首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
2.
3.
4.
Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonists, such as the thiazolidinediones (TZDs), decrease acute inflammation in both pancreatic cell lines and mouse models of acute pancreatitis. Since PPAR-gamma agonists have been shown to exert some of their actions independent of PPAR-gamma, the role of PPAR-gamma in pancreatic inflammation has not been directly tested. Furthermore, the differential role of PPAR-gamma in endodermal derivatives (acini, ductal cells, and islets) as opposed to the endothelial or inflammatory cells is unknown. To determine whether the effects of a TZD, rosiglitazone, on caerulein-induced acute pancreatitis are dependent on PPAR-gamma in the endodermal derivatives, we created a cell-type specific knock out of PPAR-gamma in pancreatic acini, ducts, and islets. PPAR-gamma knockout animals show a greater response in some inflammatory genes after caerulein challenge. The anti-inflammatory effect of rosiglitazone on edema, macrophage infiltration, and expression of the proinflammatory cytokines is significantly decreased in pancreata of the knockout animals compared with control animals. However, rosiglitazone retains its effect in the lungs of the pancreatic-specific PPAR-gamma knockout animals, likely due to direct anti-inflammatory effect on lung parenchyma. These data show that the PPAR-gamma in the pancreatic epithelia and islets is important in suppressing inflammation and is required for the anti-inflammatory effects of TZDs in acute pancreatitis.  相似文献   

5.
Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is highly expressed in lipid-accumulating macrophages of the coronary artery. In light of this, the wide-spread clinical use of thiazolidinediones (TZDs) in the treatment of type II diabetes raises concerns about the role of PPAR-gamma in macrophage function and disease progression. To define the role of PPAR-gamma in macrophage biology, we used homologous recombination to create embryonic stem cells that were homozygous for a null mutation in the PPAR-gamma gene. We demonstrate here that PPAR-gamma is neither essential for nor substantially affects the development of the macrophage lineage both in vitro and in vivo. In contrast, we show it is an important regulator of the scavenger receptor CD36, which has been genetically linked to lipid accumulation in macrophages. Both 15-deoxy-Delta12,14prostaglandin J2 and thiazolidinediones have anti-inflammatory effects that are independent of PPAR-gamma. We show that PPAR-gamma is required for positive effects of its ligands in modulating macrophage lipid metabolism, but that inhibitory effects on cytokine production and inflammation may be receptor independent.  相似文献   

6.
7.
8.
The self-association of proteins to form amyloid fibrils has been implicated in the pathogenesis of a number of diseases including Alzheimer's, Parkinson's, and Creutzfeldt-Jakob diseases. We recently reported that the myeloid scavenger receptor CD36 initiates a signaling cascade upon binding to fibrillar beta-amyloid that stimulates recruitment of microglia in the brain and production of inflammatory mediators. This receptor plays a key role in the pathogenesis of atherosclerosis, prompting us to evaluate whether fibrillar proteins were present in atherosclerotic lesions that could initiate signaling via CD36. We show that apolipoprotein C-II, a component of very low and high density lipoproteins, readily forms amyloid fibrils that initiate macrophage inflammatory responses including reactive oxygen production and tumor necrosis factor alpha expression. Using macrophages derived from wild type and Cd36(-/-) mice to distinguish CD36-specific events, we show that fibrillar apolipoprotein C-II activates a signaling cascade downstream of this receptor that includes Lyn and p44/42 MAPKs. Interruption of this signaling pathway through targeted deletion of Cd36 or blocking of p44/42 MAPK activation inhibits macrophage tumor necrosis factor alpha gene expression. Finally, we demonstrate that apolipoprotein C-II in human atheroma co-localizes to regions positive for markers of amyloid and macrophage accumulation. Together, these data characterize a CD36-dependent signaling cascade initiated by fibrillar amyloid species that may promote atherogenesis.  相似文献   

9.
Peroxisome proliferator-activated receptor (PPAR)-gamma is a nuclear hormone receptor, with a well-established role in adipogenesis and glucose metabolism. Over the past 3 years several laboratories have reported that this protein can influence macrophage responses to a variety of inflammatory stimuli. The effect of PPAR-gamma activation on macrophage lipid uptake, cholesterol efflux, and cytokine production have all recently been examined in several in-vitro culture systems. In addition, PPAR-gamma ligands have been shown to influence atherosclerotic lesion formation in murine models of that disease. This review attempts to summarize and critically evaluate that work and its implications for the use of PPAR-gamma activators in understanding and treating the pathogenetic processes that contribute to atherosclerotic plaque formation.  相似文献   

10.
Retinoic acid-inducible gene-I (RIG-I) is a member of the DExH box protein family and designated as a putative RNA helicase. RIG-I is implicated in host defense and inflammatory reactions by regulating the expression of various genes. RIG-I is expressed in endothelial cells and upregulated with lipopolysaccharide (LPS). Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a nuclear hormone receptor and regulates gene expressions in response to its specific ligands. In the present study, we examined the effect of PPAR-gamma ligands on the LPS-induced RIG-I expression in cultured human umbilical vein endothelial cells (HUVEC). 15-Deoxy-Delta(12,14)-prostaglandin J2 (15d-PGJ2), a metabolite of PGD2, is a natural ligand for PPAR-gamma and known to modulate inflammatory reactions by regulating the expression of various genes in PPAR-gamma-dependent and -independent manners. LPS-induced RIG-I expression in HUVEC was inhibited by pretreatment of the cells with 15d-PGJ2 in time-and concentration-dependent manners. However, ciglitazone and bisphenol A diglycide ether, authentic and specific ligands for PPAR-gamma, did not affect the RIG-I expression. These results suggest that 15d-PGJ2 inhibits LPS-induced RIG-I expression through a mechanism independent on PPAR-gamma. 15d-PGJ2 may regulate inflammatory reactions, at least in part, by inhibiting the expression of RIG-I.  相似文献   

11.
Peroxisome proliferator-activated receptors (PPAR) are members of a nuclear hormone receptor superfamily that includes receptors for steroids, retinoids, and thyroid hormone, all of which are known to affect the immune response. Previous studies dealing with PPAR-gamma expression in the immune system have been limited. Recently, PPAR-gamma was identified in monocyte/macrophage cells. In this study we examined the role of PPAR-gamma in experimental autoimmune encephalomyelitis (EAE), an animal model for the human disease multiple sclerosis. The hypothesis we are testing is whether PPAR-gamma plays an important role in EAE pathogenesis and whether PPAR-gamma ligands can inhibit the clinical expression of EAE. Initial studies have shown that the presence of the PPAR-gamma ligand 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ2) inhibits the proliferation of Ag-specific T cells from the spleen of myelin basic protein Ac(1-11) TCR-transgenic mice. 15d-PGJ2 suppressed IFN-gamma, IL-10, and IL-4 production by both Con A- and myelin basic protein Ac(1-11) peptide-stimulated lymphocytes as determined by ELISA and ELISPOT assay. Culture of encephalitogenic T cells with 15d-PGJ2 in the presence of Ag reduced the ability of these cells to adoptively transfer EAE. Examination of the target organ, the CNS, during the course of EAE revealed expression of PPAR-gamma in the spinal cord inflammatory infiltrate. Administration of 15d-PGJ2 before and at the onset of clinical signs of EAE significantly reduced the severity of disease. These results suggest that PPAR-gamma ligands may be a novel therapeutic agent for diseases such as multiple sclerosis.  相似文献   

12.
CD36, belongs to class B scavenger receptor family, is a macrophage receptor for oxidized low-density lipoprotein (oxLDL) and has been proven to play a critical role in atherosclerotic foam cell formation. In addition, CD36 expression is regulated by many factors including oxLDL and HDL. A recent study suggests that CD36 can also bind with oxidized high-density lipoprotein (oxHDL). However, the direct role of oxHDL in atherosclerosis is still not clear and it is not known whether oxHDL has any influence on the expression of CD36 in macrophages. Here, we performed experiments to investigate the effect of oxHDL on the expression of CD36 on human peripheral blood monocytes–macrophages and the possible mechanisms. Our results suggest that the uptake of oxHDL by CD36 on macrophages accelerates foam cell formation. In addition, oxHDL can down-regulate both the mRNA and surface protein expression of CD36 on human peripheral macrophages in vitro. oxHDL increased the mRNA expression and protein phosphorylation of peroxisome proliferators-activated receptor-γ (PPARγ). Using different mitogen-activated protein kinase (MAPK) inhibitors, we demonstrated that oxHDL regulated CD36 and PPARγ expression in a p38-MAP kinase dependent mechanism.  相似文献   

13.
14.
15.
Neuropeptide Y (NPY)-induced modulation of the immune and inflammatory responses is regulated by tissue-specific expression of different receptor subtypes (Y1–Y6) and the activity of the enzyme dipeptidyl peptidase 4 (DP4, CD26) which terminates the action of NPY on Y1 receptor subtype. The present study investigated the age-dependent effect of NPY on inflammatory paw edema and macrophage nitric oxide production in Dark Agouti rats exhibiting a high-plasma DP4 activity, as acknowledged earlier. The results showed that NPY suppressed paw edema in adult and aged, but not in young rats. Furthermore, plasma DP4 activity decreased, while macrophage DP4 activity, as well as macrophage CD26 expression increased with aging. The use of NPY-related peptides and Y receptor-specific antagonists revealed that anti-inflammatory effect of NPY is mediated via Y1 and Y5 receptors. NPY-induced suppression of paw edema in young rats following inhibition of DP4 additionally emphasized the role for Y1 receptor in the anti-inflammatory action of NPY. In contrast to the in vivo situation, NPY stimulated macrophage nitric oxide production in vitro only in young rats, and this effect was mediated via Y1 and Y2 receptors. It can be concluded that age-dependant modulation of inflammatory reactions by NPY is determined by plasma, but not macrophage DP4 activity at different ages.  相似文献   

16.
Diabetic nephropathy is a common complication in diabetes mellitus (DM). Thiazolidinedione (TZD) is thought to ameliorate diabetic nephropathy, however, the mechanism has not been elucidated. We hypothesized that VEGF participates in the pathogenesis of diabetic nephropathy and that TZD may be beneficial for the treatment of diabetic nephropathy through its effect on VEGF. Increased VEGF expression was demonstrated in the glomeruli of DM rats and rat mesangial cells (RMC) incubated with high medium glucose. It was also demonstrated that VEGF promoted mesangial cell proliferation, which was inhibited by TZD. It was shown that a rapid fall and rise of ambient glucose concentration induces more VEGF production and cell proliferation in RMC than in cells with continuously high glucose medium, which was also inhibited by TZD. Prostaglandin J2 and protein C kinase inhibitors significantly inhibited [3H]thymidine incorporation in RMC incubated with VEGF, which was inhibited by TZD. These findings indicate that a rapid change of glucose concentration promotes RMC proliferation by the increased production of VEGF. TZD has an inhibitory action through, at least in part, PPAR-gamma.  相似文献   

17.
beta-Amyloid accumulation is associated with pathologic changes in the brain in Alzheimer's disease and has recently been identified in plaques of another chronic inflammatory disorder, atherosclerosis. The class B scavenger receptor, CD36, mediates binding of fibrillar beta-amyloid to cells of the monocyte/macrophage lineage, including brain macrophages (microglia). In this study, we demonstrate that in microglia and other tissue macrophages, beta-amyloid initiates a CD36-dependent signaling cascade involving the Src kinase family members, Lyn and Fyn, and the mitogen-activated protein kinase, p44/42. Interruption of this signaling cascade, through targeted disruption of Src kinases downstream of CD36, inhibits macrophage inflammatory responses to beta-amyloid, including reactive oxygen and chemokine production, and results in decreased recruitment of microglia to sites of amyloid deposition in vivo. The finding that engagement of CD36 by beta-amyloid initiates a Src kinase-dependent production of inflammatory mediators in cells of the macrophage lineage reveals a novel receptor-mediated pro-inflammatory signaling pathway of potential therapeutic importance.  相似文献   

18.
19.
20.
Atherosclerosis is an inflammatory disease in which oxidized low-density lipoprotein (oxLDL) plays important roles. Scavenger receptors (SR) CD36, SR-A, and LOX-1 uptake over 90% of the oxLDL leading to foam cell formation and secretion of inflammatory cytokines. To investigate whether the interindividual differences in macrophage SR gene expression could determine the inflammatory variability in response to oxLDL, we quantified the gene and protein expression of SR and inflammatory molecules from macrophages isolated from 18 volunteer subjects and incubated with oxLDL for 1, 3, 6, and 18 h. The individual gene expression profile of the studied SR at 1 h of incubation was highly variable, showing a wide fold-change range: CD36: -3.57-4.22, SR-A: -5.0-4.43, and LOX-1: -1.56-75.32. We identified subjects as high and low responders depending on whether their SR gene expression was above or below the median, showing a different inflammation response pattern. CD36 and LOX-1 gene expression correlated positively with IL-1beta; SR-A correlated negatively with IL-8 and positively with PPARgamma and NF-kappaBIotaA. These results were confirmed in the same subjects 3 mo after the first sampling. Furthermore, a negative correlation existed between CD36 and SR-A at protein level after 18 h of oxLDL incubation (R = -0.926, p = 0.024). These data would suggest that the type of SR could determine the macrophage activation: more proinflammatory when associated to CD36 and LOX-1 than when associated with SR-A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号