首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Osmolytes have been proposed as treatments for neurodegenerative proteinopathies including Alzheimer’s disease. However, for osmolytes to reach the clinic their efficacy must be improved. In this work, copper(I)-catalyzed azide–alkyne cycloaddition chemistry was used to synthesize glycoclusters bearing six copies of trehalose, lactose, galactose or glucose, with the aim of improving the potency of these osmolytes via multivalency. A trehalose glycocluster was found to be superior to monomeric trehalose in its ability to retard the formation of amyloid-beta peptide 40 (Aβ40) fibrils and protect neurons from Aβ40-induced cell death.  相似文献   

2.
Multivalent glycoclusters have the potential to become pharmaceuticals by virtue of their target specificity toward clinically relevant sugar receptors. Their application can also provide fundamental insights into the impact of two spatial factors on binding, i.e., topologies of ligand (branching mode, cluster presentation) and carbohydrate recognition domains in lectins. Persubstituted macrocycles derived from nucleophilic substitution of iodide from heptakis 6-deoxy-6-iodo-beta-cyclodextrin by the unprotected sodium thiolate of 3-(3-thioacetyl propionamido)propyl glycosides (galactose, lactose and N-acetyllactosamine) were prepared. The produced glycoclusters were first tested as competitive inhibitors in solid-phase assays. A plant toxin from mistletoe and an immunoglobulin G fraction from human serum were markedly susceptible. A nearly 400-fold increase in inhibitory potency of each galactose moiety in the heptavalent form relative to free lactose (217-fold relative to free galactose) was detected. Thus, these glycoclusters can efficiently interfere, for example, with xenoantigen-dependent hyperacute rejection. Among the tested galectins selected from this family of adhesion- and growth-regulatory endogenous lectins, the substituted beta-cyclodextrins acted as sensors to delineate topological differences between the two dimeric prototype proteins. The relatively strong reactivity with chimera-type galectin-3, a mediator of tumor metastasis, disclosed selectivity for glycocluster binding among galectins. Equally important, the geometry of ligand display (maxiclusters, bi- or triantennary N-glycans) made its mark on the inhibitory potency. To further determine the sensitivity of a distinct galectin presented on the cell surface and not in solution, we established a stably transfected tumor cell clone. We detected a significant response to presence of the multivalent inhibitor. This type of chemical scaffold with favorable pharmacologic properties might thus be exploited for the design of galectin- and ligand-type-selective glycoclusters.  相似文献   

3.
New therapeutics strategy against cystic fibrosis seeks to prevent the adhesion of the bacterium Pseudomonas aeruginosa (PA) on the epithelial cells in the lungs. One of the factors that induces the adhesion is the interaction between natural glycocluster present on the cells and lectins such as the PA lectin LecA (PA‐IL) present on the bacterium. By introducing synthetic glycoclusters with a great affinity with the lectin PA‐IL, the adhesion can be prevented. In this study, we characterized, by atomic force microscopy, the interaction between a tetra‐galactosylated glycocluster and the PA‐IL lectin for high concentration of lectins (2.5 μM).We showed that the strong lectin/lectin interaction is reduced even for low concentration of glycoclusters (1 for 20 000 lectins). We assumed that it is due to the tensioactive behavior of the glycoclusters. It was shown that the arrangement of the created complexes induced different structures evolving from one‐dimensional elongated aggregates to two‐dimensional compact islands when increasing the glycocluster concentration. This evolution can be interpreted as the predominance of the glycocluster/lectin interaction. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
A facile synthesis of cyclopeptide-centered multivalent glycoclusters using Cu(I) catalyzed Huisgen 1,3-dipolar cycloaddition of azides and terminal alkynes, so called ‘click chemistry’, has been developed. The affinities of mannose-specific protein Concanavalin A (Con A) toward two synthetic glycoclusters respectively bearing divalent or tetravalent mannoses were investigated by surface plasmon resonance (SPR). It is founded that the tetravalent glycocluster has 3.0-fold increase in binding affinity relative to the divalent glycoluster (valency-corrected values), which indicates the potential of this system in investigating carbohydrate–protein interactions.  相似文献   

5.
Molecular dynamics simulations of glycoclusters and glycodendrimers   总被引:1,自引:0,他引:1  
Protein-carbohydrate recognition plays a crucial role in a wide range of biological processes, required both for normal physiological functions and the onset of disease. Nature uses multivalency in carbohydrate-protein interactions as a strategy to overcome the low affinity found for singular binding of an individual saccharide epitope to a single carbohydrate recognition domain of a lectin. To mimic the complex multi-branched oligosaccharides found in glycoconjugates, which form the structural basis of multivalent carbohydrate-protein interactions, so-called glycoclusters and glycodendrimers have been designed to serve as high-affinity ligands of the respective receptor proteins. To allow a rational design of glycodendrimer-type molecules with regard to the receptor structures involved in carbohydrate recognition, a deeper knowledge of the dynamics of such molecules is desirable. Most glycodendrimers have to be considered highly flexible molecules with their conformational preferences most difficult to elucidate by experimental methods. Longtime molecular dynamics (MD) simulations with inclusion of explicit solvent molecules are suited to explore the conformational space accessible to glycodendrimers. Here, a detailed geometric and conformational analysis of 15 glycodendrimers and glycoclusters has been accomplished, which differ with regard to their core moieties, spacer characteristics and the type of terminal carbohydrate units. It is shown that the accessible conformational space depends strongly on the structural features of the core and spacer moieties and even on the type of terminating sugars. The obtained knowledge about possible spatial distributions of the sugar epitopes exposed on the investigated hyperbranched neoglycoconjugates is detailed for all examples and forms important information for the interpretation and prediction of affinity data, which can be deduced from biological testing of these multivalent neoglycoconjugates.  相似文献   

6.
Water soluble and lectin-recognizable carbohydrate-centered glycoclusters were prepared efficiently by the Huisgen 1,3-cycloaddition reaction of methyl-2,3,4,6-tetra-O-propargyl beta-D-galactopyranoside with 2-azidoethyl glycosides of lactose and N-acetyllactosamine. Their binding by a plant lectin RCA120 was examined by capillary affinity electrophoresis using fluorescence-labeled asialoglycans from human alpha1-acid glycoprotein. The glycoclusters showed 400-fold stronger inhibitory effect than free lactose, manifesting strong multivalency effect.  相似文献   

7.
A facile Pd-catalyzed strategy by which multiantennary glycoclusters and sugar dendrons can be readily assembled in one-step is described.  相似文献   

8.
We describe herein the construction of periodically, spatially controlled glycoclusters along DNA duplexes and their cooperative lectin recognition. Site-specifically alpha-mannosylated oligodeoxynucleotide 20-mer (Man-ODN20) was synthesized via the phosphoramidite solid-phase synthesis. Alternate hybridization of the Man-ODN20 with the half-sliding complementary ODN 20-mer (hscODN20) gave an alternately prolonged Man-cluster Man-ODN20/hscODN20. The binding of the Man-cluster to FITC-labeled ConA lectin showed sigmoidal fluorescence dependency on the concentration of Man-ODN, indicating that some mannose residues along the repeating DNA duplex were cooperatively bound to ConA (apparent affinity constant: K(af)=2.4 x 10(4)M(-1) and Hill coefficient: n=3.5). The duplex of Man-ODN20 with full complementary ODN 20-mer (fcODN20) was little bound to ConA. The binding behavior of Man-ODN20/hscODN20 is compared with that of the alternately prolonged Gal-cluster Gal-ODN20/hscODN20 previously reported. Duplexes 20-mer, 40-mer, and 60-mer presenting one, two, and three periodic galactoses were also prepared by full hybridization of 20-mer beta-galactosylated oligodeoxynucleotide (Gal-ODN20) with the periodically repeating full complementary 20-mer, 40-mer, and 60-mer ODNs. RCA(120) lectin was found to little bind the 20-mer and 40-mer duplexes and to bind weakly and non-cooperatively the 60-mer duplex (K(af)=1.1 x 10(4)M(-1)). The cooperative lectin recognition of these glycoclusters in relation with the degree of association (DA) of ODN and the numbers of glycosides along the DNA duplex is discussed.  相似文献   

9.
Mesenchymal stromal cells (MSC) mobilization and recruitment by experimental vascularizing tumors involves membrane type 1-matrix metalloproteinase (MT1-MMP) functions. Given that the mannose-specific lectin Concanavalin-A (ConA) induces MT1-MMP expression and mimics biological lectins/carbohydrate interactions, we synthesized and tested the potential of 11 mannoside clusters to block ConA activities on MSC. We found that tetra- and hexavalent mannosides reversed ConA-mediated changes in MSC morphology and antagonized ConA-induced caspase-3 activity and proMMP-2 activation. Tetra- and hexavalent mannosides also inhibited ConA- but not the cytoskeleton disrupting agent Cytochalasin-d-induced MT1-MMP cell surface proteolytic processing mechanisms, and effects on cell cycle phase progression. The antiproliferative and pro-apoptotic impact of ConA on the MT1-MMP/glucose-6-phosphate transporter signaling axis was also reversed by these mannosides. In conclusion, we designed and identified glycocluster constructions that efficiently interfered with carbohydrate-binding proteins (lectins) interaction with oligosaccharide moieties of glycoproteins at the cell surface of MSC. These glycoclusters may serve in carbohydrate-based anticancer strategies through their ability to specifically target MT1-MMP pleiotropic functions in cell survival, proliferation, and extracellular matrix degradation.  相似文献   

10.
The use of dendritic cells (DC) for the development of therapeutic cancer vaccines is attractive because of their unique ability to present tumor epitopes via the MHC class I pathway to induce cytotoxic CD8+ T lymphocyte responses. C-Type membrane lectins, DC-SIGN and the mannose receptor (MR), present on the DC surface, recognize oligosaccharides containing mannose and/or fucose and mediate sugar-specific endocytosis of synthetic oligolysine-based glycoclusters. We therefore asked whether a glycotargeting approach could be used to induce uptake and presentation of tumor antigens by DC. To this end, we designed and synthesized glycocluster conjugates containing a CD8+ epitope of the Melan-A/Mart-1 melanoma antigen. These glycocluster-Melan-A conjugates were obtained by coupling glycosynthons: oligosaccharyl-pyroglutamyl-beta-alanine derivatives containing either disaccharides, a dimannoside (Manalpha-6Man) or lactoside, or a Lewis oligosaccharide, to Melan-A 16-40 peptide comprising the 26-35 HLA-A2 restricted T cell epitope, extended with an oligolysine stretch at the C-terminal end. We showed by confocal microscopy and flow cytometry that fluorescent-labeled Melan-A glycoclusters containing either dimannoside or Lewis oligosaccharide were taken up by DC and concentrated in acidic vesicles; conversely lactoside glycopeptides were not at all taken up. Furthermore, using surface plasmon resonance, we showed that dimannoside and Lewis-Melan-A conjugates bind MR and DC-SIGN with high affinity. DC loaded with these conjugates, but not with the lactose-Melan-A conjugate, led to an efficient presentation of the Melan-A epitope eliciting a CD8+ T-lymphocyte response. These data suggest that synthetically designed glycocluster-tumor antigen conjugates may induce antigen cross-presentation by DC and represent a promising tool for the development of tumor vaccines.  相似文献   

11.
We designed and synthesized three tetravalent sialo-glycoclusters that had different separations between the terminal sialic acids and the linking carboxy groups of the ethylene glycol bis(β-aminoethyl ether)-N,N,N',N'-tetraacetate scaffold to serve as ligands for the sialic acid-binding lectin Sambucus sieboldiana agglutinin (SSA). The interaction between each glycocluster and SSA was characterized by hemagglutination inhibition, quantitative precipitation, and double-diffusion assays. For the precipitation assays, the precipitin curves indicated that the ligands and SSA bound in either a 1:1 or a 1:2 ratio, i.e., stoichiometrically. The strong interactions of these sialo-glycoclusters with SSA could be ascribed to a combination of multivalency and spacer effects. We also assessed the nature of the ligand-SSA complexes by isothermal titration calorimetry and dynamic light scattering. The results of those experiments indicated that formation of intermolecular complexes occurred at less than stoichiometric ratios of ligand to SSA concentrations and that, as the concentrations of the ligands increased, larger cross-linked aggregates formed. Large aggregates that were present concurrently with visible precipitation and with a particle size centered at ~600 to 800 nm were identified by dynamic light scattering.  相似文献   

12.
Synthetic cluster glycosides have often been used to unravel mechanisms of carbohydrate-protein interactions. Although synthetic cluster glycosides are constituted on scaffolds to achieve high avidities in lectin binding, there have been no known attempts to modulate the orientations of the sugar clusters with the aid of a functional scaffold onto which the sugar units are linked. Herein, we describe synthesis, physical, and lectin-binding studies of a series of alpha-D-mannopyranoside and beta-D-galactopyranosyl-(1-->4)-beta-D-glucopyranoside glycoclusters that are attached to a photoswitchable azobenzenoid core. These glycoclusters were synthesized by the amidation of amine-tethered glycopyranosides with azobenzene carbonyl chlorides. From kinetic studies, the cis forms of the azobenzene-glycopyranoside derivative were found to be more stable in aqueous solutions than in organic solvents. Molecular modeling studies were performed to estimate the relative geometries of the photoswitchable glycoclusters in the trans- and cis-isomeric forms. Isothermal titration calorimetry (ITC) was employed to assess the binding of these glycoclusters to lectins peanut agglutinin (PNA) and concanavalin A (Con A). Although binding affinities were enhanced several orders higher as the valency of the sugar was increased, a biphasic-binding profile in ITC plots was observed during few glycoclusters lectin-binding processes. The biphasic-binding profile indicates a "cooperativity" in the binding process. An important outcome of this study is that in addition to inherent clustering of the sugar units as a molecular feature, an induced clustering emanates because of the isomerization of the trans form of the azobenzene scaffold to the cis-isomeric form.  相似文献   

13.
A carbosilane dendrimer (4a) and its silacyclopentadiene analog (4b), both functionalized with lactoses, were tested for their abilities to act as drug-delivery systems. The critical micelle concentrations of 4a and 4b were measured using the drop-volume method in water and were 1.7 and 2.9 μM, respectively, suggesting that they could act as aggregates of glycoclusters. The amounts of the hydrophobic dye Orange OT loaded onto aqueous micelles of 4a and 4b and the stabilities of the dye/micelle complexes were determined by extracting the dyes from the complexes into chloroform. The particle sizes were measured for the loaded micelles by dynamic light scattering. Transfer of the dye from the micelles to peanut agglutinin was observed by fluorescence microscopy. Given the abilities of micelles of 4a and 4b to bind and release Orange OT, these glycocluster micelles may find use as drug-delivery systems.  相似文献   

14.
Dendritic cells are potent antigen-presenting cells that express several membrane lectins, including the mannose receptor and DC-SIGN (dendritic cell-specific ICAM-3-grabbing nonintegrin). To identify highly specific ligands for these dendritic cell receptors, oligosaccharides were converted into glycosynthons (Os1) and were used to prepare oligolysine-based glycoclusters, Os-[Lys(Os)]n-Ala-Cys-NH2. Clusters containing two to six dimannosides as well as clusters containing four or five pentasaccharides (Lewisa or Lewisx) or hexasaccharides (Lewisb) were synthesized. The thiol group of the appended cysteine residue allows easy tagging by a fluorescent probe or convenient substitution with an antigen. Surface plasmon resonance was used to determine the affinity of the different glycoclusters for purified mannose receptor and DC-SIGN, whereas flow cytometry and confocal microscopy analysis allowed assessment of cell uptake of fluoresceinyl-labeled glycoclusters. Dimannoside clusters are recognized by the mannose receptor with an affinity constant close to 106 liter.mol-1 but have a very low affinity for DC-SIGN (less than 104 liter x mol-1). Conversely, Lewis clusters have a higher affinity toward DC-SIGN than toward the mannose receptor. Dimannoside clusters are efficiently taken up by human dendritic cells as well as by rat fibroblasts expressing the mannose receptor but not by HeLa cells or rat fibroblasts expressing DC-SIGN; DC-SIGN-expressing cells take up Lewis clusters. The results suggest that ligands containing dimannoside clusters can be used specifically to target the mannose receptor, whereas ligands containing Lewis clusters will be targeted to DC-SIGN.  相似文献   

15.
A tetravalent GlcNAc pendant glycocluster was constructed with terminal biotin through C6 linker. To acquire the multivalent carbohydrate-protein interactions, we synthesized a glycopolymer of tetrameric structure using N-acetyl-d-glucosamine (GlcNAc) as the target carbohydrate by the use of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM) as coupling reagent, followed by biotin-avidin complexation leading to the formation of glycocluster of avidin-biotin-GlcNAc conjugate (ABG complex). The dynamic light scattering (DLS) system was implied for size detection and to check the binding affinity of GlcNAc conjugate with a WGA lectin we use fluorometric assay by means of specific excitation of tryptophan at λex 295 nm and it was found to be very high Ka  1.39 × 107 M−1 in case of ABG complex as compared to GlcNAc only Ka  1.01 × 104 M−1 with the phenomenon proven to be due to glycocluster effect.  相似文献   

16.
Newly designed linear-type glycoclusters were synthesized which involve a chondroitin repeating disaccharide ligand and a hydrophobic octyl ether spacer. The spacer mimics the corresponding disaccharide unit. Repeating elongation of the pseudo-tetrasaccharide that was derived from the common cluster unit [-->8)-octyl-(1-->3)-beta-D-Gal-NAc-(1-->4)-beta-D-GlcA-(1-->] allowed the syntheses of up to the pseudo-decasaccharide analog of chondroitin. An enzymatic D-GlcA transfer at the non-reducing end of the synthesized artificial glycans by GlcATase II was observed.  相似文献   

17.
Pseudomonas aeruginosa (PA) is a Gram negative opportunistic pathogen and is the major pathogen encounter in the cystic fibrosis (CF) lung airways. It often leads to chronic respiratory infection despite aggressive antibiotic therapy due to the emergence of resistant strains and to the formation of biofilm. The lectin PA-IIL (LecB) is a fucose-specific lectin from PA suspected to be involved in host recognition/adhesion and in biofilm formation. Thus, it can be foreseen as a potential therapeutic target. Herein, 16 fucosylated glycoclusters with antenna-like, linear, or crown-like spatial arrangements were synthesized using a combination of DNA solid-phase synthesis and alkyne azide 1,3-dipolar cycloaddition (CuAAC). Their binding properties toward PA-IIL were then evaluated based on DNA directed immobilization (DDI) carbohydrate microarray. Our results suggested that the antenna-like scaffold was preferred to linear or crown-like glycoclusters. Among the crown-like carbohydrate centered fucosylated glycoclusters, mannose-based core was better than glucose- and galactose-based ones. The influence of the linker arm was also evaluated, and long linkers between fucoses and the core led to a slight better binding than the short ones.  相似文献   

18.
Zhang J  Kovác P 《Carbohydrate research》1999,321(3-4):157-167
The terminal hexasaccharide of the O-antigen of Vibrio cholerae O:1, serotype Ogawa, has been synthesized in the form of a glycoside whose aglycon (linker) allows conjugation to carrier proteins by reductive amination. The conjugate obtained from direct, single-point attachment of the linker-equipped hapten to chicken serum albumin (CSA) contained seven hapten residues/CSA. A neoglycoconjugate containing the carbohydrate antigen in the form of clusters was obtained using, as a hapten subcarrier, an oligopeptide containing 16 amino groups. It was treated with a limited amount of hapten, to give a hapten-carrying subcarrier (HCS). Subsequent conjugation of HCS to CSA, using squaric acid diethyl ester as a conjugation reagent, gave a cross-linked, glycocluster conjugate containing 51% (w/w) of the carbohydrate.  相似文献   

19.
A lactose modified pyrene derivative (Py-Lac) was synthesized, with which novel twisted supramolecular nanofibers in diameter about 20 nm were constructed by self-assembly. The nanofibers showed solid-state fluorescence between 400 nm and 650 nm with the maximum emission at 495 nm. Furthermore, its recognition reaction with PNA lectin was investigated by fluorescence spectra and turbidity assays. It is interesting found that the supramolecular assembly as multivalent glycocluster exhibited unique and selectively binding interactions with PNA lectin with the binding constant of 5.74 × 106 M−1. Moreover, compound Py-Lac showed two-photon fluorescence imaging with Hep G2 cells.  相似文献   

20.
Four kinds of tetravalent double-headed glycoclusters [(LacNAc)4-DHGs] were designed with linkers of varying lengths consisting of alkanedioic carboxyamido groups (C6, C12, C18 and C24) between two bi-antennary LacNAc-glycosides. These glycoclusters served as high-affinity cross-linking ligands for the LacNAc-binding lectin Erythrina cristagalli agglutinin (ECA). The binding activity and cross-linking between each ligand and ECA were characterized by a hemagglutination inhibition (HI) assay, isothermal titration calorimetry (ITC), a quantitative precipitation assay and dynamic light scattering (DLS). For the precipitation assay and DLS measurement, the synthesized (LacNAc)4-DHGs were found to be capable of binding and precipitating the ECA as multivalent ligands. ITC analysis indicated the binding of (LacNAc)4-DHGs was driven by a favorable enthalpy change. Furthermore, the entropy penalty from binding (LacNAc)4-DHGs clearly decreased in a spacer length-dependent manner. The binding affinities of flexible (LacNAc)4-DHGs (C18 and C24) with long spacers were found to be more favorable than those of the clusters having short spacers (C6 and C12). These results were supported by molecular dynamics simulations with explicit water molecules for the tetravalent glycoclusters with ECA. We concluded that the subtle modification in the epitope-presenting scaffolds exerts the significant effect in the recognition efficiency involved in the LacNAc moieties by ECA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号