首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth curves of the retinal cell population of embryonic chicks were fitted by a branching-process model of cell population growth, thereby estimating the proliferative ratios and mean cell-cycle times of the generations of cell cycles that underlie retinal growth. The proliferative ratio determines the proportion of cells that divides in the next generation, so the numbers of proliferative and non-proliferative cells in each generation of cell cycles were obtained. The mean cell-cycle times determine the times over which the generations are extant. Assuming growth starts from one cell in generation 0, the proliferative cells reach 3.6 × 106 and the non-proliferative cells reach 1.1 × 106 by generation 23. The next four generations increase the proliferative cell numbers to 13.9 × 106 and produce 20.1 × 106 non-proliferative cells. In the next five generations in the end phase of growth, non-proliferative cells are produced in large numbers at an average of 13.9 × 106 cells per generation as the retinal lineages are completed. The retinal cell population reaches a maximum estimated here at 98.2 × 106 cells. The mean cell-cycle time estimates range between 6.8 and 10.1 h in generations before the end phase of growth and between 10.6 and 17.2 h in generations in the end phase. The retinal cell population growth is limited by the depletion of the proliferative cell population that the production of non-proliferative cells entails. The proliferative ratios and the cell-cycle-time distribution parameters are the likely determinants of retinal growth rates. The results are discussed in relation to other results of spatial and temporal patterns of the cessation of cell cycling in the embryonic chick retina.  相似文献   

2.
The growth kinetics of cells frozen to ?196 °C were monitored after thawing by various techniques. Progression through the cell cycle in the exposed generation was observed by monitoring cell growth either via multiplicity counts or by electronic cell counts of trypsinized suspensions. Subsequent generations were followed by time-lapse microcinematography.The division delay in the exposed generation of exponential-phase cells was dependent on cell age at the time of freezing and varied from 4 to 8 hr. The time of the first generation was still prolonged significantly but subsequent generations revealed cell cycle times that are comparable to unfrozen cells. In the case of plateau-phase cells, mitosis was delayed 7 hr in the exposed generation. This is 50% longer than the delay seen for pre-DNA synthetic g1 cells in exponentially growing cultures.A rather important observation in this study was that frozen-thawed cells which divide once will probably continue dividing whereas eventual nonsurvivors are not likely to divide at all. The latter, however, remain active for more than 35 hr as observed microscopically, hence possibly indicating residual metabolic activity.  相似文献   

3.
SUMMARY: The generation times of individual Escherichia coli cells inoculated on to a cellophane membrane and supplied with a liquid synthetic medium were determined by direct observation for four generations. Viability increased and generation time decreased with increasing age of population.  相似文献   

4.
Time-lapse cinemicrographs of synchronous HeLa S3 cells irradiated with 220 kv X-rays at various stages of interphase provided data for constructing pedigrees, measuring the duration of both generation cycles and mitoses, and scoring events associated with cell disintegration for up to seven postirradiation generations. The onset of the first mitosis after doses of 500 rads was delayed as expected from previous studies of the age dependence of “mitotic delay.” The interval between this first mitosis and the next was indistinguishable from that for unirradiated control cells, while the subsequent two generations were again prolonged, on the average, though not so severely as was the irradiated generation. The duration of mitosis was increased proportionally more than interphase. Cell disintegration took place by way of two morphologically distinct processes. In three-quarters of the cases the cells were rounded and apparently trapped in metaphase when they disintegrated; the remaining disintegrations occurred in spread, interphase cells. In cells disintegrating from the rounded configuration, the generation preceding disintegration was prolonged relative to that in cells which divided; in cells disintegrating from either configuration, the penultimate generation was also prolonged. The mitotic times were disproportionately increased in both of these generations. It is suggested that in this system X-ray damage is preferentially expressed as derangement of the mitotic process; such damage ultimately brings about permanent mitotic arrest in the majority of cells.  相似文献   

5.
Synchronized cells of Tetrahymena pyriformis strain GL-C were exposed to cycloheximide (CHI) (0.2 μg per ml) from 40 to 140 minutes after the end of the heat synchronizing treatment. Recovery takes place during this treatment (Frankel, 1970). The CHI was washed out at 140 minutes. At various times after washout dividing cells were isolated in micro-drops under oil, and one daughter was transferred to a test drop containing CHI (0.2 μ per ml). The generation time of both daughters was recorded, and the “percent prolongation” of generation time brought about by the test exposure of one cell to CHI was computed for each cell-pair. This procedure was carried out for groups of cell-pairs at different times after the end of the CHI pretreatment. Comparable tests were performed with two control series, one which had not previously been exposed to CHI and another for which CHI was present continuously. Comparison of the prolongation observed in control and experimental series demonstrated that cells which have earlier undergone recovery in CHI gradually become resensitized following washout of the drug. Cells progressively lose most of their original resistance in a period of somewhat over three cell generations; however, a small but significant fraction of this resistance is still retained seven to eight generations after the CHI pretreatment.  相似文献   

6.
利用性诱剂调查江苏无锡地区三个水蜜桃Prunus persica种植区梨小食心虫Gtapholitha molesta成虫的年发生动态,并比较不同时间挂放诱芯的诱集效果。结果表明,在无锡地区,梨小食心虫年发生5代,部分发育较快的五代幼虫在越冬前发育为成虫,但因无法找到合适的产卵场所而成为无效虫口。越冬代成虫和一代成虫发生较为整齐,可以使用性诱剂集中诱杀,但从二代成虫开始,发生呈现多个高峰,田间世代重叠明显。对梨小食心虫的性诱剂防治试验表明,在无锡地区,需高密度放置诱芯并2周更换1次诱芯方能达到防治效果。  相似文献   

7.
Time-lapse films were made of PC13 embryonal carcinoma cells, synchronized by mitotic shake off, in the absence and presence of retinoic acid. Using a method based on the transition probability model, cell cycle parameters were determined during the first five generations following synchronization. In undifferentiated cells, cell cycle parameters remained identical for the first four generations, the generation time being 11–12 hr. In differentiating cells, with retinoic acid added at the beginning of the first cycle, the first two generations were the same as controls. The duration of the third generation, however, was increased to 15.7 hr while the fourth and fifth generation were approximately 20 hr, the same as in exponentially growing, fully differentiated cells. The increase in generation time of dividing cells was principally due to an increase in the length of S phase. Cell death induced by retinoic acid also occurred principally in the third and subsequent generations. Cell population growth was then significantly less than that expected from the generation time derived from cycle analysis of dividing cells. Cells lysed frequently as sister pairs suggesting susceptibility to retinoic acid toxicity determined in a generation prior to death. Morphological differentiation, as estimated by the area of substrate occupied by cells, was shown to begin in the second cell cycle after retinoic acid addition. These results demonstrate that as in the early mammalian embryo, differentiation of embryonal carcinoma cells to an endoderm-like cell is also accompanied by a decrease in growth rate but that this is preceded by acquisition of the morphology characteristic of the differentiated progeny.  相似文献   

8.
The life spans of individual Saccharomyces cerevisiae cells were determined microscopically by counting the number of buds produced by each cell to provide a measure of the number of cell generations (age) before death. As the cells aged, their generation times increased five- to sixfold. The generation times of daughter cells were virtually identical to those of their mothers throughout the life spans of the mothers. However, within two to three cell divisions after the daughters were detached from their mothers by micromanipulation, their generation times reverted to that characteristic of their own age. Recovery from the mother cell effect was also observed when the daughters were left attached to their mothers. The results suggest that senescence, as manifested by the increase in generation time, is a phenotypically dominant feature in yeast cells and that it is determined by a diffusible cytoplasmic factor(s) that undergoes turnover. This factor(s) appeared to be transmitted by a cell not only to its daughter, but also indirectly to its granddaughter. In separate studies, it was determined that the induced deposition of chitin, the major component of the bud scar, in the yeast cell wall had no appreciable effect on life span. We raise the possibility that the cytoplasmic factor(s) that appears to mediate the "senescent phenotype" is a major determinant of yeast life span. This factor(s) may be the product of age-specific gene expression.  相似文献   

9.
Different concentrations of 2,4-D, KT and NAA were able to influence the plating efficiency (PE) of single cells of Cathamus tinctorius. The best combination of these three hormones for the growth of single cells was 2.0, 0.3 and 0.5 mg/l, respectively. The PE was obviously different as cells came from different generations of suspension subculture and the third generation of suspension culture cells, had the best PE which 8.5 times as high as that of the first generation of suspension culture cells. Single cell growth in condition medium or in solid-liquid dual layer culture was better than in normal plate culture. The PE of single cell clones in condition culture was 3.6 times as high as in normal plate culture. The PE of single cell clones in solid-liquid dual layer culture was 4.7 times as high as in normal plate culture. Many clones from single cells were set up. Different growth rates were observed in different single-cell clones. The lowest growth rate in these clones was 3.08 g/g/35 days, the highest growth rate in these clones was 23.33 g/g/35 days.  相似文献   

10.
A simple combination of autoradiography, to determine when a cell synthesized DNA, and sister chromatid differential staining, to determine how many times a cell has divided, was used to follow up the proliferating fate of human lymphocytes in culture. Cells were incubated continuously with 5-bromodeoxyuridine (BrdU) and pulse-labelled with 0.1 muCi/ml [3H]thymidine at various times after stimulation with phytohemagglutinin (PHA). The cells were then harvested at 4 h intervals up to 72 h, and the percentage of labelled mitoses was determined separately in first, second, or third division cells. The data showed that the cycling cells, whether they began cycling at earlier or later times after stimulation, had about the same generation times of 12--14 h. This confirms that the heterogeneity of cell generations seen in short-term lymphocyte cultures is in large part due to the difference in the times when cells began cell cycling in response to PHA.  相似文献   

11.
红花单细胞克隆的建立   总被引:4,自引:0,他引:4  
KT,2,4-D 及 NAA 能提高红花(Cathamus tinctorius)细胞克隆平板培养的植板率。这三种激素对细胞生长的最佳搭配是2,4-D2.0mg/l,KT0.3mg/l,NAA 0.5mg/1。红花细胞悬浮继代培养代数不同,其植板率相差甚远,用悬浮培养第三代的细胞做材料最好,其植板率是第一代悬浮培养细胞做材料的8.5倍。红花细胞克隆的条件培养的植板率是普通平板培养的3.6倍。固-液双层培养的植板率是普通平板培养的4.7倍。对已建立的红花细胞克隆进行生长速率的比较表明,生长最漫的克隆的生长速率为3.08g/g/35天,生长最决的克隆的生长速率高达23.33g/g/35天。  相似文献   

12.
F. Klein  K. Karwan    U. Wintersberger 《Genetics》1990,124(1):57-65
Haploid cells of Saccharomyces cerevisiae were treated with different DNA damaging agents at various doses. A study of the progeny of individual such cells (by pedigree analyses up to the third generation) allowed the assignment of lethal events to distinct post treatment generations. By microscopically inspecting those cells which were not able to form visible colonies we could discriminate between cells dying from immediately effective lethal hits and those generating microcolonies (three to several hundred cells) probably as a consequence of lethal mutation(s). The experimentally obtained numbers of lethal events (which we call apparent lethal fixations) were mathematically transformed into mean probabilities of lethal fixations as taking place in cells of certain post treatment generations. Such analyses give detailed insight into the kinetics of lethality as a consequence of different kinds of DNA damage. For example, X-irradiated cells lost viability mainly by lethal hits (which we call 00-fixations); only at a higher dose also lethal mutations fixed in the cells that were in direct contact with the mutagen (which we call 0-fixations), but not in later generations, occurred. Ethyl methanesulfonate (EMS)-treated cells were hit by 00-fixations in a dose dependent manner; 0-fixations were not detected for any dose of EMS applied; the probability for fixation of lethal mutations was found equally high for cells of the first and second post treatment generation and, unexpectedly, was well above control in the third post-treatment generation. The distribution of all sorts of lethal fixations taken together, which occurred in the EMS-damaged cell families, was not random.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
In stomata guard cells of sugar beet, variation in the number of chloroplasts was studied in successive generations: (1) hybrid generation; (2) generation yielded by uniparental apozygotic seed reproduction; (3) generation obtained after seed treatment with a colchicine solution; (4) generation obtained after seed treatment with 5-azacytidine. As compared to hybrid generation, uniparental seed reproduction increases the average number of chloroplasts in stomata guard cells (from 13.5 to 15.0) and decreases distribution variance of this trait by a factor of 3 to 4. Colchicine increases both average number of chloroplasts in stomata guard cells (from 13.5 to 18.2) and distribution variance (about twice). 5-Azacytindine reduces the number of chloroplasts in cells (from 15.0 to 12.9) but enhances distribution variance (about 1.5 times). Variation in the number of chromosomes in stomata cells is related to myxoploidy in meristem tissue, on the one hand, and to the rate of cell division, on the other. Uniparental seed reproduction is suggested to enhance the number of organelles per cell due to high myxoploidy in cell populations, which is typical of inbred plants. Colchicine blocks spindle division and sharply increases the level of myxoploidy in cell populations and the number of organelles per cell. 5-Azacytidine hypomethylates chromosome DNA, increases the rate of cell divisions, and reduces the number of organelles per cell. The described changes in the number of chloroplasts are inherited in cell lineage ("cell hereditary memory") and successive sporophyte generations.  相似文献   

14.
In a previous experiment, the effect of 255 generations of mutation accumulation (MA) on the second chromosome viability of Drosophila melanogaster was studied using 200 full-sib MA1 lines and a large C1 control, both derived from a genetically homogeneous base population. At generation 265, one of those MA1 lines was expanded to start 150 new full-sib MA2 lines and a new C2 large control. After 46 generations, the rate of decline in mean viability in MA2 was approximately 2.5 times that estimated in MA1, while the average degree of dominance of mutations was small and nonsignificant by generation 40 and moderate by generation 80. In parallel, the inbreeding depression rate for viability and the amount of additive variance for two bristle traits in C2 were 2-3 times larger than those in C1. The results are consistent with a mutation rate in the line from which MA2 and C2 were derived about 2.5 times larger than that in MA1. The mean viability of C2 remained roughly similar to that of C1, but the rate of MA2 line extinction increased progressively, leading to mutational collapse, which can be ascribed to accelerated mutation and/or synergy after important deleterious accumulation.  相似文献   

15.
Monocyte kinetics: observations after pulse labeling   总被引:3,自引:0,他引:3  
Because monocytes and their precursors cannot be recognized with certainty in tissues, an approach to the study of monocyte kinetics was made through examination of the peripheral blood. Injection of a single pulse of tritiated thymidine into rats resulted in the appearance of labeled monocytes identified as circulating peroxidase-positive mononuclear cells. The increase in the percent of labeled cells and in the mean grain count per cell followed a course described by a mathematical model with a generation time of 21 hours and a DNA synthesis time of 12.5 hours. The generation and synthesis times appear to be very uniform for the monocyte so that the phasing of cells represented by the uptake of label could be followed for more than two generations, a property not shared by neutrophils or lymphocytes. Monocytes appear in the circulation within eight hours of DNA synthesis.  相似文献   

16.
R. S. Wotton 《Ecography》1987,10(1):65-72
Larvae of the blackfly Simulium noelleri aggregated at very high population densities (up to 1.2 × 106 individuals m−2) at a lake outlet in Kent, United Kingdom. During 1983 and 1984 their first appearance in these large numbers was in late-June and they completed three summer generations before the overwintering larval generation appeared in October. It is not known where the larvae overwinter but they recolonized the concrete steps of this outlet in May, together with larvae of the S. ornatum group which, however, were not found after completing one generation at this location.
Female flies from the overwintering generation oviposited en masse during late-June and the result was a well-synchronized growth of larvae in the first summer generation. Within this, and other generations, there was A wide range of emergence times for adults; they could emerge early and were then relatively small, or could emerge later and were then relatively large. Females were always larger than males and the emergence of flies was protandrous. A very similar pattern of growth and emergence times was found at a site in Finland.
In all generations, sex ratio was biased to males and the sex ratio in each generation was inversely correlated with population density. This ensured that there were sufficient males emerging, and surviving adult mortality, to guarantee fertilisation of the females which were more expensive to produce.  相似文献   

17.
Asynchronous rat embryo cells expressing Myc were followed in 50 fields by computerized video time lapse (CVTL) for three to four cycles before irradiation (4 Gy) and then for 6-7 days thereafter. Pedigrees were constructed for single cells that had been irradiated in different parts of the cycle, i.e. at different times after they were born. Over 95% of the cell death occurred by postmitotic apoptosis after the cells and their progeny had divided from one to six times. The duration of the process of apoptosis once it was initiated was independent of the phase in which the cell was irradiated. Cell death was defined as cessation of movement, typically 20-60 min after the cell rounded with membrane blebbing, but membrane rupture did not occur until 5 to 40 h later. The times to apoptosis and the number of divisions after irradiation were less for cells irradiated late in the cycle. Cells irradiated in G(1) phase divided one to six times and survived 40-120 h before undergoing apoptosis compared to only one to two times and 5-40 h for cells irradiated in G(2) phase. The only cells that died without dividing after irradiation were irradiated in mid to late S phase. Essentially the same results were observed for a dose of 9.5 Gy, although the progeny died sooner and after fewer divisions than after 4 Gy. Regardless of the phase in which they were irradiated, the cells underwent apoptosis from 2 to 150 h after their last division. Therefore, the postmitotic apoptosis did not occur in a predictable or programmed manner, although apoptosis was associated with lengthening of both the generation time and the duration of mitosis immediately prior to the death of the daughter cells. After the non-clonogenic cells divided and yielded progeny entering the first generation after irradiation with 4 Gy, 60% of the progeny either had micronuclei or were sisters of cells that had micronuclei, compared to none of the progeny of clonogenic cells having micronuclei in generation 1. However, another 20% of the non-clonogenic cells had progeny with micronuclei appearing first in generation 2 or 3. As a result, 80% of the non-clonogenic cells had progeny with micronuclei. Furthermore, cells with micronuclei were more likely to die during the generation in which the micronuclei were observed than cells not having micronuclei. Also, micronuclei were occasionally observed in the progeny from clonogenic cells in later generations at about the same time that lethal sectoring was observed. Thus cell death was associated with formation of micronuclei. Most importantly, cells irradiated in late S or G(2) phase were more radiosensitive than cells irradiated in G(1) phase for both loss of clonogenic survival and the time of death and number of divisions completed after irradiation. Finally, the cumulative percentage of apoptosis scored in whole populations of asynchronous or synchronous populations, without distinguishing between the progeny of individually irradiated cells, underestimates the true amount of apoptosis that occurs in cells that undergo postmitotic apoptosis after irradiation. Scoring cell death in whole populations of cells gives erroneous results since both clonogenic and non-clonogenic cells are dividing as non-clonogenic cells are undergoing apoptosis over a period of many days.  相似文献   

18.
Microspectrophotometric absorption measurements were used to determine the hemoglobin content of erythroid cells derived from the yolk sac during gestation of fetal C3H mice, from day 9 to day 15. Using the DNA content as a marker for the mitotic state between 2C and 4C phase, five successive cell generations and their mean hemoglobin contents were distinguished: 12 pg (pg, picogram = 10?12 gm). 22.2 pg, 37 pg, 50 pg and 56 pg. In the final state, nucleated erythrocytes contained 98 ± 22 pg hemoglobin. Erythroid cells derived from the liver were measured on day 15 of fetal gestation. The hemoglobin content of proerythroblasts was below 0.3 pg. The two cell generations in the basophilic state had 0.6 pg and 1.7 pg respectively. Polychromatic erythroblasts yielded a hemoglobin content of 5.1 pg in the first cell generation and 7.5 pg in the second one. Orthochromatic erythroblasts contained 8 pg, reticulocytes 12 pg and mature erythrocytes 28 ± 7 pg hemoglobin. Calculations based on these data suggest that the rate of total hemoglobin synthesis is similar in both yolk sac and liver erythropoiesis. The difference between the final hemoglobin content in nucleated erythrocytes of yolk sac origin and that in hepatic erythrocytes can be explained by the different cell generation times.  相似文献   

19.
The recessive mutant conical of Tetrahymena thermophila is characterized by unequal cytoplasmic division resulting in a large anterior (proter) and a small posterior (opisthe) daughter cell with similar macronuclear DNA contents. Opisthes have long and proters short generation times. This gives the opisthes more time to accumulate cell mass, thereby reducing differences in size between sister cells. Growth rates as determined by cytophotometry do not contribute to the reduction and eventual elimination of differences between sisters but rather should increase them, since small cells accumulate mass at a slower rate than large ones. By tracing consecutive generations it is shown that differences between sister cells in generation time as well as in cell size require more than one generation to be regressed to the mean of the whole population. These findings are incompatible with the probabilistic mode of regulation of generation time.  相似文献   

20.
In experiments on HeLa cells a study was made of a change in the rate of DNA synthesis, proliferative activity and reproductive death of exposed cells and their descendants throughout a number of generations. The rate of DNA synthesis decreased in 4 postirradiation generations, and a maximum inhibition (by 50%) was registered 48 h following irradiation. The proliferative activity of the irradiated cell descendants markedly decreased throughout 18-20 generations resulting in an increased death rate and a loss of cells from a generation. It is suggested that even the distant descendants (18-20 generations) of expose cells exhibited some lesions which may, in time, become fatal events leading to cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号