首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pollination biology of the common shrub Pultenaea villosa Willd. was examined in a subtropical dry sclerophyll forest in eastern Australia. We determined floral phenology and morphology, the timing of stigma receptivity and anther dehiscence, nectar availability, the plant breeding system, and flower visitors. The shrub's flowers are typical zygomorphic pea flowers with hidden floral rewards and reproductive structures. These flowers require special manipulation for insect access. A range of insects visited the flowers, although bees are predicted to be the principle pollinators based on their frequency on the flowers and their exclusive ability to operate the wing and keel petals to access the reproductive structures. Nectar and pollen are offered as rewards and were actively collected by bees. Nectar is offered to visitors in minute amounts at the base of the corolla. In Toohey Forest, P. villosa flowers in spring and is the most abundant floral resource in the understory of the forest at this time. The breeding system experiment revealed that P. villosa requires outcrossing for high levels of seed set and that the overlap of stigma receptivity and pollen dehiscence within the flower suggests the potential for self-incompatibility.  相似文献   

2.
The reproductive biology of Zeyheria montana was studied through field observations of flower visitors and floral events, controlled manual pollinations, and observations of pollen tube growth and ovule penetration by fluorescence microscopy. Analysis of secretory areas of the nectar chamber was made by flower dissections and histology of serial sections. The flower lasted 6–8 days, but pollen exposure and stigma receptivity occurred only up to the end of the first and second days, respectively. Pollination was effected by several species of hummingbirds, especially Colibri serrirostris. The flowers present a rudimentary, non-functional disc, and secretion of nectar is performed by corolla-borne glandular trichomes. Only hand cross-pollinated and natural-pollinated flowers set fruits. Artificially self-pollinated and non-pollinated flowers dried off after anthesis without presenting any swelling of the ovary. Almost all the ovules in selfed and crossed pistils were penetrated 96 h after pollination. However, a delay in ovule penetration in self-pollinated pistils was verified, which indicates the occurrence of late-acting self-incompatibility.We are grateful to Fundo de Apoio ao Ensino e à Pesquisa (UNICAMP) for financial support, and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the fellowship granted to the first author (this work is part of a Ph.D. thesis presented to UNICAMP, Campinas, SP, Brazil).  相似文献   

3.
Tribe Condamineeae appears to be well supported in recent phylogenetic studies. However, the species of Bathysa were divided into two clades, leading to restoration of Schizocalyx. We studied the reproductive biology of one species from each clade, which occur sympatrically in the montane Brazilian Atlantic forest. Flowering overlap was short (from December to March in B. australis and from February to June in S. cuspidatus). The flowers of both species are protogynous and homostylous and last for about 3 days. The unit of pollination in B. australis is the inflorescence. Its flowers have a greenish hypocrateriform corolla (tube about 5 mm long) and were mainly pollinated by bees and wasps in search of nectar. Schizocalyx cuspidatus has white flowers with an infundibuliform corolla (tube about 8 mm long), and its main pollinators were stingless bees in search of pollen. The pollination systems of the two species did not correspond to their pollination syndromes. Morphological differences between Bathysa and Schizocalyx were reflected in their pollination systems, with greater phenotypic specialization in S. cuspidatus, the flowers of which offer pollen as the main resource, an unusual feature within Rubiaceae. Schizocalyx cuspidatus showed higher reproductive capacity by having more inflorescences per plant, more ovules per flower, and twice the proportion of flowering individuals. However, the reproductive efficiency (fruit set, seed/ovule ratio) did not differ between the species, despite the higher frequency of visits by pollinators to S. cuspidatus. Self-compatibility in B. australis and self-incompatibility in S. cuspidatus seem to explain these results.  相似文献   

4.
Abstract The floral biology of the sand dune shrub Eriope blanchetii (Benth) Harley was investigated in a wild population located within an environment protection area near Salvador, NE Brazil. Inflorescence and flower development were monitored, and the reproductive biology was assessed. Inflorescences are terminal panicles, each bearing from one to 38 small, zygomorphic flowers. The duration of an inflorescence is about 2 months, with few new flowers each day. The rewards to visitors are pollen and nectar, the latter being produced in small quantities at the corolla base, near the stylopodium. Three sequential phases of flower development were identified, based on colour changes, pollen and nectar availability, and stigmatic receptivity. Anthesis takes place throughout the day within each plant, and flowers are strongly protandrous. Flowers are short‐lived, with individual variations of 7–30 h until corolla abscission. This variation is probably associated to a post‐pollinating response, which reduces the length of the female phase and could be advantageous for the economy of nectar production and for increased efficient pollination of the remaining flowers on a plant. The results of the pollination tests (apomixis, spontaneous and manual autogamy, manual cross‐pollination, and control) reinforced the role of pollinators for the reproductive success of E. blanchetii, given that the production of fruits from spontaneous pollination is unlikely to be resulting from protandry and given the morphological floral features. Taken together, the morphological and physiological aspects of E. blanchetii floral biology favour cross‐pollination, and it is likely that most of the fruits in nature are produced by outcrossing.  相似文献   

5.
Ecological interactions between flowers and pollinators greatly affect the reproductive success. To facilitate these interactions, many flowers are known to display their attractive qualities, such as scent emission, flower rewards and floral vertical direction, in a rhythmic fashion. However, less is known about how plants regulate the relationship between these flower traits to adapt to pollinator visiting behavior and increase reproduction success. Here we investigated the adaptive significance of the flower bending from erect to downward in Trifolium repens. We observed the flowering dynamic characteristics (changes of vertical direction of florets, flowering number, pollen grain numbers, pollen viability and stigma receptivity over time after blossom) and the factors affecting the rate of flower bending in T. repens. Then we altered the vertical direction of florets in inflorescence of different types (upright and downward), and compared the pollinator behaviors and female reproductive success. Our results showed that florets opened sequentially in inflorescence, and then bend downwards slowly after flowering. The bending speed of florets was mainly influenced by pollination, and bending angle increased with the prolongation of flowering time, while the pollen germination rate, stigma receptivity and nectar secretion has a rhythm of “low-high-low” during the whole period with the time going. The visiting frequency of all the four species of pollinators on upward flowers was significantly higher than that of downward flowers, and they especially prefer to visit flowers with a bending angle of 30°–60°, when the flowers was exactly of the highest flower rewards (nectar secretion and number of pollen grains), stigma receptivity and pollen germination rate. The seed set ratio and fruit set ratio of upward flowers were significantly higher than downward flowers, but significantly lower than unmanipulated flowers. Our results indicated that the T. repens could increase female and male fitness by accurate pollination. The most suitable flower angle saves pollinators’ visiting energy and enables them to obtain the highest nectar rewards. This coordination between plants and pollinators maximizes the interests of them, which is a crucial factor in initiating specialized plant-pollinator relationships.  相似文献   

6.
Pollination biology, breeding system, and floral phenology of the columnar cactus Stenocereus stellatus were studied in wild, wild managed in situ and cultivated populations of central Mexico, in order to examine whether these aspects have been modified under domestication and whether they determine reproductive barriers between wild and manipulated individuals. Individuals of both wild and manipulated populations are self-incompatible, indicating that artificial selection has not modified the breeding system. Their pollination biology is also similar. Anthesis is mainly nocturnal, with a peak of nectar production between 0200 and 0400 when the stigma presents maximum turgidity. Nocturnal visitors are the effective pollinators. Nearly 75% of flowers exposed for nocturnal pollination set fruit, while none of the flowers exposed for diurnal pollination produced fruits. The bats Leptonycteris curasoae, L. nivalis, and Choeronycteris mexicana (Glossophaginae) are the most likely pollinators, and their time of foraging is synchronized with the time of nectar production and stigma receptivity in S. stellatus. Bats potentially move pollen over a considerable distance, so there is apparently no spatial isolation to prevent pollen exchange between wild and cultivated populations. Phenological studies showed that there are also no apparent temporal barriers. However, manual cross pollination failed between some domesticated and wild phenotypes, suggesting that gene flow between wild and cultivated populations might be limited by pollen incompatibility.  相似文献   

7.
Camellia pubipetala is an endemic and endangered species with small and isolated populations occurring only in karst regions in Guangxi of south China. To understand the reproductive biology of C. pubipetala and its possible influences upon its endangered status, its breeding system and pollination ecology were studied in the Longhushan (LHS) and Longzhao (LZ) populations of this species. The flowering duration of the C. pubipetala populations spanned from late January to early April and anthesis of a single flower usually lasted 5–7 days. This species is homogamous, and the pollen and stigma are viable throughout anthesis. Each bagged flower could secrete 141.5 μL of nectar at a sugar concentration of 25.0% during anthesis. The observed high pollen/ovule ratio, and the results of hand-pollination experiments indicated that this species obligately outcrosses. Open pollination resulted in a significantly decreased fruit set (6.7%) and seed set (38.9%) compared to supplementary pollination treatment (23.3% and 64.7%, respectively), which is indicative of a pollen limitation in the process of pollination. The primary pollinator of C. pubipetala is the sunbird Aethopyga christinae and its visiting frequency is quite low, whereas the honeybee Apis cerana is only an occasional pollinator in wild populations. Low reproductive rates in C. pubipetala were found to be a consequence of few species of pollinators and their low visiting frequency. Pollen limitation may be a crucial factor that contributes to the endangered nature of this species. Artificial pollination and the release of pollinators are effective ways to increase the fruit and seed yield of this species.  相似文献   

8.
Diversity in flower size and degree of exsertion of anthers and stigma from the corolla in the California species of Trichostema appear to be correlated with breeding system and pollinator type (bee vs. bird). Autogamous (self-pollinating) species unlike xenogamous (cross-pollinating) species lack spatially separate anthers and stigma and nototribic pollination. The outcrossing species have significantly larger flowers, significantly larger nectar volumes and significantly higher pollen-ovule ratios than do selfing species. Because autogamous species are less reliant on flower visitors to facilitate pollination, there may be relaxed selection for large nectar producing flowers. Pollen-ovule ratios are correlated with breeding system and reflect the efficiency of pollen transport. Data on floral parameters suggest xenogamous species expend more energy per floral unit and are less efficient seed producers than closely related autogamous species.  相似文献   

9.
RICHARDS, A. J., 1990. Studies in Garcinia , dioecious tropical forest trees: the phenology, pollination biology and fertilization of G. hombroniana Pierre . Garcinia hombroniana is a facultative agamosperm which is pollinated by Trigona bees. Nectar is restricted to the large discoid stigma (or pistillode in male flowers), which also captures and hydrates pollen. The 'wet' stigma and binucleate pollen suggest that Garcinia arose from hermaphrodite plants with a gametophytic self-incompatibility system.
On stigmas, nectar is secreted early on three or four successive days. On male pistillodes, nectar is secreted when anthers dehisce, on the second morning after anthesis. Pollen is most viable when freshly collected, but some viability remains four days after collection. Pollen germinates within 24 h of hydration. Similar results to pollinations are obtained by germinating pollen in 1 % sucrose.
Garcinia hombroniana flowers principally from January to June. Cultivated females are considered as 'big bang' strategists. Male flowers are considered as 'steady state' strategists.  相似文献   

10.
Strobilanthes kunthianus (Acanthaceae) is a semelparous species with synchronized flowering and mast seeding once in 12 years. As semelparous plants have only one chance to reproduce, they are expected to develop effective strategies to prevent reproductive failure. The reproductive strategies of S. kunthianus were investigated by studying the floral traits, pollination biology, and breeding system that are critical for reproductive success. The species exhibits a series of floral traits: (1) gregarious flowering attracts a large number of Apis cerana indica , the major pollinator; (2) the stigma is sensitive to touch by the pollinator; in fresh flowers, the receptive surface faces the entry path of the incoming bee, facilitating pollen deposition; as an immediate response, the stigma curves backwards moving the receptive surface away from the path of the exiting bee, thus preventing autogamy and interference in pollen transfer; (3) flowers remain fresh for 2 days with receptive stigma and nectar and pollen reward. These traits render the species 100% pollination efficient to ensure a high seed set. As the species is self-compatible, the prevailing high degree of geitonogamous pollinations does not interfere with fruit set. The evolution of the adaptive floral traits has facilitated mast seeding in the species.  © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society , 2008, 157 , 155–163.  相似文献   

11.
A survey of the reproductive features of the angiosperm flora of the Juan Fernández Archipelago (Chile) is presented to provide a species-based review of reproduction and pollination, to identify generalizations associated with these systems, to understand the evolution of these features, and to utilize these data to promote conservation. The collection of original data was extensive, based on our own fieldwork, and was combined with data from existing literature. Data recorded include habit, sexual system, flower size, shape, and color, and the hypothesized pollination system of the first colonizers. In addition, the data on compatibility, presence and type of dichogamy, observed floral visitors, presence of floral rewards, and currently known pollination systems are summarized. Pairwise comparisons of different features are tested for statistical association. The flora is typically composed of perennials. The majority of the species have very small or small flowers. Inconspicuous flowers (i.e., a shape character describing flowers with no optical attraction) are widespread, as are dish-shaped flowers. Green is the most frequent flower color, followed by white and yellow. Most species are hermaphroditic, 9% are dioecious, and 9% are monoecious. Some 30% of the species are protandrous and 7% protogynous. Detailed studies of compatibility of about 14% of the flora indicate that 85% of these species are self-compatible (SC). Although most species studied are SC, their level of autogamy is low. Nevertheless, selfing mediated via geitonogamy is the most frequent mechanism of pollen transfer. Outcrossing is mainly achieved through dioecy and self-incompatibility (SI), promoted by dichogamy in the hermaphroditic flowers, and facilitated by wind pollination. About 55% of the species offer nectar rewards, and only 2% offer pollen rewards. Floral visitors are rare to uncommon. Two hummingbird species, one of them endemic, are considered as pollinators for 14 plant species. Flies, moths, and beetles are the native insect visitors to flowers, but they have been documented on only 11 plant species (7%). Even insect visits to these few species were rarely observed. Given the infrequent, irregular, and imprecise nature of native insect association with flowers, there is no certainty that any of the species are truly insect pollinated. Two species of introduced ants and a new endemic bee were recorded as well; however, neither is likely currently important to the pollination of the native flora species. About 9% of the extant flora is currently bird pollinated, and we hypothesize that 47% is wind pollinated. However, we propose that most of the colonizers were ancestrally either insect or wind pollinated. There is association between a number of current floral features and the hypothesized pollination of colonizers. Therefore, to a large extent the flower color, shape, and size of the extant flora may express the pollination syndromes of colonizers rather than representing extant pollination. In addition, the presence of nectar in many species of extant flora does not necessarily indicate biotic pollination. Thus, studies of the reproductive biology on oceanic island plants need to be conducted species by species before broad generalizations can be made, because the observed features can be misleading. Possible changes in the pollination system were assessed by comparison of species for which there are reliable data with the hypothesized pollination of their colonist progenitors. The wind-or bird-pollinated species have retained the pollination system of the colonizers. In other instances, species seem to bear a different pollination system: from ancestral insect systems to current hummingbird-or wind-pollination systems. The lack of alternative means of biotic pollination seems to have led in a number of instances to anemophily—in essence a default pollination system. The lack of strong selection pressure for wind pollination and the relative youth of the archipelago may help explain why the features associated with wind pollination in these species are not so obvious. Because there are many recorded extinctions of vascular plants from islands versus those from continental areas, it is imperative to invest additional effort in protecting the remaining island species. Conservation or restoration programs cannot be effective without a deep and broad understanding of the reproductive biology of the plants. In order to conserve these plants, programs must involve a combination of reproductive and environmental measures. The ultimate fate of some species may depend on preserving the plant-hummingbird relationship, including the web of organisms that affect both plant and pollinator. The populations of introduced animals and weeds must be controlled. Experimentally produced allogamous seeds would enhance diversity in restoration programs. In addition, the preservation of habitat seems to be the central challenge to indirectly protect the unique island species.  相似文献   

12.
郭艳峰  刘妍  蒋谦才  孙红梅 《广西植物》2016,36(11):1318-1324
猪屎豆( Crotalaria pallida)为典型的蝶形花植物,分布极广,是路边或遭破坏生境中最常见的先锋种之一,野外观察未发现其有营养生殖的现象,主要为种子繁殖。该研究通过对自然生境中猪屎豆开花物候、访花昆虫及繁育系统的研究,旨在从繁殖的角度阐述其快速扩张的能力。结果表明:尽管猪屎豆的主要访花昆虫是蜜蜂,但蜜蜂的访花频率极低[(1.73±1.30)次/花序·h-1],且在整个花期内花药和柱头均被龙骨瓣包裹,蜜蜂访花时未成功接触柱头和花粉,不能实现传粉,因此蜜蜂不是猪屎豆有效的传粉昆虫,这与假说“蝶形花普遍是对膜翅目昆虫,尤其是对蜜蜂传粉的适应”不一致。人工授粉结果显示,猪屎豆为自交亲和种,不存在无融合生殖现象,其繁殖主要通过主动自交生产种子来实现,且在自交过程中长短花药都参与主动自交。这种自交方式不同于其他蝶形花植物的主动自交仅由短花药实现。对猪屎豆而言,长短花药均参与自交能够增加柱头的授粉几率,保证其在不利的生境中成功结籽,是其成功扩张的关键因素之一。  相似文献   

13.
  • Enantiostyly is a floral polymorphism in which two floral forms in the same species differ in deflection of the stigma to right or left position. In monomorphic enantiostylous plants, flowers of the two morphs occur within the same individual, usually in the same proportion. In self‐compatible species the function of monomorphic enantiostyly is proposed to increase outcrossing rates and offer a reproductive advantage under pollination limitation. Enantiostylous species are usually self‐compatible and show heteranthery, with poricide anthers and pollen as pollinator reward; however, there are families, such as Vochysiaceae, that have different characteristics.
  • We analysed the reproductive system and pollination biology of Qualea parviflora and Q. multiflora, two enantiostylous species from the Brazilian Cerrado that have specific morphological and physiological traits. For this, we characterized flower traits, performed hand pollinations and studied floral visitors.
  • We found no differences between morphs in the proportion of flowers, nectar produced or its concentration, pollen quantity and fruit set. Both species were self‐incompatible and quite generalist regarding floral visitors.
  • Enantiostyly in self‐incompatible plants seems to confer a reproductive advantage by reducing self‐interference resulting from stigma clogging. This novel result helps to expand our knowledge on this complex floral polymorphism and opens new avenues for future research on this topic.
  相似文献   

14.
Reproductive biology and plant fertility are directly related to many aspects of plant evolution and conservation biology. Vriesea friburgensis is an epiphytic and terrestrial bromeliad endemic to the Brazilian Atlantic rainforest. Hand‐pollination experiments were used to examine the reproductive system in a wild population of V. friburgensis. Plant fertility was assigned considering flower production, fruit and seed set, seed germination, and pollen viability. Self‐sterility observed from spontaneous selfing and manual self‐pollination treatments may be the consequence of late‐acting self‐incompatibility. Hand‐pollination results indicated no pollen limitation in the population studied. Floral biology features such as a few daily open flowers, nectar production, and sugar concentration corroborate hummingbirds as effective pollinators, although bees were also documented as pollinators. Components of fitness such as high flower, fruit, and seed production together with high seed and pollen viability indicate that this wild population is viable. From a conservation point of view, we highlight that this self‐sterile species depends on pollinator services to maintain its population fitness and viability through cross‐pollination. Currently, pollinators are not limited in this population of V. friburgensis. Conversely, the maintenance and continuous conservation of this community is essential for preserving this plant–pollinator mutualism.  相似文献   

15.
Polygala vayredae is a narrow endemic species from the oriental pre-Pyrenees. Despite its conservation status and rarity, no information is available on its reproductive biology. As the flower is the structure directly involved in pollinator attraction, its morphological and functional traits have major effects on the reproductive success of the plant. In this work, the flower biology and breeding system of P. vayredae were studied to evaluate how they affect the reproductive outcome in natural populations. Flower morphology, flower rewards, and male and female functioning throughout the lifespan of the flower were assessed. Pollination experiments, involving pollinator exclusion and pollen from different sources, were conducted, and the pollen ovule index was determined. Female fitness and the occurrence of pollen limitation were assessed in three natural populations over 2 years by observing the presence of pollen on the stigma, pollen tube development, and fruit production. Polygala vayredae flowers are elaborate and long-lived with nectar rewards. The floral traits are well adapted to xenogamy and entomophily, which are in accordance with the observed breeding system and auto-incompatibility system. No mechanism of reproductive assurance was observed and P. vayredae strictly depends on pollinators to set fruit. Low fruit production was observed in the studied populations, which was largely the result of scarce, unreliable, and/or inefficient pollinators and poor pollen quality. In addition, available resources may be a limiting factor. The reproductive strategy of P. vayredae prevents inbreeding depression by a self-incompatibility system, which in years of scarce pollinators is overcome by the plant habit.  © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society , 2008, 157 , 67–81.  相似文献   

16.
Abstract The pollination biology of Hosta sieboldiana and H. sieboldii is investigated comparatively in Central Japan. Both species have homogamous, one-day flowers pollinated by bumblebees. The abdomens of the bees touch the stigma on the extended style when they land on the anthers inside the herkogamous flower, and autogamy is effectively prevented. However, the flowers are fairly self-compatible, and geitonogamy may occur rather frequently because two or more flowers on a scape very often bloom at the same time and many ramets are contiguous. The pollen/ovule ratios suggest that these species are facultative outbreeders. The flower of H. sieboldii seems completely suited to bumblebee pollination. In H. sieboldiana the stigma of the flower, whose style strongly protrudes, is not always touched by bumblebees, but frequent visitation of bumblebees results in pollination of almost all the flowers. Both species have similar pollination systems but seem reproductively isolated by blooming times and habitats. Their common pollinators, however, may sometimes cause introgressive hybridization in contiguous populations.  相似文献   

17.
Teak flowers are weakly protandrous and pollen is shed withina few hours of flower opening. Pollen is tricolpate and 29 µmin diameter. The papillate stigma is of the wet type and isreceptive from 1100–1300h. The style is hollow throughoutits length. Nectar and pollen are the major floral rewards forpollinators. The major pollinators areCeratina sp. which carryteak pollen on most parts of their bodies, especially the specializedhair structures (scopal brushes) on the tibia. The most effectivepollination period in terms of flowers pollinated and pollenper flower is between 0900 and 1300h. At 1300h the number ofpollen per flower is the highest, ranging from 1–36 (average7). Pollen tubes grow very fast. Within 2 h after pollination8% of the pollen tubes have reached the micropylar end of theovule and pollen tubes first enter the embryo sac at 8 h. Onlyone to two pollen tubes enter the micropyles of a flower. Although78% of flowers were pollinated in open-pollination, the lowfruit set (3.5%) suggests that there are factors other thanpollination limiting fruit set. The main factor appears to bea high amount of selfing, and self-incompatibility occurs whenpollen tubes are arrested at the lower portion of the ovary. Tectona grandis ; floral biology; pollen tube growth; pollination; receptivity; pollinators  相似文献   

18.
Irises in the section Oncocyclus (Siems.) Baker ( IRIS: Iridaceae) grow throughout the Middle East and have large and dark-coloured flowers but no nectar reward available to flower visitors. Consequently, no reward-collecting pollinators have been observed visiting the flowers during daytime. The only visitors are solitary male bees ( Eucera spp.: Apidae) that enter the flowers at dusk and stay there overnight. Here we describe the mating system of Oncocyclus irises, and the role of night-sheltering male bees in their pollination system. Pollen viability in I. haynei on Mt. Gilboa was very high (>90%) throughout all floral life stages. Stigmas were receptive in buds and in open flowers, but not in older ones. Self-pollination yielded no fruits in three species, confirming complete self-incompatibility in Oncocyclus irises. On average, 1.9 flowers were visited by each male bee before it settled for the night in the last one. Moreover, Iris pollen was present on the dorsal side of 38.8% of males caught sheltering in flower models mounted near an I. atrofusca population, indicating that pollen is transferred between flowers by night-sheltering solitary male bees. We have surveyed 13 flowering populations of six Oncocyclus species for the presence of night-sheltering male bees as well as for fruit set. We found a positive correlation, indicating that sexual reproduction in Oncocyclus irises is dependent on night-sheltering solitary male bees. Based on their complete self-incompatibility, the absence of nectar-collecting visitors during the day, and the transfer of pollen grains by the night-sheltering solitary male bees, we conclude that fertilization of Oncocyclus irises is totally dependent on pollination by night-sheltering solitary male bees.  相似文献   

19.
地下结实植物白番红花的繁育系统与传粉生物学   总被引:2,自引:0,他引:2  
张洋  谭敦炎 《生物多样性》2009,17(5):468-475
地下结实是植物用来防御不利环境的一种策略, 研究地下结实植物的繁殖特性, 可以揭示它们的繁殖对策多样性, 对于探讨环境选择压力对其繁育系统及后代适合度的影响具有重要意义。白番红花(Crocus alatavicus)是一种分布在天山西部亚高山带、具地下芽和地下结实特性的早春短命植物。我们采用野外观测和统计分析方法, 对该物种的繁育系统与传粉生物学及其对亚高山环境的适应进行了研究。研究结果表明: 白番红花具有先花后叶的特性, 于4月上中旬始花, 呈爆发式开花式样; 花白色, 无花蜜无气味; 开花时, 下位子房位于地下, 花蕾在地上开放并随光照变化而开闭; 单花花期为6–9 d, 花萎蔫时花粉活性仍保持在75.39±5.69%, 柱头可授期为8 d。人工授粉实验结果显示, 该物种属于兼性异交繁育系统, 且具有自主自花授粉能力。白番红花属于泛化传粉系统, 鲁熊蜂 (Bombus lucorum)、老条蜂 (Anthophora senilis)和黄腹地花蜂 (Andrena capillosa)是有效传粉昆虫, 通过采食花粉进行传粉, 访花频率分别为0.50±0.27次•花–1•h–1、0.18±0.08次•花–1•h–1和0.13±0.05次•花–1•h–1。在天山西部亚高山早春环境中, 白番红花不仅利用其开花式样、泛化传粉系统及早春空白生态位来提高传粉效率, 而且通过自交亲和及主动自花授粉等繁育系统特征来弥补传粉昆虫少及访花频率低的不足, 从而保障繁殖成功。  相似文献   

20.
以分布于秦岭的金花忍冬(Lonicera chrysantha Turcz.)、忍冬(L.japonica Thunb.)、葱皮忍冬(L.ferdinandii Franch.)和金银忍冬(L.maackii(Rupr.)Maxim.)为对象,通过定位观察、人工授粉实验、人为设置实验斑块的方法对忍冬属4种植物的开花生物学特性、繁育系统、花色变化现象、传粉过程进行了研究。结果表明,4种植物的单花花期、花部特征存在差异。人工授粉实验显示,4种植物均存在一定的花粉限制,自交不亲和。除葱皮忍冬外,其余3种植物随着花色由白变黄,花粉和花蜜报酬减少、雌雄生殖能力逐渐降低;葱皮忍冬花变色后花蜜量变化不显著,且仍保留较强的雌性生殖能力。变色花的保留被认为是植物的一种生殖策略,通过增大植物的花展示来扩大自身的吸引力,以吸引更多远距传粉者访花。人为控制白、黄花不同数量比的实验结果表明,大多数传粉者偏向访问白花(变色前的花),且白花提供的报酬量和黄花(变色后的花)数量显著影响传粉者的访花频率,即当花蜜量减少或黄花数量增多时,传粉者访花频率随之降低。因此,我们认为忍冬属4种植物的花色变化可能除了增大植物对远距传粉者的吸引力外,对近距传粉者的访花行为也可能具有一定的影响。当传粉者接近植株时,变色后的花可能暗示其花蜜(花粉)报酬已经发生变化,并驱使昆虫离开并飞向同株或异株植物新开放的报酬丰富的白花,这既有利于提高传粉者的觅食效率,又能降低植物同株异花授粉的几率,对忍冬属植物及传粉者都具有重要意义,是植物长期与授粉昆虫相互适应的反映。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号