subjected to different concentrations of the above chemotherapeutic agents and zoledronic acid. Cytotoxicity was assessed by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrasodium bromide) assay. Particularly, zoledronic acid in 100 micromolar (microM) concentration augmented the cytotoxicity by cisplatin 1microg/ml from 25% to 70% (Z=3.22, P=0.0072). A significant portion of cells underwent apoptosis with or without zoledronic acid, but more so with the combination treatment as assessed by an Annexin V-FITC apoptosis detection kit. However, 100microM zoledronic acid showed 50% cytotoxicity on its own, but failed to improve cytotoxicity by Gemcitabine. Thus, we show for the first time in a lung cancer cell line that zoledronic acid bears cytotoxic potential on its own and in conjunction with cisplatin. The clinical potential of this finding should be further studied.  相似文献   

19.
The effect of phosphorylation of calmodulin by casein kinase 2 on the calcium binding of the former was studied by measurement of terbium fluorescence. The binding of Tb3+ to calmodulin was followed by an increase in Tb3+ fluorescence at 545 nm. The terbium fluorescence of phosphorylated calmodulin increased at a lower concentration of Tb3+ than that of non-phosphorylated calmodulin, indicating that Tb3+ binding affinity of calmodulin was increased by phosphorylation. Our results suggest that the interaction between calcium and binding domain becomes stronger by phosphorylation.  相似文献   

20.
The addition of leukotriene B4 (LTB4) to cytotoxicity assays measuring natural killer (NK) or natural cytotoxic (NC) cell activities resulted in significantly augmented killing of K562 or herpes simplex virus (HSV)-infected target cells, respectively. Since the mechanism of cytotoxicity implies several steps, including the binding of effectors to targets which is Mg2+-dependent and the programming of lysis of the target which is Ca2+-dependent, we undertook to define the step(s) at which LTB4 acted in augmenting cytotoxicity. Our results showed that LTB4 significantly increased the percentage of effector-target conjugates when K562- or HSV-infected targets were incubated with lymphocytes. Maximal binding occurred at a concentration of LTB4 of 1 X 10(-10) M. Preincubation of lymphocytes and not target cells with LTB4 was sufficient to observe the increased binding. PBML binding to and killing of the NK-resistant target clone I, derived from K562, was not enhanced by LTB4. In the absence of Ca2+, cytotoxicity was impaired and LTB4 could not restore it. Use of a single cell lytic assay demonstrated augmented efficiency of lysis of both K562 and HSV-infected targets in the presence of LTB4. These findings suggest that LTB4 may augment natural cytotoxicity by enhancing target cell recognition by cytotoxic effector cells and subsequently by augmenting their lytic efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号