首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The effects of the herb St. John's wort (Hypericum perforatum), a purported antidepressant, on the activity of cytochrome P-450 (CYP) 2D6 and 3A4 was assessed in seven normal volunteers. Probe substrates dextromethorphan (2D6 activity) and alprazolam (3A4 activity) were administered orally with and without the co-administration of St. John's wort. Urinary concentrations of dextromethorphan and dextrorphan were quantified and dextromethorphan metabolic ratios (DMRs) determined. Plasma samples were collected (0-60 hrs) for alprazolam pharmacokinetic analysis sufficient to estimate tmax, Cmax, t 1/2, and AUC. Validated HPLC methods were used to quantify all compounds of interest. No statistically significant differences were found in any estimated pharmacokinetic parameter for alprazolam or DMRs. These results suggest that St. John's wort, when taken at recommended doses for depression, is unlikely to inhibit CYP 2D6 or CYP 3A4 activity.  相似文献   

2.
Zou L  Harkey MR  Henderson GL 《Life sciences》2002,71(13):1579-1589
We evaluated the effects of 25 purified components of commonly used herbal products on the catalytic activity of cDNA-expressed cytochrome P450 isoforms in in vitro experiments. Increasing concentrations of the compounds were incubated with a panel of recombinant human CYP isoforms (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) and their effects on the conversion of specific surrogate substrates measured fluorometrically in a 96-well plate format. For each test substance, the IC50 (the concentration required to inhibit metabolism of surrogate substrates by 50%) was estimated and compared with IC50's for the positive control inhibitory drugs furafylline, sulfaphenazole, tranylcypromine, quinidine, and ketoconazole. Constituents of Ginkgo biloba (ginkgolic acids I and II), kava (desmethoxyyangonin, dihydromethysticin, and methysticin), garlic (allicin), evening primrose oil (cis-linoleic acid), and St. John's wort (hyperforin and quercetin) significantly inhibited one or more of the cDNA human P450 isoforms at concentrations of less than 10 uM. Some of the test compounds (components of Ginkgo biloba, kava, and St. John's wort) were more potent inhibitors of the isoforms 1A2, 2C19, and 2C19 than the positive controls used in each assay (furafylline, sulfaphenazole, and tranylcypromine, respectively), which are known to produce clinically significant drug interactions. The enzyme most sensitive to the inhibitory of effects of these compounds was CYP2C19, while the isoform least effected was CYP2D6. These data suggest that herbal products containing evening primrose oil, Ginkgo biloba, kava, and St. John's Wort could potentially inhibit the metabolism of co-administered medications whose primary route of elimination is via cytochrome P450.  相似文献   

3.
Lee JY  Duke RK  Tran VH  Hook JM  Duke CC 《Phytochemistry》2006,67(23):2550-2560
Literature indicates that herb-drug interaction of St. John's wort is largely due to increased metabolism of the co-administered drugs that are the substrates of cytochrome P450 (CYP) 3A4 enzyme, alteration of the activity and/or expression of the enzyme. The major St. John's wort constituents, acylphloroglucinols, were evaluated for their effects on CYP3A4 enzyme activity to investigate their roles in herb-drug interaction. Hyperforin and four oxidized analogues were isolated from the plant and fully characterized by mass spectral and NMR analysis. These acylphloroglucinols inhibited activity of CYP3A4 enzyme potently in the fluorometric assay using the recombinant enzyme. Furoadhyperforin (IC(50) 0.072 microM) was found to be the most potent inhibitor of CYP3A4 enzyme activity, followed by furohyperforin isomer 1 (IC(50) 0.079 microM), furohyperforin isomer 2 (IC(50) 0.23 microM), hyperforin (IC(50) 0.63 microM) and furohyperforin (IC(50) 1.3 microM). As the acylphloroglucinols are potent inhibitors of the CYP3A4 enzyme, their modulation of the enzyme activity is unlikely to be involved in increased drug metabolism by St. John's wort.  相似文献   

4.
A reliable liquid chromatography/tandem mass spectrometry has been developed for simultaneous evaluation of the activities of five cytochrome P450s (CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A) in rat plasma and urine. The five-specific probe substrates/metabolites include phenacetin/paracetamol (CYP1A2), tolbutamide/4-hydroxytolbutamide and carboxytolbutamide (CYP2C9), mephenytoin/4'-hydroxymephenytoin (CYP2C19), dextromethorphan/dextrorphan (CYP2D6), and midazolam/1'-hydroxymidazolam (CYP3A). Internal standards were brodimoprim (for phenacetin, paracetamol, midazolam and 1'-hydroxymidazolam), ofloxacin (for 4'-hydroxymephenytoin, dextromethorphan and dextrorphan) and meloxicam (for tolbutamide, 4-hydroxytolbutamide and carboxytolbutamide). Sample preparation was conducted with solid-phase extraction using Oasis HLB cartridges. The chromatography was performed using a C(18) column with mobile phase consisting of methanol/0.1% formic acid in 20 mM ammonium formate (75:25). The triple-quadrupole mass spectrometric detection was operated in both positive mode (for phenacetin, paracetamol, midazolam, 1'-hydroxymidazolam, brodimoprim, 4'-hydroxymephenytoin, dextromethorphan, dextrorphan and ofloxacin) and negative mode (for tolbutamide, 4-hydroxytolbutamide, carboxytolbutamide and meloxicam). Multiple reaction monitoring mode was used for data acquisition. Calibration ranges in plasma were 2.5-2500 ng/mL for phenacetin, 2.5-2500 ng/mL for paracetamol, 5-500 ng/mL for midazolam, and 0.5-500 ng/mL for 1'-hydroxymidazolam. In urine calibration ranges were 5-1000 ng/mL for dextromethorphan, 0.05-10 microg/mL for dextrorphan and 4'-hydroxymephenytoin, 5-2000 ng/mL for tolbutamide, 0.05-20 microg/mL for 4-hydroxytolbutamide and 0.025-10 microg/mL for carboxytolbutamide. The intra- and inter-day precision were 4.3-12.4% and 1.5-14.8%, respectively for all of the above analytes. The intra- and inter-day accuracy ranged from -9.1 to 8.3% and -10 to 9.2%, respectively for all of the above analytes. The lower limits of quantification were 2.5 ng/mL for phenacetin and paracetamol, 5 ng/mL for midazolam, 0.5 ng/mL for 1'-hydroxymidazolam, 5 ng/mL for dextromethorphan, 50 ng/mL for dextrorphan and 4'-hydroxymephenytoin, 5 ng/mL for tolbutamide, 50 ng/mL for 4-hydroxytolbutamide and 25 ng/mL for carboxytolbutamide. All the analytes were evaluated for short-term (24 h, room temperature), long-term (3 months, -20 degrees C), three freeze-thaw cycles and autosampler (24 h, 4 degrees C) stability. The stability of urine samples was also prepared with and without beta-glucuronidase incubation (37 degrees C) and measured comparatively. No significant loss of the analytes was observed at any of the investigated conditions. The current method provides a robust and reliable analytical tool for the above five-probe drug cocktail, and has been successfully verified with known CYP inducers.  相似文献   

5.
R Feng  X Zhou  PM Or  JY Ma  XS Tan  J Fu  C Ma  JG Shi  CT Che  Y Wang  JH Yeung 《Phytomedicine》2012,19(12):1125-1133
Halenia elliptica D. Don is a Tibetan herb and medicinal preparations containing Halenia elliptica have been commonly used for the treatment of hepatitis B virus infection in China. The metabolism of 1-hydroxy-2,3,5-trimethoxy-xanthone (HM-1) to its metabolites is mediated through cytochrome P450 enzymes. This study aimed to investigate the herb-drug interaction potential of HM-1 by studying its effects on the metabolism of model probe substrates of five major CYP450 isoforms in human liver microsomes. HM-1 showed moderate inhibitory effects on CYP1A2 (IC(50)=1.06μM) and CYP2C9 (IC(50)=3.89μM), minimal inhibition on CYP3A4 (IC(20)=11.94μM), but no inhibition on model CYP2D6 (dextromethorphan) and CYP2E1 (chlorzoxazone) probe substrates. Inhibition kinetic studies showed that the K(i) values of HM-1 on CYP1A2, CYP2C9 and CYP3A4 were 5.12μM, 2.00μM and 95.03μM, respectively. HM-1 competitively inhibited testosterone 6β-hydroxylation (CYP3A4) but displayed mixed type inhibitions for phenacetin O-deethylation (CYP1A2) and tolbutamide 4-hydroxylation (CYP2C9). Molecular docking study confirmed the inhibition modes of HM-1 on these human CYP isoforms.  相似文献   

6.
In vitro drug interaction data can be used in guiding clinical interaction studies, or, the design of new candidates. To make such a claim, it must be assured that the in vitro data obtained is confident. To meet this need, a rapid liquid chromatography-tandem mass spectrometry (LC/MS/MS) method has been validated and employed for routine screening of new chemical entities for inhibition of six major human cytochrome P450 (CYP) isoforms using cDNA-expressed CYPs. Probe substrates were used near the Michaelis-Menten constant (K(m)) concentration values for CYP1A2 (phenacetin), CYP2C9 (tolbutamide), CYP2C19 (S-mephenytoin), CYP2D6 (dextromethorphan) and CYP3A4 (midazolam and dextromethorphan). The major metabolites of CYP-specific probe substrates were quantified. The LC/MS/MS method was found to be accurate and precise within the linear range of 1.0-2000 ng/ml for each analyte in enzyme incubation mixture. The lower limit of quantification (LLOQ) was 1.0 ng/ml. The limit of detection (LOD) for the tested analytes was 0.48 ng/ml or better based on signal-to-noise ratio >3. The inhibition potential of the six CYP isoforms has been evaluated using their known selective inhibitors. The 50% inhibitory concentrations (IC(50) values) measured by this method demonstrated high precision and are consistent with the literature values.  相似文献   

7.
8.
Cytochrome P450 2D6 (CYP2D6) metabolizes a wide range of therapeutic drugs. CYP2D6 substrates typically contain a basic nitrogen atom, and the active-site residue Asp-301 has been implicated in substrate recognition through electrostatic interactions. Our recent computational models point to a predominantly structural role for Asp-301 in loop positioning (Kirton, S. B., Kemp, C. A., Tomkinson, N. P., St.-Gallay, S., and Sutcliffe, M. J. (2002) Proteins 49, 216-231) and suggest a second acidic residue, Glu-216, as a key determinant in the binding of basic substrates. We have evaluated the role of Glu-216 in substrate recognition, along with Asp-301, by site-directed mutagenesis. Reversal of the Glu-216 charge to Lys or substitution with neutral residues (Gln, Phe, or Leu) greatly decreased the affinity (K(m) values increased 10-100-fold) for the classical basic nitrogen-containing substrates bufuralol and dextromethorphan. Altered binding was also manifested in significant differences in regiospecificity with respect to dextromethorphan, producing enzymes with no preference for N-demethylation versus O-demethylation (E216K and E216F). Neutralization of Asp-301 to Gln and Asn had similarly profound effects on substrate binding and regioselectivity. Intriguingly, removal of the negative charge from either 216 or 301 produced enzymes (E216A, E216K, and D301Q) with elevated levels (50-75-fold) of catalytic activity toward diclofenac, a carboxylate-containing CYP2C9 substrate that lacks a basic nitrogen atom. Activity was increased still further (>1000-fold) upon neutralization of both residues (E216Q/D301Q). The kinetic parameters for diclofenac (K(m) 108 microm, k(cat) 5 min(-1)) along with nifedipine (K(m) 28 microm, k(cat) 2 min(-1)) and tolbutamide (K(m) 315 microm, k(cat) 1 min(-1)), which are not normally substrates for CYP2D6, were within an order of magnitude of those observed with CYP3A4 or CYP2C9. Neutralizing both Glu-216 and Asp-301 thus effectively alters substrate recognition illustrating the central role of the negative charges provided by both residues in defining the specificity of CYP2D6 toward substrates containing a basic nitrogen.  相似文献   

9.
Ultraviolet (UV) radiation is a potent activator of the human immunodeficiency virus (HIV) gene expression in a HeLa cell clone with stably integrated copies of the HIVcat reporter construct. Recently, we have shown that activation of p38 MAP kinase and NF-kappaB is necessary but not sufficient for triggering efficient HIV gene expression in response to UV. Here we demonstrate that St. John's wort is a potent inhibitor of the UV-induced activation of HIV gene expression in HeLa cells. Stably transfected HIVcat/HeLa cells were preincubated with different amounts (25-100 microl) of St. John's wort or gingko biloba extracts for 30 min, then irradiated with UV (30 J/m2). In contrast to ginkgo biloba, St. John's wort inhibited the UV-induced HIV gene expression in a dose-dependent manner. Furthermore, preincubation with St. John's wort (10, 20, and 30 microl) for 30 min before UV (30 J/m2) irradiation, PMA- and UV-induced NF-kappaB activation was completely blocked, whereas ginkgo biloba did not affect the PMA- and UV-induced NF-kappaB activation in HeLa cells. UV activation of p38 MAP kinase was not inhibited by St. John's wort or by ginkgo biloba. However, we found that p38 MAP kinase and JNK1 and -2 were activated by St. John's wort, but p44/42 MAP kinase was not activated by St. John's wort in HeLa cells. Hypericin an active ingredient in St. John's wort also inhibited the UV activation of HIV gene expression in HeLa cells. These results firmly confirm that St. John's wort is a potent inhibitor of the UV-induced activation of HIV gene expression in HeLa cells.  相似文献   

10.
This investigation was designed to determine whether St. John's wort (SJW)(435 mg/kg/d), a readily available antidepressant, or its purported active constituents hypericin (1 mg/kg/d) and hyperforin (10 mg/kg/d) were able to induce various hepatic cytochrome P450 (CYP450) isoforms. SJW, hypericin and hyperforin were administered to male Swiss Webster mice for four consecutive days and hepatic microsomes were prepared on day 5. None of the three treatments resulted in a statistical change in total hepatic CYP450 (SJW treated 0.95 +/- 0.09 nmol/mg vs control 1.09 +/- 0.14 nmol/mg). Furthermore, the catalytic activities of CYP1A2. CYP2E1 and CYP3A were unchanged from control following all three treatments as determined by ethoxyresorufin O-deethylation, p-nitrophenol hydroxylation and erythromycin N-demethylation respectively. Additionally, western immunoblotting demonstrated that there was no significant change in the polypeptide levels of any of the three isoforms. These results indicate that four days of treatment with moderate to high doses of SJW, hyperforin or hypericin fails to induce these CYP450 isoforms in the male Swiss Webster mouse.  相似文献   

11.
Summary St. John's wort (Hypericum perforatum L.) is a medicinal plant used in the treatment of neurological disorders and has been recently shown to have anticancer potential. The principle medicinal components of St. John's wort are hypericin. pseudohypericin, and hyperforin. One of the problems associated with medicinal plant preparations including St. John's wort is the extreme variability in the phytochemical content, mostly due to environmental variability, and biotic and abiotic contamination during cropping. The current study was undertaken to transplant St. John's wort plants from in vitro bioreactors in a closed controlled environment system (CCES) with CO2 enrichment for the optimized production of biomas and phytochemicals. The growth and levels of hypericin, pseudohypericin, and hyperforin in plants grown in CCES were compared with those of the greenhouse and in vitro-grown plants. The environmental parameters in the greenhouse were found to be variable whereas in the CCES these parameters were controlled. Generally, all the growth parameters and hypericin and psendohypericin levels were significantly higher in the plants grown in the CCES. These results provide the first indication that growing St. John's wort plants, under CO2 enrichment in a closed environment system can enhance the biomass and medicinal contents. The adaptation of this growing system may be useful for the production of optimized products of St. John's wort and other medicinal species.  相似文献   

12.
The proximal tubule is a frequent target for nephrotoxic compounds due to it's ability to transport and accumulate xenobiotics and their metabolites, as well as by the presence of an organ-selective set of biotransformation enzymes. The aim of the present study was to characterize the activities of different biotransformation enzymes during primary culturing of rat proximal tubular cells (PT cells). Specific marker substrates for determining cytochrome P450 (CYP450) activity of primary cultured PT cells include 7-ethoxyresorufin (CYP1A1), caffeine (CYP1A), testosterone (CY2B/C, CYP3A), tolbutamide (CYP2C) and dextromethorphan (CYP2D1). Activities of the CYP450 isoenzymes decreased considerably during culture with the greatest loss in activity within 24 h of culture. In addition, expression of CYP450 apoprotein, including CYP1A, CYP2C, CYP2D, CYP2E and CYP4A, was detected in microsomes from freshly isolated PT cells by immunoblotting using specific antibodies. CYP2B and CYP3A apoprotein could not be detected. Activity of the phase II biotransformation enzymes GST, GGT, beta-lyase and UGT was determined with 1-chloro-2,4-dinitrobenzene, L-glutamic acid gamma-(7-amido-4-methyl-coumarin), S-(1,1,2,2-tetrafluoroethyl)-L-cysteine and 1-naphthol, respectively, as marker substrates. Activity of the phase II enzymes remained more stable and, in contrast to CYP450 activity, significant activity was still expressed after 1 week of PT cell culture. Thus, despite the obvious advantages of PT cells as an in-vitro model for studies of biotransformation mediated toxicity, the strong time dependency of especially phase I and, to a lesser extent, phase II biotransformation activities confers limitations to their application.  相似文献   

13.
Nifedipine (NIF), a calcium channel antagonist, is metabolized primarily by cytochrome P450 (CYP3A4) to dehydronifedipine (DNIF). As such, NIF is often used as a probe drug for determining CYP3A4 activity in human studies. A rapid and sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed and validated to simultaneously determine NIF and DNIF in human plasma using nitrendipine as the internal standard (IS). After extraction of the plasma samples by ether-n-hexane (3:1, v/v), NIF, DNIF and the IS were subjected to LC/MS/MS analysis using electro-spray ionization (ESI). Chromatographic separation was performed on a Hypersil BDS C(18) column (50 mm x 2.1 mm, i.d., 3 microm). The method had a chromatographic running time of approximately 2.5 min and linear calibration curves over the concentrations of 0.5-100 ng/mL for NIF and DNIF. The recoveries of the one-step liquid extraction method were 81.3-89.1% for NIF and 71.6-80.4% for DNIF. The lower limit of quantification (LLOQ) of the analytical method was 0.5 ng/mL for both analytes. The intra- and inter-day precision was less than 15% for all quality control samples at concentrations of 2, 10, and 50 ng/mL. The validated LC/MS/MS method has been successfully used to study pharmacokinetic interactions of NIF with the herbal antidepressant St. John's wort in healthy volunteers. These results indicated that the developed LC/MS/MS method was efficient with a significantly shorter running time (2.5 min) for NIF and DNIF compared to those methods previously reported in the literature. The presented LC/MS/MS method had acceptable accuracy, precision and sensitivity and was used in a clinical pharmacokinetic interaction study of NIF with St. John's wort, a known herbal inducer of CYP3A4. St. John's wort was shown to induce NIF metabolism with increased plasma concentrations of DNIF.  相似文献   

14.
Cytochrome P450 2D6 (CYP2D6) is one of the most important drug-metabolizing enzymes in humans. Resonance Raman data, reported for the first time for CYP2D6, show that the CYP2D6 heme is found to be in a six-coordinated low-spin state in the absence of substrates, and it is perturbed to different extents by bufuralol, dextromethorphan, and 3,4-methylenedioxymethylamphetamine (MDMA). Dextromethorphan and MDMA induce in CYP2D6 a significant amount of five-coordinated high-spin heme species and reduce the polarity of its heme-pocket, whereas bufuralol does not. Spectra of the F120A mutant CYP2D6 suggest that Phe120 is involved in substrate-binding of dextromethorphan and MDMA, being responsible for the spectral differences observed between these two compounds and bufuralol. These differences could be explained postulating a different substrate mobility for each compound in the CYP2D6 active site, consistently with the role previously suggested for Phe120 in binding dextromethorphan and MDMA.  相似文献   

15.
Vilà M  Gómez A  Maron JL 《Oecologia》2003,137(2):211-215
The evolution of increased competitive ability hypothesis predicts that introduced plants that are long liberated from their natural enemies may lose costly herbivore defense, enabling them to reallocate resources previously spent on defense to traits that increase competitive superiority. We tested this prediction by comparing the competitive ability of native St John's wort ( Hypericum perforatum) from Europe with introduced St John's wort from central North America where plants have long grown free of specialist herbivores, and introduced plants from western North America where plants have been subjected to over 57 years of biological control. Plants were grown in a greenhouse with and without competition with Italian ryegrass ( Lolium multiflorum). St John's wort from the introduced range were not better interspecific competitors than plants from the native range. The magnitude of the effect of ryegrass on St John's wort was similar for introduced and native genotypes. Furthermore, introduced plants were not uniformly larger than natives; rather, within each region of origin there was a high variability in size between populations. Competition with ryegrass reduced the growth of St John's wort by >90%. In contrast, St John's wort reduced ryegrass growth <10%. These results do not support the contention that plants from the introduced range evolve greater competitive ability in the absence of natural enemies.  相似文献   

16.
Bilia AR  Gallori S  Vincieri FF 《Life sciences》2002,70(26):3077-3096
St. John's wort (Hypericum perforatum L.) is a medicinal plant traditionally used, both externally and internally, in all Europe for many pathologies. Paracelsus named it “arnica of the nerves” because of its empirical use in nervous diseases. In the last two decades many studies have proved the efficacy of some St. John's wort extracts in mild to moderate depression and it has been successful as an antidepressant both in Europe and the US. Its high efficacy and tolerability is unquestionable and from the clinical studies the activity is comparable to other antidepressants while lacking major side effects, making it a safe antidepressant.However, recently its potential to induce the metabolism of co-administered medications has been reported because it may potentate certain enzymes of the cytochrome P450 enzyme system. This resulted in a lowering of serum concentration of a number of concomitant drugs, including warfarin, digoxin, theophylline, cyclosporin, and indinavir. Many drugs and also several common foods and drinks can influence this enzyme system. So, even if its safety has been well established, physicians should be aware that St. John's wort administration might significantly affect other prescribed medicines.  相似文献   

17.
St. John's wort (Hypericum perforatum L.) is a medicinal plant traditionally used, both externally and internally, in all Europe for many pathologies. Paracelsus named it “arnica of the nerves” because of its empirical use in nervous diseases. In the last two decades many studies have proved the efficacy of some St. John's wort extracts in mild to moderate depression and it has been successful as an antidepressant both in Europe and the US. Its high efficacy and tolerability is unquestionable and from the clinical studies the activity is comparable to other antidepressants while lacking major side effects, making it a safe antidepressant.

However, recently its potential to induce the metabolism of co-administered medications has been reported because it may potentate certain enzymes of the cytochrome P450 enzyme system. This resulted in a lowering of serum concentration of a number of concomitant drugs, including warfarin, digoxin, theophylline, cyclosporin, and indinavir. Many drugs and also several common foods and drinks can influence this enzyme system. So, even if its safety has been well established, physicians should be aware that St. John's wort administration might significantly affect other prescribed medicines.  相似文献   


18.
Or PM  Lam FF  Kwan YW  Cho CH  Lau CP  Yu H  Lin G  Lau CB  Fung KP  Leung PC  Yeung JH 《Phytomedicine》2012,19(6):535-544
The present study investigated the effects of Radix Astragali (RA) and Radix Rehmanniae (RR), the major components of an anti-diabetic foot ulcer herbal formula (NF3), on the metabolism of model probe substrates of human CYP isoforms, CYP1A2, CYP2C9, CYP2D6, CYP2E1 and CYP3A4, which are important in the metabolism of a variety of xenobiotics. The effects of RA or RR on human CYP1A2 (phenacetin O-deethylase), CYP2C9 (tolbutamide 4-hydroxylase), CYP2D6 (dextromethorphan O-demethylase), CYP2E1 (chlorzoxazone 6-hydroxylase) and CYP3A4 (testosterone 6β-hydroxylase) activities were investigated using pooled human liver microsomes. NF3 competitively inhibited activities of CYP2C9 (IC(50)=0.98mg/ml) and CYP3A4 (IC(50)=0.76mg/ml), with K(i) of 0.67 and 1.0mg/ml, respectively. With specific human CYP2C9 and CYP3A4 isoforms, NF3 competitively inhibited activities of CYP2C9 (IC(50)=0.86mg/ml) and CYP3A4 (IC(50)=0.88mg/ml), with K(i) of 0.57 and 1.6mg/ml, respectively. Studies on RA or RR individually showed that RR was more important in the metabolic interaction with the model CYP probe substrates. RR dose-dependently inhibited the testosterone 6β-hydroxylation (K(i)=0.33mg/ml) while RA showed only minimal metabolic interaction potential with the model CYP probe substrates studied. This study showed that RR and the NF3 formula are metabolized mainly by CYP2C9 and/or CYP3A4, but weakly by CYP1A2, CYP2D6 and CYP2E1. The relatively high K(i) values of NF3 (for CYP2C9 and CYP3A4 metabolism) and RR (for CYP3A4 metabolism) would suggest a low potential for NF3 to cause herb-drug interaction involving these CYP isoforms.  相似文献   

19.
 St. John's wort (Hypericum perforatum. cv 'Anthos') is a medicinal plant with evidence of efficacy as an anti-depressant. The present report describes the development of an in vitro regeneration system that utilizes thidiazuron [N-phenyl-N′-(1,2,3-thidiazol-yl)urea] for the induction of de novo shoots on etiolated hypocotyl segments of St. John's wort seedlings. The optimum level of thidiazuron supplementation to the culture medium was 5 μmol·l–1 for a 9-day induction period followed by subculture of induced hypocotyl explants on basal medium. Other plant growth regulators including benzyladenine and indoleacetic acid were not effective in inducing regeneration on St. John's wort hypocotyls. Histological examination of the cultures revealed that the regenerated plants were derived from de novo developed shoots. Transfer of the regenerated shoots into a liquid medium with no plant growth regulators resulted in the rapid and prolific growth of viable plantlets. The rapid and efficient micropropagation system for St. John's wort may be useful for both the genetic improvement of this crop and the production of high-quality phytopharmaceutical preparations for the treatment of neurological disorders. Received: 19 March 1999 / Revision received: 5 July 1999 · Accepted: 17 August 1999  相似文献   

20.
Yeung JH  Or PM 《Phytomedicine》2012,19(5):457-463
Polysaccharide peptide (PSP), isolated from COV-1 strain of Coriolus versicolor, is commonly used as an adjunct in cancer chemotherapy or health supplement in China. Previous studies have shown that PSP decreased antipyrine clearance and inhibited rat CYP2C11-mediated tolbutamide 4-hydroxylation and in human CYP2C9. In this study, the effects of the water extractable fraction of PSP on the metabolism of model CYP1A2, CYP2D6, CYP2E1 and CYP3A4 probe substrates were investigated in pooled human liver microsomes. PSP (1.25-20μM) dose-dependently decreased CYP1A2-mediated metabolism of phenacetin to paracetamol (IC(50) 19.7μM) and CYP3A4-mediated metabolism of testosterone to 6β-hydroxytestosterone (IC(20) 7.06μM). Enzyme kinetics studies showed the inhibition of CYP1A2 activity was competitive and concentration-dependent (K(i)=18.4μM). Inhibition of testosterone to 6β-hydroxytestosterone was also competitive and concentration-dependent (K(i)=31.8μM). Metabolism of dextromethorphan to dextrorphan (CYP2D6-mediated) and chlorzoxazone to 6-hydroxychlorzoxazone (CYP2E1-mediated) was only minimally inhibited by PSP, with IC(20) values at 15.6μM and 11.9μM, respectively. This study demonstrated that PSP competitively inhibited the CYP1A2- and CYP3A4-mediated metabolism of model probe substrates in human liver microsomes in vitro. The relatively high K(i) values for CYP1A2 and CYP3A4 would suggest a low potential for PSP to cause herb-drug interaction related to these CYP isoforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号