首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evolutionarily stable strategy (ESS) models are widely viewed as predicting the strategy of an individual that when monomorphic or nearly so prevents a mutant with any other strategy from entering the population. In fact, the prediction of some of these models is ambiguous when the predicted strategy is "mixed", as in the case of a sex ratio, which may be regarded as a mixture of the subtraits "produce a daughter" and "produce a son." Some models predict only that such a mixture be manifested by the population as a whole, that is, as an "evolutionarily stable state"; consequently, strategy monomorphism or polymorphism is consistent with the prediction. The hawk-dove game and the sex-ratio game in a panmictic population are models that make such a "degenerate" prediction. We show here that the incorporation of population finiteness into degenerate models has effects for and against the evolution of a monomorphism (an ESS) that are of equal order in the population size, so that no one effect can be said to predominate. Therefore, we used Monte Carlo simulations to determine the probability that a finite population evolves to an ESS as opposed to a polymorphism. We show that the probability that an ESS will evolve is generally much less than has been reported and that this probability depends on the population size, the type of competition among individuals, and the number of and distribution of strategies in the initial population. We also demonstrate how the strength of natural selection on strategies can increase as population size decreases. This inverse dependency underscores the incorrectness of Fisher's and Wright's assumption that there is just one qualitative relationship between population size and the intensity of natural selection.  相似文献   

2.
We investigate the equilibrium structure for an evolutionary genetic model in discrete time involving two monoecious populations subject to intraspecific and interspecific random pairwise interactions. A characterization for local stability of an equilibrium is found, related to the proximity of this equilibrium with evolutionarily stable strategies (ESS). This extends to a multi-population framework a principle initially proposed for single populations, which states that the mean population strategy at a locally stable equilibrium is as close as possible to an ESS.  相似文献   

3.
An evolutionarily stable strategy (ESS) is only required to be capable of resisting invasion by rare mutant strategies. In contrast, an absolute invader strategy (AIS) is a rare mutant strategy that can invade any established strategy. We show that the predictions of the outcome of evolution made by optimization models are compatible with those made by the classical expected payoff comparisons in matrix games. We also show that if a matrix game has an AIS that AIS is unique and is also an ESS. But an ESS need not be an AIS. In pure-strategy submodels, an AIS need not be unique. An AIS of a matrix game has global asymptotic stability property in the game dynamics which involve only pure strategies including the AIS.  相似文献   

4.
The War of Attrition model of John Maynard Smith predicts a single, mixed evolutionarily stable strategy (ESS) for animal contests which are settled by conventional displays with no assessment of the opponent's fighting ability. We test the predictions of the model by simulating the evolution of strategies in a finite population of animals under various assumptions on how possible strategies are coded and mutated. While our simulations for the most part confirm the predictions of the model, we also discovered some significant deviations from the theoretically predicted ESS. Specifically, we found that if inheritance of strategies is somewhat imprecise, then a population can evolve that achieves on average a higher payoff than a population at the theoretically predicted ESS. Moreover, if the ESS is realized as a polymorphism of fixed persistence times, then for small populations, sufficiently stringent statistical tests will reject the hypothesis that these times are distributed as theoretically predicted.  相似文献   

5.
We present an evolutionary game theory. This theory differs in several respects from current theories related to Maynard Smith's pioneering work on evolutionary stable strategies (ESS). Most current work deals with two person matrix games. For these games the strategy set is finite. We consider evolutionary games which are defined over a continuous strategy set and which permit any number of players. Matrix games are included as a bilinear continuous game. However, under our definition, such games will not posses an ESS on the interior of the strategy set. We extend previous work on continuous games by developing an ESS definition which permits the ESS to be composed of a coalition of several strategies. This definition requires that the coalition must not only be stable with respect to perturbations in strategy frequencies which comprise the coalition, but the coalition must also satisfy the requirement that no mutant strategies can invade. Ecological processes are included in the model by explicitly considering population size and density dependent selection.  相似文献   

6.
A stochastic evolutionary dynamics of two strategies given by 2x 2 matrix games is studied in finite populations. We focus on stochastic properties of fixation: how a strategy represented by a single individual wins over the entire population. The process is discussed in the framework of a random walk with site dependent hopping rates. The time of fixation is found to be identical for both strategies in any particular game. The asymptotic behavior of the fixation time and fixation probabilities in the large population size limit is also discussed. We show that fixation is fast when there is at least one pure evolutionary stable strategy (ESS) in the infinite population size limit, while fixation is slow when the ESS is the coexistence of the two strategies.  相似文献   

7.
Differential game theory is applied to the analysis of evolutionarily stable strategies (ESS) in this article. A general form for the evolutionary differential game is introduced in the case of intra-specific competition, and a connection between the ESS and the mathematical Nash solution concept is indicated. A dynamic ESS is found for the height growth strategies of trees. A hierarchical model is introduced to account for different time constants in simultaneous selection processes. Differential evolutionary games are compared with static evolutionary games utilizing the hierarchical approach.  相似文献   

8.
Quantifying intraspecific demographic variation provides a powerful tool for exploring the diversity and evolution of life histories. We investigate how habitat-specific demographic variation and the production of multiple offspring types affect the population dynamics and evolution of delayed reproduction in a clonal perennial herb with monocarpic ramets (white hellebore). In this species, flowering ramets produce both seeds and asexual offspring. Data on ramet demography are used to parameterize integral projection models, which allow the effects of habitat-specific demographic variation and reproductive mode on population dynamics to be quantified. We then use the evolutionarily stable strategy (ESS) approach to predict the flowering strategy-the relationship between flowering probability and size. This approach is extended to allow offspring types to have different demographies and density-dependent responses. Our results demonstrate that the evolutionarily stable flowering strategies differ substantially among habitats and are in excellent agreement with the observed strategies. Reproductive mode, however, has little effect on the ESSs. Using analytical approximations, we show that flowering decisions are predominantly determined by the asymptotic size of individuals rather than variation in survival or size-fecundity relationships. We conclude that habitat is an important aspect of the selective environment and a significant factor in predicting the ESSs.  相似文献   

9.
10.
Static ESS conditions are developed for the frequency evolution of a two-species haploid system by analyzing the stability of the corresponding dynamics for two pairs of strategies. A dynamic strong stability concept is introduced and shown to be equivalent to the ESS conditions in all cases where a regularity assumption is satisfied.  相似文献   

11.
Efficiency in evolutionary games: Darwin, Nash and the secret handshake   总被引:5,自引:0,他引:5  
This paper considers any evolutionary game possessing several evolutionarily stable strategies, or ESSs, with differing payoffs. A mutant is introduced which will "destroy" any ESS which yields a lower payoff than another. This mutant possesses a costless signal and also conditions on the presence of this signal in each opponent. The mutant then can protect itself against a population playing an inefficient ESS by matching this against these non-signalers. At the same time, the mutants can achieve the more efficient ESS against the signaling mutant population itself. This construction is illustrated by means of the simplest possible example, a co-ordination game. The one-shot prisoner's dilemma is used to illustrate how a superior outcome which is not induced by an ESS may be temporarily but not permanently attained. In the case of the repeated prisoner's dilemma, the present argument seems to render the "evolution of co-operation" ultimately inevitable.  相似文献   

12.
Based on a population genetic model of mixed strategies determined by alleles of small effect, we derive conditions for the evolution of social learning in an infinite-state environment that changes periodically over time. Each mixed strategy is defined by the probabilities that an organism will commit itself to individual learning, social learning, or innate behavior. We identify the convergent stable strategies (CSS) by a numerical adaptive dynamics method and then check the evolutionary stability (ESS) of these strategies. A strategy that is simultaneously a CSS and an ESS is called an attractive ESS (AESS). For certain parameter sets, a bifurcation diagram shows that the pure individual learning strategy is the unique AESS for short periods of environmental change, a mixed learning strategy is the unique AESS for intermediate periods, and a mixed learning strategy (with a relatively large social learning component) and the pure innate strategy are both AESS's for long periods. This result entails that, once social learning emerges during a transient era of intermediate environmental periodicity, a subsequent elongation of the period may result in the intensification of social learning, rather than a return to innate behavior.  相似文献   

13.
Based on a population genetic model of mixed strategies determined by alleles of small effect, we derive conditions for the evolution of social learning in an infinite-state environment that changes periodically over time. Each mixed strategy is defined by the probabilities that an organism will commit itself to individual learning, social learning, or innate behavior. We identify the convergent stable strategies (CSS) by a numerical adaptive dynamics method and then check the evolutionary stability (ESS) of these strategies. A strategy that is simultaneously a CSS and an ESS is called an attractive ESS (AESS). For certain parameter sets, a bifurcation diagram shows that the pure individual learning strategy is the unique AESS for short periods of environmental change, a mixed learning strategy is the unique AESS for intermediate periods, and a mixed learning strategy (with a relatively large social learning component) and the pure innate strategy are both AESS's for long periods. This result entails that, once social learning emerges during a transient era of intermediate environmental periodicity, a subsequent elongation of the period may result in the intensification of social learning, rather than a return to innate behavior.  相似文献   

14.
The status of the conditional evolutionarily stable strategy   总被引:2,自引:0,他引:2  
The conditional evolutionarily stable strategy (ESS) has proven to be a versatile tool for understanding the production of alternative phenotypes in response to environmental cues. Hence, we would expect the theoretical basis of the conditional strategy to be robust. However, Shuster and Wade have recently criticized the conditional ESS based on Gross's 1996 proposal that most alternative reproductive tactics are conditional and have evolved by 'status-dependent selection.' We critically assess Gross's status-dependent selection model and Shuster and Wade's critique. We find shortcomings and misconceptions in both. We return to the findings of the strategic models behind the conditional ESS and demonstrate how environmental threshold models use a reaction norm approach and quantitative genetic theory to understand the evolution of conditional strategies.  相似文献   

15.
An evolutionarily stable strategy (ESS) is a strategy that if almost all members of the population adopt, then this population cannot be invaded by any mutant strategy. An ESS is not necessarily a possible end point of the evolutionary process. Moreover, there are cases where the population evolves towards a strategy that is not an ESS. This paper studies the properties of a unique mixed ESS candidate in a continuous time animal conflict. A member of a group sized three finds itself at risk and needs the assistance of another group member to be saved. In this conflict, a player's strategy is to choose the probability distribution of the interval between the beginning of the game and the moment it assists the player which is at risk. We first assume that a player is only allowed to choose an exponential distribution, and show that in this case the ESS candidate is an attracting ESS; the population will always evolve towards this strategy, and once it is adopted by most members of the population it cannot be invaded by mutant strategies. Then, we extend the strategy sets and allow a player to choose any continuous distribution. We show that although this ESS candidate may no longer be an ESS, under fairly general conditions the population will tend towards it. This is done by characterizing types of strategies that if established in the population, can be invaded by this ESS candidate, and by presenting possible paths of transition from other types of common strategies to this ESS candidate.  相似文献   

16.
Masumoto G  Ikegami T 《Bio Systems》2005,80(3):219-231
This paper presents a new game system formalism. The system describes both strategies and a game master (who computes scores in a given game system) in terms of λ-calculus. This formalism revisits the prisoner's dilemma game, to discuss how meta-strategies emerge in this classical game, even without repetition. We have also examined the evolution of meta-strategies in λ formalism.  相似文献   

17.
ESS models for the evolution of seed size variation assume that seedlings compete with each other for the occupancy of 'safe sites' or vegetation gaps. If mortality rates are high and/or frequency-independent, ESS models reduce to the classical model of Smith and Fretwell which predicts that a single, optimum seed size should occur. We tested whether seedlings compete with one another by following the survival of seedlings colonizing experimental gaps in a grazed grassland community. In small gaps (3 cm diameter) the proximity of established plants slightly, though significantly reduced seedling survival, but density-dependent mortality also occurred among seedlings in these gaps. In larger gaps (6 cm, 9 cm diameter) survival was significantly positively frequency-dependent. These results strongly support the validity of ESS models.  相似文献   

18.
I derive a new approximation which uses the backward Kolmogorov equation to describe evolution when individuals have variable numbers of offspring. This approximation is based on an explicit fixed population size assumption and therefore differs from previous models. I show that for individuals to accept an increase in the variance of offspring number, they must be compensated by an increase in mean offspring number. Based on this model and any given set of feasible alleles, an evolutionary stable strategy (ESS) can be found. Four types of ESS are possible and can be discriminated by graphical methods. These ESS values depend on population size, but population size can be reinterpreted as deme size in a structured population. I adapt this theory to the problem of sex allocation under variable returns to male and female function and derive the ESS sex allocation strategy. I show that allocation to the more variable sexual function should be reduced, but that this effect decreases as population size increases and as variability decreases. These results are compared with results from exact matrix models and computer simulations, all of which show strong congruence.  相似文献   

19.
Deng K  Chu T 《PloS one》2011,6(10):e25496
The linear or threshold Public Goods game (PGG) is extensively accepted as a paradigmatic model to approach the evolution of cooperation in social dilemmas. Here we explore the significant effect of nonlinearity of the structures of public goods on the evolution of cooperation within the well-mixed population by adopting Darwinian dynamics, which simultaneously consider the evolution of populations and strategies on a continuous adaptive landscape, and extend the concept of evolutionarily stable strategy (ESS) as a coalition of strategies that is both convergent-stable and resistant to invasion. Results show (i) that in the linear PGG contributing nothing is an ESS, which contradicts experimental data, (ii) that in the threshold PGG contributing the threshold value is a fragile ESS, which cannot resist the invasion of contributing nothing, and (iii) that there exists a robust ESS of contributing more than half in the sigmoid PGG if the return rate is relatively high. This work reveals the significant effect of the nonlinearity of the structures of public goods on the evolution of cooperation, and suggests that, compared with the linear or threshold PGG, the sigmoid PGG might be a more proper model for the evolution of cooperation within the well-mixed population.  相似文献   

20.
We present a revision of Maynard Smith's evolutionary stability criteria for populations which are very large (though technically finite) and of unknown size. We call this the large population ESS, as distinct from Maynard Smith's infinite population ESS and Schaffer's finite population ESS. Building on Schaffer's finite population model, we define the large population ESS as a strategy which cannot be invaded by any finite number of mutants, as long as the population size is sufficiently large. The large population ESS is not equivalent to the infinite population ESS: we give examples of games in which a large population ESS exists but an infinite population ESS does not, and vice versa. Our main contribution is a simple set of two criteria for a large population ESS, which are similar (but not identical) to those originally proposed by Maynard Smith for infinite populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号