首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 955 毫秒
1.
The sequences of the displacement-loop (D-loop) regions of mitochondrial DNA (mtDNA) from mouse L cells and human KB cells have been determined and provide physical maps to aid in the identification of sequences involved in the regulation of replication and expression of mammalian mtDNA. Both D-loop regions are bounded by the genes for tRNAPhe and tRNAPro. This region contains the most highly divergent sequences in mtDNA with the exceptions of three small conserved sequence blocks near the 5' ends of D-loop strands, a 225 nucleotide conserved sequence block in the center of the D-loop strand template region, and a short sequence associated with the 3' ends of D-loop strands. A sequence similar to that associated with the 3' termini of D-loop strands overlaps one of the conserved sequence blocks near the 5' ends of D-loop strands. The large, central conserved sequence probably does not code for a protein since no open reading frames are discretely conserved. Numerous symmetric sequences and potential secondary structures exist in these sequences, but none appear to be clearly conserved between species.  相似文献   

2.
3.
Localization of replication origins in pea chloroplast DNA.   总被引:7,自引:0,他引:7       下载免费PDF全文
The locations of the two replication origins in pea chloroplast DNA (ctDNA) have been mapped by electron microscopic analysis of restriction digests of supercoiled ctDNA cross-linked with trioxalen. Both origins of replication, identified as displacement loops (D-loops), were present in the 44-kilobase-pair (kbp) SalI A fragment. The first D-loop was located at 9.0 kbp from the closest SalI restriction site. The average size of this D-loop was about 0.7 kbp. The second D-loop started 14.2 kbp in from the same restriction site and ended at about 15.5 kbp, giving it a size of about 1.3 kbp. The orientation of these two D-loops on the restriction map of pea ctDNA was determined by analyzing SmaI, PstI, and SalI-SmaI restriction digests of pea ctDNA. One D-loop has been mapped in the spacer region between the 16S and 23S rRNA genes. The second D-loop was located downstream of the 23S rRNA gene. Denaturation mapping of recombinants pCP 12-7 and pCB 1-12, which contain both D-loops, confirmed the location of the D-loops in the restriction map of pea ctDNA. Denaturation-mapping studies also showed that the two D-loops had different base compositions; the one closest to a SalI restriction site denatured readily compared with the other D-loop. The recombinants pCP 12-7 and pCB 1-12 were found to be highly active in DNA synthesis when used as templates in a partially purified replication system from pea chloroplasts. Analysis of in vitro-synthesized DNA with either of these recombinants showed that full-length template DNA was synthesized. Recombinants from other regions of the pea chloroplast genome showed no significant DNA synthesis activity in vitro.  相似文献   

4.
Polymorphic sequence in the D-loop region of equine mitochondrial DNA   总被引:8,自引:0,他引:8  
The D-loop regions in equine mitochondrial DNA were cloned from three thoroughbred horses by polymerase chain reaction (PCR). The total number of bases in the D-loop region were 1114bp, 1115bp and 1146bp. The equine D-loop region is A/T rich like many other mammalian D-loops. The large central conserved sequence block and small conserved sequence blocks 1, 2 and 3, that are common to other mammals, were observed. Between conserved sequence blocks 1 and 2 there were tandem repeats of an 8bp equine-specific sequence TGTGCACC, and the number of tandem repeats differed among individual horses. The base composition in the unit of these repeats is G/C rich as are the short repeats in the D-loops of rabbit and pig. Comparing DNA sequences between horse and other mammals, the difference in the D-loop region length is mostly due to the difference in the number of DNA sequences at both extremities. The similarities of the DNA sequences are in the middle part of the D-loop. In comparison of the sequences among three thoroughbred horses, it was determined that the region between tRNAPro and the large central conserved sequence block was the richest in variation. PCR primers in the D-loop region were designed and the expected maternal inheritance was confirmed by PCR-RFLP (restriction fragment length polymorphism).  相似文献   

5.
The nucleotide sequences of the D-loop region and its flanking genes of the mitochondrial DNA (mtDNA) from Japanese pond frogs were determined by the methods of PCR, cloning, and sequencing. The frogs belonged to two species, one subspecies, and one local race. The gene arrangements adjacent to the D-loop region were analyzed. The frogs shared a unique mitochondrial gene order that was found in Rana catesbeiana; i.e., cyt b--D-loop region--tRNA(Leu(CUN))--tRNA(Thr)--tRNA(Pro)--tRNA(Phe)--12S rRNA. The arrangements of the three tRNA genes of these frogs were different from those of X. laevis, a species which has the same overall structure as in mammals. Highly repetitive sequences with repeat units (16-bp or 17-bp sequence specific for each taxon) were found in the D-loop region. The length of repetitive sequences varied from 0.6 kbp to 1.2 kbp, and caused the extensive size variation in mtDNA. Several short sequence elements such as putative TAS, OH, CSB-1, and CSB-2 were found in the D-loop region of these frogs. The sequences of these short regulatory elements were conserved in R. catesbeiana, X. laevis, and also in human. The comparison of sequence divergences of the D-loop region and its adjacent genes among various taxa revealed that the rates of nucleotide substitutions depend on genes. The nucleotide sequences of the 3'-side segment of the D-loop region were the most variable among taxa, whereas those of the tRNA and 12S rRNA genes were the most conservative.  相似文献   

6.
X M Wang  C H Chang  J Waddell    M Wu 《Nucleic acids research》1984,12(9):3857-3872
The EcoR1 restriction fragments containing D-loops which marked the replication origin of chloroplast DNA were identified in two different species of Chlamydomonas. Each fragment was cloned in the E. coli plasmid pBR325. The cloned fragments were compared by restriction endonuclease analyses and by heteroduplex analyses in the electron microscope. The relative position of the D-loop regions and the homologous regions between the 2 fragments was determined. The D-loops were located within one short homologous region of 0. 42kb in length between the 2 cloned restriction fragments. The homologous region was subcloned in pBR322. Closed circular plasmid DNAs containing the short homologous region showed preferred denaturation in the D-loop region under physiological salt concentration which suggested that D-loop region was AT rich. Sequence divergence was detected at both ends of the D-loop region. Southern blot analyses indicated the presence of species-specific repetitive sequences within the divergent regions.  相似文献   

7.
Summary The origins of chloroplast DNA (cpDNA) replication were mapped in two plastome types of Oenothera in order to determine whether variation in the origin of cpDNA replication could account for the different transmission abilities associated with these plastomes. Two pairs of displacement loop (D-loop) initiation sites were observed on closed circular cpDNA molecules by electron microscopy. Each pair of D-loops was mapped to the inverted repeats of the Oenothera cpDNA by the analysis of restriction fragments. The starting points of the two adjacent D-loops are approximately 4 kb apart, bracketing the 16S rRNA gene. Although there are small DNA length variations near one of the D-loop initiation sites, no apparent differences in the number and the location of replication origins were observed between plastomes with the highest (type I) and lowest (type IV) transmission efficiencies.  相似文献   

8.
9.
The chloroplasts ofChlamydomonas reinhardtii were transformed using a vector (paadAGUS4.1) that contained a spectinomycin-resistance gene (aadA) as a selectable gene, and bacterialuidA (GUS) as a reporter gene, and pea 4.1 kb D-loop containing sequence. The vector was introduced into the alga through particle gun bombardment. The transformed colonies were screened for the presence of foreign genes by Southern hybridization using GUS,aadA and 4.1 pea Ori probes. Expression ofaadA and GUS genes was detected in all colonies that were grown on spectinomycin. A detailed restriction analysis followed by southern hybridization of total genomic DNA using pea 4.1 kb D-loop as probe indicated that the D-loop sequence can serve in site-specific integration of foreign DNA due to high homology. Restriction analysis of different colonies showed that the foreign DNA was probably present in a mixture population of autonomous segment and integrated in the native chloroplast genome.  相似文献   

10.
11.
It was assumed previously that the mutator phenotype of the hms3 mutant was determined by processes taking place in the D-loop. As a next step, genetic analysis was performed to study the interactions between the hsm3 mutation and mutations of the genes that control the initial steps of the D-loop formation. The mutations of the MMS4 and XRS2 genes, which initiate the double-strand break formation and subsequent repair, were shown to completely block HSM3-dependent UV-induced mutagenesis. Mutations of the RAD51, RAD52, and RAD54 genes, which are also involved in the D-loop formation, only slightly decreased the level of UV-induced mutagenesis in the hsm3 mutant. Similar results were observed for the interaction of hsm3 with the mph1 mutation, which stabilizes the D-loop. In contrast, the shu1 mutation, which destabilizes the D-loop structure, led to an extremely high level of UV-induced mutagenesis and displayed epistatic interactions with the hsm3 mutation. The results made it possible to assume that the hsm3 mutation destabilizes the D-loop, which is a key substrate of both Rad5- and Rad52-dependent postreplicative repair pathways.  相似文献   

12.
13.
Human mitochondrial DNA contains two physically separate and distinct origins of DNA replication. The initiation of each strand (heavy and light) occurs at a unique site and elongation proceeds unidirectionally. Animal mitochondrial DNA is novel in that short nascent strands are maintained at one origin (D-loop) in a significant percentage of the molecules. In the case of human mitochondrial DNA, there are three distinct D-loop heavy strands differing in length at the 5' end. We report here the localization of the 5' ends of nascent daughter heavy strands originating from the D-loop region. Analyses of the map positions of 5' ends relative to known restriction endonuclease cleavage sites and 5' end nucleotides indicate that the points of initiation of D-loop synthesis and actual daughter strands are the same. In contrast, the second origin is located two-thirds of the way around the genome where light strand synthesis is presumably initiated on a single-stranded template. Mapping of 5' ends of daughter light strands at this origin relative to known restriction endonuclease cleavage sites reveals two distinct points of initiation separated by 37 nucleotides. This origin is in the same relative genomic position and shows a high degree of DNA sequence homology to that of mouse mitochondrial DNA. In both cases, the DNA region within and immediately flanking the origin of DNA replication contains five tightly clustered tRNA genes. A major portion of the pronounced DNA template secondary structure at this origin includes the known tDNA sequences.  相似文献   

14.
以暗纹东方鲀(Takifugu fasciatus)肝的线粒体DNA为模板,参照红鳍东方鲀(T.rubripes)等近源鱼类的线粒体基因组DNA序列,设计合成14对特异引物,进行PCR扩增并测序,首次获得了暗纹东方鲀线粒体基因组全序列。结果表明,暗纹东方鲀线粒体基因组序列全长16 444 bp(GenBank登录号为GQ409967),A+T含量为55.8%,其mtDNA结构与其他脊椎动物相似,由22个tRNA基因、2个rRNA基因、13个蛋白质编码基因和1段819 bp非编码的控制区(D-loop)所组成。蛋白质基因除COⅠ和ND6的起始密码子为GTG、CCT以外,均为典型的起始密码子ATG。ND1、ATPase8、COⅢ、ND4L、ND5、Cyt b使用典型的终止密码子TAA,其他的使用不完全终止密码子。除ND6和tRNAGln、tRNAAla、tRNAAsn、tRNACys、tRNATyr、tRNASer、tRNAGlu、tRNAPro在L-链上编码之外,其余基因均在H-链编码。基因排列顺序与已测定的鲀类一致,这显示了鲀类线粒体基因排列顺序上的保守性。tRNA基因核苷酸长度为64~73nt,预测了22个tRNA基因的二级结构,均呈较为典型的三叶草状。基于19种鲀类mtDNA全序列构建的进化树表明,暗纹东方鲀与红鳍东方鲀、中华东方鲀(T.chinensis)聚成一个姊妹群。结果还支持东方鲀属鱼类为一单系类群。  相似文献   

15.
SSCP analysis of pig mitochondrial DNA D-loop region polymorphism   总被引:10,自引:0,他引:10  
The sequence polymorphism that occurs in the mitochondrial DNA (mtDNA) displacement (D)-loop region is useful as a cytoplasmic DNA marker. We cloned the mtDNA D-loop regions of five breeds of pig by polymerase chain reaction (PCR) and determined their sequences. The sequence diversities in D-loop regions among five breeds of pig were located in the starting area of heavy-strand replication. From these sequences, we designed primers for PCR-mediated single-strand conformation polymorphism (PCR-SSCP) analysis that amplified the most polymorphic 227 bp fragment of the D-loop region. The results of PCR-SSCP analysis clearly showed that four types of polymorphism (A to D) are found in Landrace (A), Large White (A, B), Duroc (A), Göttingen miniature pig (B) and Meishan (C, D). The same polymorphisms were also detected from each porcine embryo by this method. Our results show that PCR-SSCP analysis is useful in detecting polymorphisms in the D-loop region of pigs and pig embryos.  相似文献   

16.
马来熊的DNA序列分析与遗传多样性研究   总被引:2,自引:0,他引:2  
张亚平 《动物学研究》1996,17(4):459-468
马来熊在IUICN红皮中被列为受胁动物,其保护受到广泛的关注,本文研究了4只马来熊的线粒体DNA序列,其中1只来自云南,其余3只产地不详,但来自不同的搜集渠道,对于每个个体,我们测定了397bp的细胞色素b基因,346bp的12SrRNA基因,98bp的tRNA基因和333bp的D环区序列,共计1174bp。经与黑犀牛序列比较,发现RNA基因的空间结构对基因的进化有显著影响,环区的进化明显快于茎区  相似文献   

17.
A study of polymorphisms of mitochondrial DNA (mtDNA) of West African N'Dama (Bos taurus) and East African Zebu (B. indicus) cattle was carried out to obtain information on maternal phylogenetic relationships between these breeds. A relatively large sample size was made possible by using polymerase chain reaction (PCR) amplification of DNA prepared from small blood samples to generate fragments of two known polymorphic mtDNA regions, one within the gene encoding subunit 5 of NADH dehydrogenase and one encompassing the entire D-loop. This approach allowed us to achieve a higher resolution restriction analysis on mtDNA from more animals than would have been possible by conventional methods. PCR-amplified mtDNA of 58 animals from five populations was examined at 26 restriction sites by 16 enzymes. In this way 154 nucleotides of mtDNA were scanned for polymorphism. Six polymorphic sites were located by this means, five of which were within the D-loop and one of which was within the NADH dehydrogenase 5 gene. None of the polymorphisms observed could be con sidered typical of breed or type.  相似文献   

18.
Summary The composition of the mitochondrial DNA (mtDNA) of the fin whale,Balaenoptera physalus, was determined. The length of the molecule is 16,398 bp, and its organization conforms with that of other mammals. The general similarity between the mtDNA of the fin whale and the cow is greater than the similarity between the fin whale and other species (human, mouse, rat) in which the composition of the entire molecule has been described. The D-loop region of the mtDNA of the fin whale is 81% identical to the D-loop of dolphin DNA, and the central portion of the D-loop is similar to the bovine D-loop. The accumulation of transversions and gaps in the 12S and 16S rRNA genes was assessed by comparing the fin whale, cow, and human. The sequence difference between human and the whale and human and the cow was at the same level, indicating that the rate of evolution of the mtDNA rRNA genes is about the same in artiodactyls and cetaceans. In the 12S rRNA gene an accumulation rate of 0.05% per million years places the separation of cetaceans and artiodactyls at about 55 million years ago. The corresponding figure for human and either the whale or the cow is about 80 million years. In the 16S rRNA gene a 0.08% accumulation rate of transversions and gaps per million years yields concurring figures. A comparison between the cytochromeb gene of the fin whale and cytochromeb sequences in the literature, including dolphin (Stenella) sequences, identified the cetaceans as monophyletic and the artiodactyls as their closest relatives. The comparison between the cytochromeb sequences of the fin whale andStenella showed that differences in codon positions one or two were frequently associated with a change in another codon position.  相似文献   

19.
Saccharomyces cerevisiae RDH54 is a key member of the evolutionarily conserved RAD52 epistasis group of genes needed for homologous recombination and DNA double strand break repair. The RDH54-encoded protein possesses a DNA translocase activity and functions together with the Rad51 recombinase in the D-loop reaction. By chromatin immunoprecipitation (ChIP), we show that Rdh54 is recruited, in a manner that is dependent on Rad51 and Rad52, to a site-specific DNA double strand break induced by the HO endonuclease. Because of its relatedness to Swi2/Snf2 chromatin remodelers, we have asked whether highly purified Rdh54 possesses chromatin-remodeling activity. Importantly, our results show that Rdh54 can mobilize a mononucleosome along DNA and render nucleosomal DNA accessible to a restriction enzyme, indicative of a chromatin-remodeling function. Moreover, Rdh54 co-operates with Rad51 in the utilization of naked or chromatinized DNA as template for D-loop formation. We also provide evidence for a strict dependence of the chromatin-remodeling attributes of Rdh54 on its ATPase activity and N-terminal domain. Interestingly, an N-terminal deletion mutant (rdh54Delta102) is unable to promote Rad51-mediated D-loop formation with a chromatinized template, while retaining substantial activity with naked DNA. These features of Rdh54 suggest a role of this protein factor in chromatin rearrangement during DNA recombination and repair.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号