共查询到20条相似文献,搜索用时 0 毫秒
1.
An HJ Rim HK Lee JH Suh SE Lee JH Kim NH Choi IY Jeong HJ Kim IK Lee JY An NH Kim HR Um JY Kim HM Hong SH 《Canadian journal of physiology and pharmacology》2008,86(10):682-690
Using mouse peritoneal macrophages, we have examined the mechanism by which Leonurus sibiricus (LS) regulates nitric oxide (NO) production. When LS was used in combination with recombinant interferon-gamma (rIFN-gamma), there was a marked cooperative induction of NO production; however, LS by itself had no effect on NO production. The increased production of NO from rIFN-gamma plus LS-stimulated cells was almost completely inhibited by pretreatment with pyrrolidine dithiocarbamate (PDTC), an inhibitor of nuclear factor kappaB. Furthermore, treatment of peritoneal macrophages with rIFN-gamma plus LS caused a significant increase in tumor necrosis factor-alpha (TNF-alpha) production. PDTC also decreased the effect of LS on TNF-alpha production significantly. Because NO and TNF-alpha play an important role in immune function and host defense, LS treatment could modulate several aspects of host defense mechanisms as a result of stimulation of the inducible nitric oxide synthase. 相似文献
2.
Oxidized low density lipoprotein suppresses the expression of tumor necrosis factor-alpha mRNA in stimulated murine peritoneal macrophages 总被引:17,自引:0,他引:17
T A Hamilton G P Ma G M Chisolm 《Journal of immunology (Baltimore, Md. : 1950)》1990,144(6):2343-2350
In the present report we have examined expression of the gene encoding the inflammatory monokine TNF-alpha in murine peritoneal macrophages treated with different forms of low density lipoprotein (LDL). LDL modified by oxidation in vitro is unable to stimulate inflammatory gene expression in peritoneal macrophages. However, treatment of macrophage cultures with oxidized LDL for 6 h or more resulted in a concentration and time-dependent suppression of TNF-alpha mRNA expression induced in response to stimulation with either LPS or maleylated BSA. This suppression was maximal after 12 h of exposure to oxidized LDL and at a concentration of 100 to 200 micrograms LDL cholesterol/ml of culture medium. The suppressive effect was restricted to oxidatively modified LDL as treatment with native LDL or acetylated LDL did not affect TNF-alpha mRNA expression, despite the fact that both acetylated and oxidized LDL lead to intracellular lipid accumulation. The expression of maleyl albumin-stimulated TNF-alpha mRNA expression could be reproduced by lipid extracts of oxidized LDL provided to macrophages at the same cholesterol concentration as from the intact lipoprotein particle. Extracts from native LDL were ineffective. These results suggest that oxidized lipid accumulation in monocytes infiltrating the arterial wall may lead to the suppression of certain inflammatory functions which, in turn, may influence the development of mature atherosclerotic lesions. 相似文献
3.
4.
Modulation of granulocyte colony-stimulating factor receptors on murine peritoneal exudate macrophages by tumor necrosis factor-alpha. 总被引:2,自引:0,他引:2
J H Shieh R H Peterson M A Moore 《Journal of immunology (Baltimore, Md. : 1950)》1991,146(8):2648-2653
Modulation of granulocyte CSF (G-CSF) receptors on murine peritoneal exudate macrophages (PEM) by various cytokines was investigated. At 4 degrees C, 125I-G-CSF receptor binding on PEM reached a plateau after 6 h and was specifically competed by unlabeled human rG-CSF but not by other cytokines, including human rG-CSF-1, murine recombinant granulocyte-macrophage CSF, murine rIFN-gamma, human rIL-1 beta, and murine rTNF-alpha. 125I-G-CSF bound to PEM has a half-life of 30 min at 37 degrees C. Preincubation of PEM with murine rTNF, murine recombinant granulocyte-macrophage CSF, CSF-1, or G-CSF for 30 min at 37 degrees C resulted in partial reduction of 125I-G-CSF binding capacity, whereas IL-1 or IFN-gamma did not inhibit G-CSF binding. Further studies indicated that reduction of G-CSF binding caused by TNF was a dose- and time-dependent process and did not require FCS. The reduction was transient, and receptor binding was recovered by incubation at 37 degrees C for 8 h. The recovery of G-CSF binding was inhibited in the presence of cycloheximide. In addition, G-CSF binding studies suggested that the TNF-induced decrease in G-CSF binding to PEM was probably due to a reduction in receptor number rather than receptor affinity. Modulation of G-CSFR by TNF was also observed on nonelicited macrophages from various strains of mice. Our results demonstrate a physiologic response of G-CSFR on macrophages that is modulated by TNF. This phenomenon may play an important, as yet unknown, role in the macrophage inflammatory response. 相似文献
5.
Chung HS Shin CH Lee EJ Hong SH Kim HM 《Comparative biochemistry and physiology. Toxicology & pharmacology : CBP》2003,135(2):197-203
Using mouse peritoneal macrophages, we have examined the mechanism by which, Smilacis rhizoma (SR) regulates nitric oxide (NO) production. When SR was used in combination with recombinant interferon-gamma (rIFN-gamma), there was a marked cooperative induction of NO production. However, SR had no effect on NO production by itself. The increased production of NO from rIFN-gamma plus SR-stimulated cells was almost completely inhibited by pre-treatment with pyrrolidine dithiocarbamate (PDTC), an inhibitor of nuclear factor kappa B (NF-kappaB). Furthermore, treatment of peritoneal macrophages with rIFN-gamma plus SR caused a significant increase in tumor necrosis factor-alpha (TNF-alpha) production. PDTC also decreased the effect of SR on TNF-alpha production significantly. These findings demonstrate that SR increases the production of NO and TNF-alpha by rIFN-gamma-primed macrophages and suggest that NF-kappaB plays a critical role in mediating these effects of SR. 相似文献
6.
IFN-gamma-induced L-arginine-dependent toxoplasmastatic activity in murine peritoneal macrophages is mediated by endogenous tumor necrosis factor-alpha. 总被引:22,自引:0,他引:22
J A Langermans M E Van der Hulst P H Nibbering P S Hiemstra L Fransen R Van Furth 《Journal of immunology (Baltimore, Md. : 1950)》1992,148(2):568-574
Activated murine peritoneal macrophages inhibit the intracellular proliferation of Toxoplasma gondii and produce a number of cytokines, such as TNF-alpha and IL-1. Both TNF-alpha and IL-1 have been reported to be involved in the immune response against various microorganisms, but the mechanisms responsible for these effects are not known. In the present study it was investigated whether endogenously produced TNF-alpha and IL-1 are involved in the activation of peritoneal macrophages by rIFN-gamma leading to toxoplasmastatic activity and the production of reactive nitrogen intermediates. The rIFN-gamma-induced toxoplasmastatic activity was inhibited by neutralizing antibodies against mouse TNF-alpha in a dose-dependent and time-dependent way, but neutralizing antibodies against mouse IL-1 alpha and IL-1 beta did not affect this activity. Involvement of TNF-alpha in the induction of toxoplasmastatic activity was confirmed by our finding that rTNF-alpha in combination with a nonactivating concentration of rIFN-gamma inhibited the intracellular proliferation of T. gondii. No synergistic activity of rIL-1 and rIFN-gamma on the inhibition of T. gondii proliferation was found. Both rTNF-alpha and rIL-1 alpha alone inhibited the intracellular proliferation of T. gondii only slightly. Because it has been reported recently that activated macrophages produce reactive nitrogen intermediates that are essential in the induction of toxoplasmastatic activity, we investigated whether these intermediates are involved in the TNF-dependent induction of toxoplasmastatic activity. Neutralizing antibodies against mouse TNF-alpha inhibited also the release of NO2- by rIFN-gamma-activated macrophages almost completely. Macrophages incubated with rTNF-alpha in combination with a nonactivating concentration of rIFN-gamma released substantial amounts of NO2-, but rTNF-alpha and rIL-1 alpha alone, and the combination of rIL-1 alpha and a nonactivating concentration of rIFN-gamma induced only little NO2(-)-release by macrophages. To assess whether reactive nitrogen intermediates act directly or indirectly on the intracellular proliferation of T. gondii, macrophages were incubated with the L-arginine analog NG-monomethyl-L-arginine or the NADPH-inhibitor diphenylene iodonium, both inhibitors of the generation of reactive nitrogen intermediates. Good correlation was found between toxoplasmastatic activity and the release of NO2- during the 24-h activation period before infection of the macrophages with T. gondii, but no correlation was found between toxoplasmastatic activity and the release of NO2- during infection of the macrophages.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
7.
Tumor necrosis factor-alpha (TNF) release by monocytes and macrophages may be an important determinant of the physiologic response of the host to neoplastic disease; however, the mechanisms which regulate TNF release by macrophages in hosts with neoplastic diseases are poorly understood. The purpose of this study was to determine if cell membranes and growth medium from human leukemia cell lines and solid tumor cell lines induced TNF release by cultured human blood monocyte-derived macrophages. The capacity for TNF release and direct tumor killing was highest in monocytes cultured for 7 to 11 days. Cell membranes and culture media from K562 erythroleukemia and several small cell lung carcinoma cell lines, including H82, induced the release of up to 1500 TNF units per 10(6) macrophages over 24 hr. By contrast, allogeneic peripheral blood lymphocytes, cell membranes from normal mixed donor peripheral blood leukocytes, or growth medium from normal embryonic lung fibroblasts induced the release of little or no TNF during culture up to 24 hr, suggesting that this macrophage response was specific for tumor cells. Release of TNF by tumor-stimulated macrophages was gradual, peaking 24 hr following the addition of stimuli. Induction of macrophage TNF release was concentration dependent, with half-maximal TNF levels induced by 12.5 and 25 micrograms/ml cell membranes prepared from K562 and H82, respectively. Pretreatment of tumor cell membranes with polymixin B, which inhibits many of the actions of endotoxin, failed to neutralize tumor induction of TNF, suggesting that endotoxin was not responsible for this activity. Depletion of macrophages by treatment with 3C10 monoclonal antibody and complement abrogated tumor-induced TNF release, indicating that macrophages were the source of the secreted TNF. HPLC analysis of H82 growth medium demonstrated a single peak of macrophage activating activity with approximate 40-kDa molecular weight. We have demonstrated that cell membranes and growth medium from some human leukemia and solid tumor cell lines, but not from normal human cells, induce human peripheral blood monocytes and monocyte-derived macrophages to release functionally active TNF. This process may contribute to the host response to some neoplastic diseases. 相似文献
8.
M Furukawa S Arai T Munakata K Kuwano H Inoue K Tomita 《Nihon saikingaku zasshi. Japanese journal of bacteriology》1989,44(6):817-821
Several species of mycoplasmas including M. pneumoniae, the causative agent of human respiratory infection, were investigated for tumor necrosis factor-alpha (TNF-alpha) induction. The cytotoxic activity to Meth A cells of peritoneal macrophages purified from BALB/c mice was enhanced markedly when cultured with either viable or nonviable mycoplasmas. The supernatant of macrophage culture mixed with mycoplasmas, M. pneumoniae or A. laidlawii, showed a potent cytotoxic activity to TNF-alpha-sensitive but not to TNA-alpha-insensitive L cells. Addition of anti-TNA-alpha antiserum inhibited completely the cytotoxic activity of the supernatant, indicating that the cytotoxic activity is due mostly to TNF-alpha. These results strongly suggest that mycoplasmas possess an activity to induce TNF-alpha, which enhances the cytotoxic activity of macrophages and prevent infection with mycoplasmas in vivo. 相似文献
9.
10.
The molecular action of tumor necrosis factor-alpha. 总被引:20,自引:0,他引:20
Tumor necrosis factor-alpha (TNF-alpha) is a polypeptide hormone newly synthesized by different cell types upon stimulation with endotoxin, inflammatory mediators (C5a anaphylatoxin), or cytokines such as interleukin-1 and, in an autocrine manner, TNF itself. The net biological effect of TNF-alpha may vary depending on relative concentration, duration of cell exposure and presence of other mediators which may act in synergism with this cytokine. TNF-alpha may be relevant either in pathological events occurring in cachexia and endotoxic shock and inflammation or in beneficial processes such as host defense, immunity and tissue homeostasis. The biological effects of TNF-alpha are triggered by the binding to specific cell surface receptors. The formation of TNF-alpha-receptor complex activates a variety of biochemical pathways that include the transduction of the signal at least in part controlled by guanine-nucleotide-binding regulatory proteins (G proteins), its amplification through activation of adenyl cyclase, phospholipases and protein kinases with the generation of second messenger pathways. The transduction of selected genes in different cell types determines the characteristics of the cell response to TNF-alpha. The full understanding of the molecular mechanisms of TNF-alpha will provide the basis for a pharmacological approach intended to inhibit or potentiate selected biological actions of this cytokine. 相似文献
11.
Cellular signaling by TNF-alpha is mediated through activation of mitogen activated protein (MAP) kinases. In particular, p38 MAP kinase is activated in mononuclear phagocytes and may be important in sustaining TNF-alpha activity. Here, we compared the activation and mutual regulation of p38 MAP kinase and TNF-alpha by MTB in human alveolar macrophages (AM) and blood monocytes (MN). AM and autologous MN were prepared, and stimulated by MTB at 1:1 (bacteria/cell). MAP kinase activation was assessed by immunoprecipitation and kinase activity. TNF-alpha mRNA was assessed by real-time RT-PCR, and TNF-alpha immunoreactivity was assessed by ELISA. MTB-induced p38MAP kinase rapidly in AM as compared to MN, and inhibition of p38 MAP kinase by SB203580 reduced both TNF-alpha mRNA and protein. Activation of ERK (1/2) by MTB followed similar kinetics in both AM and MN. TNF-alpha produced by MTB sustained p38 MAP kinase activation in MN only. These data suggest that interaction of resident pulmonary macrophages and the more immature MN with MTB differ with regard to both p38 MAP kinase activation and TNF-alpha expression. 相似文献
12.
The induction of 1-hydroxylase in alveolar macrophages by tumor necrosis factor-alpha (TNF) was examined in view of recent evidence suggesting that local production of 1,25-(OH)2D3 may play a role in the regulation of immune functions. Incubation of pulmonary alveolar macrophages from normal human subjects with recombinant TNF caused a 2- to 10-fold increase in 25-hydroxyvitamin D3-1-hydroxylase activity. The dose-response curve was linear over the range 0.05-5.0 IU/ml, and no further increase was seen at higher concentrations. The increase in 1-hydroxylase activity was present after 12 h and reached a maximum after 3 days. The effect of TNF was inhibited in a dose-dependent manner by the presence of 1,25(OH)2D3 (10(-10)-10(-8) M) in the incubation media for 5 days but was unaffected by 10(-9) M 1,25(OH)2D3 after 12 h. The enhancement of macrophage 1-hydroxylase activity by TNF was comparable to that induced by gamma interferon (IFN) but the effects of maximal doses of both agents were not additive. The presence of antibody to TNF resulted in a 76% inhibition of TNF-induced 1-hydroxylase but had no significant effect on IFN-induced 1-hydroxylase activity. 相似文献
13.
I Matsu-Ura K Kuwano A Umeda K Amako Y Yamamoto S Arai 《Nihon saikingaku zasshi. Japanese journal of bacteriology》1990,45(5):845-849
Induction of tumor necrosis factor-alpha (TNF-alpha) by Staphylococcus aureus L-form was investigated. The supernatant of a macrophage culture mixed with S. aureus L-form showed a potent cytotoxic activity to L cells. Addition of anti TNF-alpha antibody inhibited completely the cytotoxic activity of the supernatant, indicating that the activity might be due mostly to TNF-alpha. To investigate localization of TNF-alpha production, the membranes of hypotonicity treated L-form were layered on a step-gradient composed of an upper and lower layers of 35% and 50% sucrose, respectively. The membranes were banded at the interface of 35% and 50% of sucrose. The activity of TNF-alpha production of the membrane fraction was 10-times higher than that of the soluble fraction. 相似文献
14.
The structure of tumor necrosis factor-alpha at 2.6 A resolution. Implications for receptor binding 总被引:19,自引:0,他引:19
The three-dimensional structure of tumor necrosis factor (TNF-alpha), a protein hormone secreted by macrophages, has been determined at 2.6 A resolution by x-ray crystallography. Phases were determined by multiple isomorphous replacement using data collected from five heavy atom derivatives. The multiple isomorphous replacement phases were further improved by real space symmetry averaging, exploiting the noncrystallographic 3-fold symmetry of the TNF-alpha trimer. An atomic model corresponding to the known amino acid sequence of TNF-alpha was readily built into the electron density map calculated with these improved phases. The 17,350-dalton monomer forms an elongated, antiparallel beta-pleated sheet sandwich with a "jelly-roll" topology. Three monomers associate intimately about a 3-fold axis of symmetry to form a compact bell-shaped trimer. Examination of the model and comparison to known protein structures reveals striking structural homology to several viral coat proteins, particularly satellite tobacco necrosis virus. Locations of residues conserved between TNF-alpha and lymphotoxin (TNF-beta, a related cytokine known to bind to the same receptors as TNF-alpha) suggest that lymphotoxin, like TNF-alpha, binds to the receptor as a trimer and that the general site of interaction with the receptor is at the "base" of the trimer. 相似文献
15.
J H Gong H Sprenger F Hinder A Bender A Schmidt S Horch M Nain D Gemsa 《Journal of immunology (Baltimore, Md. : 1950)》1991,147(10):3507-3513
16.
Critical role of cAMP response element binding protein expression in hypoxia-elicited induction of epithelial tumor necrosis factor-alpha. 总被引:9,自引:0,他引:9
C T Taylor N Fueki A Agah R M Hershberg S P Colgan 《The Journal of biological chemistry》1999,274(27):19447-19454
Tissue hypoxia is intimately associated with a number of chronic inflammatory conditions of the intestine. In this study, we investigated the impact of hypoxia on the expression of a panel of inflammatory mediators by intestinal epithelia. Initial experiments revealed that epithelial (T84 cell) exposure to ambient hypoxia evoked a time-dependent induction of the proinflammatory markers tumor necrosis factor-alpha (TNF-alpha), interleukin-8 (IL-8), and major histocompatibility complex (MHC) class II (37 +/- 6.1-, 7 +/- 0.8-, and 9 +/- 0.9-fold increase over normoxia, respectively, each p < 0.01). Since the gene regulatory elements for each of these molecules contains an NF-kappaB binding domain, we investigated the influence of hypoxia on NF-kappaB activation. Cellular hypoxia induced a time-dependent increase in nuclear p65, suggesting a dominant role for NF-kappaB in hypoxia-elicited induction of proinflammatory gene products. Further work, however, revealed that hypoxia does not influence epithelial intercellular adhesion molecule 1 (ICAM-1) or MHC class I, the promoters of which also contain NF-kappaB binding domains, suggesting differential responses to hypoxia. Importantly, the genes for TNF-alpha, IL-8, and MHC class II, but not ICAM-1 or MHC class I, contain cyclic AMP response element (CRE) consensus motifs. Thus, we examined the role of cAMP in the hypoxia-elicited phenotype. Hypoxia diminished CRE binding protein (CREB) expression. In parallel, T84 cell cAMP was diminished by hypoxia (83 +/- 13.2% decrease, p < 0.001), and pharmacologic inhibition of protein kinase A induced TNF-alpha and protein release (9 +/- 3.9-fold increase). Addback of cAMP resulted in reversal of hypoxia-elicited TNF-alpha release (86 +/- 3.2% inhibition with 3 mM 8-bromo-cAMP). Furthermore, overexpression of CREB but not mutated CREB by retroviral-mediated gene transfer reversed hypoxia-elicited induction of TNF-alpha defining a causal relationship between hypoxia-elicited CREB reduction and TNF-alpha induction. Such data indicate a prominent role for CREB in the hypoxia-elicited epithelial phenotype and implicate intracellular cAMP as an important second messenger in differential induction of proinflammatory mediators. 相似文献
17.
Insulin up-regulates tumor necrosis factor-alpha production in macrophages through an extracellular-regulated kinase-dependent pathway. 总被引:5,自引:0,他引:5
K T Iida H Shimano Y Kawakami H Sone H Toyoshima S Suzuki T Asano Y Okuda N Yamada 《The Journal of biological chemistry》2001,276(35):32531-32537
Hyperinsulinemia has recently been reported as a risk factor for atherosclerotic diseases such as coronary heart disease; however, the effect of insulin on the development of atherosclerosis is not well understood. Here we have investigated the direct effect of insulin on macrophages, which are known to be important in the atherosclerotic process. We treated THP-1 macrophages with insulin (10(-7) m) and examined the gene expression using nucleic acid array systems. The results of array analysis showed that insulin stimulated gene expression of tumor necrosis factor-alpha (TNF-alpha) the most among all genes in the analysis. In addition, insulin administration to macrophages enhanced both mRNA expression and protein secretion of TNF-alpha in a dose-dependent manner. To determine the signaling pathway involved in this TNF-alpha response to insulin, we pretreated the cells with three distinct protein kinase inhibitors: wortmannin, PD98059, and SB203580. Only PD98059, which inhibits extracellular signal-regulated kinases, suppressed insulin-induced production of TNF-alpha mRNA and protein in THP-1 macrophages. These observations indicate that insulin stimulates TNF-alpha production in macrophages by regulating the expression of TNF-alpha mRNA and that the extracellular signal-regulated kinase signaling pathway may have a critical role in stimulating the production of TNF-alpha in response to insulin in macrophages. 相似文献
18.
Several lines of evidence have supported a link between obesity and inflammation. The present study investigated the capacity of leptin and globular adiponectin to affect tumor necrosis factor alpha (TNF-alpha) production in murine peritoneal macrophages. Leptin stimulated TNF-alpha production at mRNA as well as protein levels in a dose- and time-dependent manner. Intracellular cAMP concentration was increased and protein kinase A (PKA) was activated with the treatment of leptin, subsequently downstream MAPK signal proteins, ERK1/2 and p38, were phosphorylated. Specific inhibitors for the signal proteins, Rp cAMPS, H89, PD98059, and U0126, or SB203580, suppressed the signaling pathway and TNF-alpha expression. Although gAd partially increased cAMP concentration and PKA activity, it directly reduced leptin-induced ERK1/2 and p38 MAPK phosphorylation thus inhibiting TNF-alpha production. In conclusion, leptin promotes inflammation by stimulating TNF-alpha production, which is mediated by cAMP-PKA-ERK1/2 and p38 MAPK pathways. gAd inhibited leptin-induced TNF-alpha production through suppressing phosphorylation of ERK1/2 and p38 pathways. 相似文献
19.
20.
J J Turek I A Schoenlein G D Bottoms 《Prostaglandins, leukotrienes, and essential fatty acids》1991,43(3):141-149
The purpose of this study was to determine the effect of dietary n-3 and n-6 fatty acids on tumor necrosis factor-alpha (TNF-alpha) production and macrophage (MO) activation state. Rats were fed diets containing 12.5% linseed oil (LO) or corn oil (CO) that are high in n-3 and n-6 fatty acids respectively. The LO diet resulted in a significant increase in basal and endotoxin (LPS)-induced levels of TNF-alpha from resident MO cultured in vitro. There was no difference between the diets in LPS-induced TNF-alpha production by complete Freund's adjuvant (CFA) elicited macrophages. Variable responses were also observed between LO and CO MO in response to prostaglandin E2, indomethacin (INDO), and the prostaglandin E receptor antagonist SC-19220. This may indicate differences in signal transducing secondary messengers due to different activation states, receptor expression or ligand binding. Fluorescence due to leucine aminopeptidase (LAP) staining was determined by flow cytometry. Resident LO MO had a 15% increase in LAP fluorescence compared to CO MO. In CFA-elicited MO, the CO MO had a 43% increase in fluorescence compared to LO MO. Resident LO MO increased in LAP fluorescence by 35% to the activated state whereas resident CO MO increased in LAP fluorescence by 93%. The smaller window of activation for the LO MO may explain some of the antiinflammatory properties of dietary n-3 fatty acids. 相似文献