首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CO bond angle changes in photolysis of carboxymyoglobin   总被引:2,自引:0,他引:2  
Previous studies [Chance, B., Fischetti, B., & Powers, L. (1983) Biochemistry 22, 3820-3829] of the local structure changes around the iron in carboxymyoglobin on photolysis at 4 K revealed that the iron-carbon distance increased approximately 0.05 A but was accompanied by a lengthening of the iron-pyrrole nitrogen bonds of the heme (approximately 0.03 A) that was not as large as that found in the deoxy form. Further analysis of these data together with comparison to model compounds indicates that the Fe-C-O bond angle in carboxymyoglobin is bent (127 +/- 4 degrees), having a structure identical, within the error, with the "pocket" porphyrin model compound FePocPiv(1-MeIm)(CO) [Collman, J. P., Brauman, J. I., Collins, T. J., Iverson, B. L., Lang, G., Pettman, R., Sessler, J. L., & Walters, M. A. (1983) J. Am. Chem Soc. 105, 3038-3052]. On photolysis, this angle decreases by 5-10 degrees. In addition, correlation is observed between the increase in the length of the Fe-C bond and the decrease of the Fe-C-O angle. These results suggest that the rate-limiting step in recombination is the thermal motion of CO in the pocket to achieve an appropriate bonding angle with respect to the iron. These changes constitute the first molecular picture of the photolysis process, as well as the structure of the geminate state, and are important in clarifying nuclear tunneling parameters.  相似文献   

2.
The system and modelling errors of two fundamentally different motion capture systems (opto-reflective vs. video-based) were tested under various conditions, to determine their ability to accurately measure flexion-extension of the elbow angle in cricket bowling. A mechanical arm was used for all testing, that enabled known elbow flexion-extension and abduction ("carry") angles to be manually set. The root mean squared (RMS) error of 0.6 degrees for the opto-reflective system (Vicon-612) was more accurate in reconstructing a known angle than the video-based system (Peak Motus) (RMS error 2.3 degrees ) in the laboratory, when the same mathematical procedure (model) was applied to calculate the elbow flexion-extension angle. When different models were applied to the raw marker trajectories collected using the video-based system, RMS was lowest for the external marker segmental cluster models (2.3 degrees ) compared with 9.4 degrees for the vector and 4.5 degrees for the projected vector approaches, where joint centres were visually approximated. Real world, field-based comparisons using the video-based system showed that occluding the arm and therefore the shoulder, elbow and wrist joint centre locations by placing a shirt on the arm, increased RMS error for both vector (7.8 degrees -9.0 degrees ) and projected vector (4.3 degrees -5.1 degrees ) modelling approaches.  相似文献   

3.
雄蝇追逐行为的分析   总被引:2,自引:1,他引:1  
本文报告了在自由飞行条件下雄蝇追逐的行为实验及其分析的初步结果.其结果如下:1.追逐雄蝇水平方向偏转的角速度dF_1线性地依赖于目标蝇水平方位误差角T_1的大小.当目标在前视场中,即空间误差角|G|<π/4时,线性回归直线的斜率约为37**;而当空间误差角|G|>π/4时,线性回归直线的斜率约为6.7.2.追逐雄蝇俯仰方向偏转角速度dF_2在(-(π/2),π/2)的范围内线性依赖于俯仰误差角T_2的大小,其回归直线的斜率约为14.3.雄蝇追逐行为中,水平方位误差角频数分布的直方图呈现为峰值在零点的对称型分布;而俯仰误差角T_2频数分布的直方图是非对称型的,即仰角出现的频数大大超过俯角出现的频数.4.雄蝇主要利用了两蝇间距离变化dD的信息以及目标误差角来控制向前飞行的速度V.当误差角小时(即目标在前视场中),dD一般为负值,说明两蝇间的距离减小,而雄蝇追逐飞行的加速度A却与dD呈现正的线性关系.当误差角大时(即目标位于后视场中),dD一般为正值,说明两蝇间的距离增加.  相似文献   

4.
Carbon-13 and proton NMR spectra of a series of oligodeoxynucleotides (d(CT), d(CC), d(TA), d(AT), d(CG), d(GC), d(AG), d(AAA), d(TATA) and d(GGTAAT] were measured at various temperatures. The three coupling constants that are related to the magnitude of backbone angle epsilon (J(C4'-P), J(C2'-P) and J(H3'-P] are analyzed in terms of a three-state equilibrium about this bond. Two epsilon (trans) angles occur, which differ in magnitude depending on the conformation (N or S) of the adjoining deoxyribose ring. The S-type deoxyribose ring is associated with a smaller epsilon (trans) angle: epsilon (t,S) = 192 degrees. The N-type deoxyribose ring is associated with a larger epsilon (trans) angle epsilon (t,N) = 212 degrees. The third rotamer participating in the conformational equilibrium, is a gauche(-) (epsilon (-] conformer and occurs exclusively in combination with the S-type sugar ring (epsilon (-,S) = 266 degrees). Within the limits of experimental error, the magnitude of these three angles appears to be independent of the particular base sequence, except in the case of d(CG) where a slightly larger epsilon (t,S) angle (197 degrees) is indicated. A simple equation is proposed which may be used to calculate the population of epsilon (t,S) conformer in cases where only J(H3'-P) is known.  相似文献   

5.
The influence of the physical state of the membrane on the swimming behaviour of Tetrahymena pyriformis was studied in cells with lipid-modified membranes. When the growth temperature of Tetrahymena cells was increased from 15 degrees C to 34 degrees C or decreased from 39 degrees C to 15 degrees C, their swimming velocity changed gradually in a similar to the adaptive change in membrane lipid composition. Therefore, such adaptive changes in swimming velocity were not observed during short exposures to a different environment. Tetrahymena cells adapted to 34 degrees C swam at 570 microns/s. On incubation at 15 degrees C these cells swam at 100 microns/s. When the temperature was increased to 34 degrees C after a 90-min incubation at 15 degrees C, the initial velocity was immediately recovered. On replacement of tetrahymanol with ergosterol, the swimming velocity of 34 degrees C-grown cells decreased to 210 microns/s, and the cells ceased to move when the temperature was decreased to 15 degrees C. To investigate the influence of the physical state of the membrane on the swimming velocity, total phospholipids were prepared from Tetrahymena cells grown under these different conditions. The fluidities of liposomes of these phospholipid were measured using stearate spin probe. The membrane fluidity of the cells cooled to 15 degrees C increased gradually during incubation at 15 degrees C. On the other hand, the fluidity of the heated cell decreased during incubation at 34 degrees C. Replacement of tetrahymanol with ergosterol decreased the membrane fluidity markedly. Consequently, a good correlation was observed between swimming velocity and membrane fluidity; as the membrane fluidity increased, the swimming velocity increased linearly up to 600 microns/s. These results provide evidence for the regulation of the swimming behaviour by physical properties of the membrane.  相似文献   

6.
The objective of the study was to examine the relationship between balance and pitching error in college baseball pitchers. Sixteen college baseball pitchers, 9 National Association of Intercollegiate Athletics (NAIA) and 7 National Collegiate Athletic Association (NCAA) Division III, participated in the study. Balance ability, expressed as average sway velocity (deg.s(-1)), during dominant leg unilateral stance with eyes open and eyes closed was quantified for each subject utilizing the Balance Master System 7.04 (long force plate). Additionally, each subject underwent sensory organization testing on the SMART EquiTest System providing information regarding the effective use of the somatosensory, visual, and vestibular inputs. Pitching error was assessed with a high-speed video camera recorder during spring practice. A JUGS radar gun measured pitch velocity. The mean pitching error was 37.50 cm with a mean pitch velocity of 78 miles.h(-1) (35 m.s(-1)). No significant correlation was demonstrated between unilateral stance eyes open and pitching error (r = -0.24; p = 0.36) or unilateral stance eyes closed and pitching error (r = -0.29; p = 0.27). A significant negative correlation was demonstrated between sensory organization test 5 and pitching error (r = -0.50; p = 0.05) and between sensory organization test 5/1 and pitching error (r = -0.50; p = 0.05). Additionally, unilateral stance eyes closed demonstrated a positive correlation with pitch velocity (r = 0.52; p = 0.04). The results reveal that low levels of vestibular input utilization may lead to high levels of pitching error in college baseball pitchers.  相似文献   

7.
Ambulatory measurement of 3D knee joint angle   总被引:1,自引:1,他引:0  
Three-dimensional measurement of joint motion is a promising tool for clinical evaluation and therapeutic treatment comparisons. Although many devices exist for joints kinematics assessment, there is a need for a system that could be used in routine practice. Such a system should be accurate, ambulatory, and easy to use. The combination of gyroscopes and accelerometers (i.e., inertial measurement unit) has proven to be suitable for unrestrained measurement of orientation during a short period of time (i.e., few minutes). However, due to their inability to detect horizontal reference, inertial-based systems generally fail to measure differential orientation, a prerequisite for computing the three-dimentional knee joint angle recommended by the Internal Society of Biomechanics (ISB). A simple method based on a leg movement is proposed here to align two inertial measurement units fixed on the thigh and shank segments. Based on the combination of the former alignment and a fusion algorithm, the three-dimensional knee joint angle is measured and compared with a magnetic motion capture system during walking. The proposed system is suitable to measure the absolute knee flexion/extension and abduction/adduction angles with mean (SD) offset errors of -1 degree (1 degree ) and 0 degrees (0.6 degrees ) and mean (SD) root mean square (RMS) errors of 1.5 degrees (0.4 degrees ) and 1.7 degrees (0.5 degrees ). The system is also suitable for the relative measurement of knee internal/external rotation (mean (SD) offset error of 3.4 degrees (2.7 degrees )) with a mean (SD) RMS error of 1.6 degrees (0.5 degrees ). The method described in this paper can be easily adapted in order to measure other joint angular displacements such as elbow or ankle.  相似文献   

8.
Magnetotactic bacteria move by rotating their flagella and concomitantly are aligned to magnetic fields because they present magnetosomes, which are intracellular organelles composed by membrane-bound magnetic crystals. This results in magnetotaxis, which is swimming along magnetic field lines. Magnetotactic bacteria are morphologically diverse, including cocci, rods, spirilla and multicellular forms known as magnetotactic multicellular prokaryotes (MMPs). ‘Candidatus Magnetoglobus multicellularis’ is presently the best known MMP. Here we describe the helical trajectories performed by these microorganisms as they swim forward, as well as their response to UV light. We measured the radius of the trajectory, time period and translational velocity (velocity along the helix axis), which enabled the calculation of other trajectory parameters such as pitch, tangential velocity (velocity along the helix path), angular frequency, and theta angle (the angle between the helix path and the helix axis). The data revealed that ‘Ca. M. multicellularis’ swims along elongated helical trajectories with diameters approaching the diameter of the microorganism. In addition, we observed that ‘Ca. M. multicellularis’ responds to UV laser pulses by swimming backwards, returning to forward swimming several seconds after the UV laser pulse. UV light from a fluorescence microscope showed a similar effect. Thus, phototaxis is used in addition to magnetotaxis in this microorganism.  相似文献   

9.
We have studied how the dynamic components of laser light scattered from human spermatozoa depend on the scattering angle. This was done by investigating the halfwidth of the intensity autocorrelation function. A model of the spermatozoa as freely rotating and translating linear objects was adequate to describe the scattered light. Rotational motions determined the halfwidth of the intensity autocorrelation function at very small scattering angles and contribution from translational motions was dominant at scattering angles larger than 20 degrees. The contribution from translational motions increased with increasing scattering angle. We found a nearly linear relationship between the translation speed and the rotation frequency. However, the ratio between the two properties varied more than expected from the methodological error. Therefore we introduced a propelling efficacy as a concept to describe the swimming efficiency. This property might contain important information about the swim characteristics.Abbreviations ACF Autocorrelation function - 1/2 halfwidth - RGD Rayleigh-Gans-Debye - SD Standard deviation Correspondence to: P. Thyberg  相似文献   

10.
We examined the burst swimming performance of two Antarctic fishes, Trematomus bernacchii and T. centronotus, at five temperatures between -1 degrees C and 10 degrees C. As Antarctic fishes are considered one of the most cold specialised and stenothermal of all ectotherms, we predicted they would possess a narrow thermal performance breadth for burst swimming and a correlative decrease in performance at high temperatures. Burst swimming was assessed by videotaping swimming sequences with a 50-Hz video camera and analysing the sequences frame-by-frame to determine maximum velocity, the distance moved throughout the initial 200 ms, and the time taken to reach maximum velocity. In contrast to our prediction, we found both species possessed a wide thermal performance breadth for burst swimming. Although maximum swimming velocity for both T. bernacchii and T. centronotus was significantly highest at 6 degrees C, maximum velocity at all other test temperatures was less than 20% lower. Thus, it appears that specialisation to a highly stable and cold environment is not necessarily associated with a narrow thermal performance breadth for burst swimming in Antarctic fish. We also examined the ability of the Antarctic fish Pagothenia borchgrevinki to acclimate their burst-swimming performance to different temperatures. We exposed P. borchgrevinki to either -1 degrees C or 4 degrees C for 4 weeks and tested their burst-swimming performance at four temperatures between -1 degrees C and 10 degrees C. Burst-swimming performance of Pagothenia borchgrevinki was unaffected by exposure to either -1 degrees C or 4 degrees C for 4 weeks. Maximum swimming velocity of both acclimation groups was thermally independent over the total temperature range of 1 degrees C to 10 degrees C. Therefore, the loss of any capacity to restructure the phenotype and an inability to thermally acclimate swimming performance appears to be associated with inhabiting a highly stable thermal environment.  相似文献   

11.
The purpose of this study was to investigate the validity of hydrodynamic force estimation in swimming as calculated by the quasi-static approach. To achieve this a full-scale mechanical arm was developed, built and tested. The mechanical arm, covered with a prosthetic shell and driven at the shoulder was used to simulate a single plane underwater rotation at four elbow configurations. A computer program controlled the shoulder movement to achieve a replicable angular velocity profile for each arm movement. A strain gauge system was used to directly measure the generated arm torque. Repeated trials were conducted at fixed elbow angles of 110 degrees, 135 degrees, 160 degrees and 180 degrees. All trials were filmed using a three-dimensional underwater set-up. Each trial was digitised at 25 Hz and the hydrodynamic drag force profile of the hand calculated using the quasi-static procedure. From these data, the estimated shoulder torque was calculated and compared to the direct measurement of shoulder torque from the mechanical arm. The results showed that the arm produced a repeatable movement through the water. The shoulder torque profiles using the direct measure (the arm) and the indirect measures (quasi-static approach) differed considerably. The quasi-static approach appears not to accurately reflect the hydrodynamic force profile generated by the arm movement in swimming. Furthermore, it seems that the swimmer's hand contribution is overstated in up to date studies. It is essential that the propulsive mechanisms in swimming be further investigated if factors underpinning an optimal technique are to be established.  相似文献   

12.
The northern spearnose poacher, Agonopsis vulsa, is a benthic, heavily armored fish that swims primarily using pectoral fins. High-speed kinematics, whole-body lift measurements, and flow visualization were used to study how A. vulsa overcomes substantial negative buoyancy while generating forward thrust. Kinematics for five freely swimming poachers indicate that individuals tend to swim near the bottom (within 1 cm) with a consistently small (less than 1°) pitch angle of the body. When the poachers swam more than 1 cm above the bottom, however, body pitch angles were higher and varied inversely with speed, suggesting that lift may help overcome negative buoyancy. To determine the contribution of the body to total lift, fins were removed from euthanized fish (n=3) and the lift and drag from the body were measured in a flume. Lift and drag were found to increase with increasing flow velocity and angle of attack (ANCOVA, p<0.0001 for both effects). Lift force from the body was found to supply approximately half of the force necessary to overcome negative buoyancy when the fish were swimming more than 1 cm above the bottom. Lastly, flow visualization experiments were performed to examine the mechanism of lift generation for near-bottom swimming. A vortex in the wake of the pectoral fins was observed to interact strongly with the substratum when the animals approached the bottom. These flow patterns suggest that, when swimming within 1 cm of the bottom, poachers may use hydrodynamic ground effect to augment lift, thereby counteracting negative buoyancy.  相似文献   

13.
The aim of this study was to observe diurnal influences on maximal power and technical swimming ability at three different times (8 AM, 1 PM, and 6 PM). Prior to each test, tympanic temperature was taken. Maximal power was analyzed by cycle tests. Stroke length, stroke rate, hand pattern, and swimming velocity were recorded between the 20th and the 28th m of the 50-m freestyle. Temperature varied +/-0.4 degrees C between morning and evening. Concomitantly, maximal power (+7%) and technical ability (+3% in stroke length, +5% in stroke rate and changes in underwater hand coordinates) were greater in the evening. The present study confirms and specifies diurnal influences on all-out performances with regard to both maximal power and technical ability. Thus, when swimmers are called upon to perform at a high level in the morning, they should warm up extensively in order to "swamp" the diurnal effects of the morning.  相似文献   

14.
The swimming velocity and the amplitude of the helical swimming path of T. pyriformis-NT1 cells grown at 20 degrees C (Tg 20 degrees C) and 38 degrees C (Tg 38 degrees C) were monitored between 0 and 40 degrees C in the presence and absence of electric fields. Within physiological limits the swimming velocity increased and the amplitude decreased as temperature was raised. The temperature profiles of these properties were not linear, and showed discontinuities at different temperatures for the different cultures. The break points in Arrhenius plots of the resting potential, regenerative spike magnitude, repolarization time, swimming velocity and swimming amplitude are tabulated and compared. The initial breakpoints upon cooling were clustered about the breakpoints in fluorescence polarization of D.P.H. in extracted phospholipids, and around the transition temperatures estimated from the literature for the pellicular membrane of these cells. The average of the initial breakpoints on cooling was 22.9 degrees C for Tg 38 degrees C cells and 13.7 degrees C for Tg 20 degrees C cells, a shift of 9.2 degrees C. Unlike Paramecium there is no depolarizing receptor potential in Tetrahymena upon warming. It is suggested that this may be the basis of a behavioural difference between Tetrahymena and Paramecium--namely that in Tetrahymena maximum swimming velocity occurs above growth temperature whereas in Paramecium the two points coincide. Swimming velocity and resting potential were correlated with membrane fluidity within physiological limits, but for other parameters the relationship with fluidity was more complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
In swimming the propulsive force is generated by giving a velocity change to masses of water. In this process energy is transferred from the swimmer to the water, which cannot be used to propel the swimmer. Theoretical considerations indicated that an increase of the propelling surface size should lead to a reduced loss of energy to the water. Thus, in this study, the effect of artificially enlarging the propelling surface of the hand was examined. The effect was examined in terms of the propelling efficiency during front crawl swimming using the arms alone. The legs were floated with a small buoy as previously described (Toussaint et al., J. appl. Physiol. 65, 2506-2512, 1988a). In ten competitive swimmers (six male, four female) the rate of energy expenditure (power input, Pi), power output (Po), work per stroke cycle (As), distance per stroke cycle (d), work per unit distance (Ad), and propelling efficiency (ep) were determined at various swimming speeds once with and once swimming without paddles. At the same average velocity the effect of swimming with paddles was to reduce Pi, Po, and Ad by 6, 7.6, and 7.5% respectively, but to increase ep and As by 7.8 and 7%. The increase in distance per stroke cycle and the decrease in stroke cycle frequency matched the predicted values based on the theoretical considerations in which the actual increase in propelling surface size was taken into account.  相似文献   

16.
Effect of temperature on motility and chemotaxis of Escherichia coli.   总被引:14,自引:10,他引:4       下载免费PDF全文
K Maeda  Y Imae  J I Shioi    F Oosawa 《Journal of bacteriology》1976,127(3):1039-1046
The swimming velocity of Escherichia coli at various constant temperatures was found to increase with increasing temperature. The frequency of tumbling had a peak at 34 degrees C and was very low both at 20 and at 39 degrees C. The swimming tracks near the surface of a slide glass showed curves, and the curvature increased the temperature. When the temperature of a bacterial suspension was suddenly changed, a transient change of the tumbling frequency was observed. A temperature drop induced a temporary increase in the tumbling frequency, and a quick rise of temperature, on the other hand, resulted in a temporary suppression of the tumbling. These dynamic responses to sudden changes of temperature was not observed in the smoothly swimming nonchemotactic strains bearing the mutations cheA and cheC and also in a mutant with the metF mutation under a smooth swimming condition.  相似文献   

17.
Metabolic rates, VO2, were studied in four muskrats (Ondatra zibethicus) swimming in a water channel at velocities of 0.2 to 0.75 m/s in water at temperatures of 25 and 30 degrees C. At both water temperatures, VO2 increased linearly with increasing swimming velocity. The VO2 was higher for muskrats swimming in water at 25 than 30 degrees C. The metabolic performance of swimming appears to be influenced by the interaction of swimming velocity and water temperature.  相似文献   

18.
Specificity of joint angle in isometric training   总被引:1,自引:0,他引:1  
Six healthy women (21.8 +/- 0.4 y) did isometric strength training of the left plantarflexors at an ankle joint angle of 90 degrees. Training sessions, done 3 times per week for 6 weeks, consisted of 2 sets of ten 5 s maximal voluntary contractions. Prior to and following the training, and in random order, voluntary and evoked isometric contraction strength was measured at the training angle and at additional angles: 5 degrees, 10 degrees, 15 degrees, and 20 degrees intervals in the plantarflexion and dorsiflexion directions. Evoked contraction strength was measured as the peak torque of maximal twitch contractions of triceps surae. Training increased voluntary strength at the training angle and the two adjacent angles only (p less than 0.05). Time to peak twitch torque was not affected by training. Twitch half relaxation time increased after training (p = 0.013), but the increase was not specific to the training angle. There was a small (1.1%, p less than 0.05) increase in calf circumference after training. Evoked twitch torque did not increase significantly at any joint angle. It was therefore concluded that a neural mechanism is responsible for the specificity of joint angle observed in isometric training.  相似文献   

19.
The purpose of this study was to determine the stability and accuracy of active knee joint velocity replication methods in healthy subjects. We used a repeated measures design with 14 healthy volunteers. Measures of velocity replication were performed in two ranges of knee joint flexion (0 degrees -30 degrees and 60 degrees -90 degrees ), across four testing velocities (5, 10, 15, and 30 degrees /s) in two movement directions (flexion and extension). Statistical analysis included intraclass correlation coefficients (ICCs; 2, k) and associated standard error of the measures calculated between day 1 and 2. We performed z-tests between all possible combinations of ICC pairs using Fisher's Z transformations to determine if any significant differences existed between observed ICCs. We also calculated correlation ratios (eta2) to explain the source of variability in the calculated ICCs. To assess measurement accuracy, we calculated constant error and absolute error between criterion and replication velocities. Results on ICCs and standard error of the measurements (SEMs) ranged from r = -0.44 +/- 7.00 to 0.88 +/- 0.72 degrees /s. Calculated z-tests indicated six paired ICCs were significantly different ( p < 0.1). In all six pairs, the faster test velocity had a lower ICC magnitude. The eta2 calculations demonstrated that inconsistent performance between day 1 and 2 caused the low ICC magnitudes observed with faster testing velocities. Significantly more absolute error occurred at 30 and 15 degrees /s compared with 5 degrees /s. Significantly less constant error was observed for 30 degrees /s compared with 15 degrees /s. A significant direction by range of motion interaction indicated less constant error for flexion movements in the 60 degrees -90 degrees range of motion (ROM) as compared with extension movements in either ROM. Healthy individuals could actively replicate slower criterion velocities in the mid and end ranges of knee joint motion in both movement directions with an acceptable amount of consistency and accuracy. The data support the use of velocity replication in future investigations on proprioceptive function.  相似文献   

20.
The aim of the study was to investigate possible modifications caused by hand paddles in the relative contribution of the lift and drag forces of the hand and in the propelling efficiency, during front crawl swimming. Eight female swimmers swam 25 m with maximal intensity without paddles, with small (116 cm(2)) and with large paddles (268 cm(2)). Four cameras operating at 60 Hz were used to record the images and the Ariel Performance Analysis System was used for the digitisation. The results showed that, although during swimming with hand paddles the hand's velocity decreased, the greater propulsive area of the hand paddle caused an increase in the drag, lift, resultant and effective forces of the hand. However, the relative contribution of lift and drag forces on swimming propulsion was not modified, nor was the direction of the resultant force. Hand paddles also increased the propelling efficiency, the stroke length and the swimming velocity, mainly because of the larger propulsive areas of the hand in comparison with free swimming. However, the significant decrease of the stroke rate, might argue the effectiveness of hand paddle training, particularly when large paddles are used in front crawl swimming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号