首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the inhibitory mechanisms of daphnodorins for human chymase using three-dimensional molecular modeling. In daphnodorin A-human chymase complex, daphnodorin A was fixed to the active site via hydrogen bonds with Ala177, Phe29, and Gly199 in human chymase, and it formed hydrogen bonds with Ser182 and Gly180, and this complex was formed stably. In daphnodorin B-human chymase complex, daphnodorin B formed hydrogen bonds with Lys28 and Phe29 in human chymase, but it could not form hydrogen bonds with Gly199, Ala177, and Lys179. The phenyl group of daphnodorin B shifted from the P1 hole in human chymase in comparison with that of daphnodorin A. For the inhibition of human chymase by daphnodorins, we indicated that it was significant whether daphnodorins formed hydrogen bonds with Ala177 located in the P1 hole, Ser182 located in the active site, Gly180 located in the anion hole, and with Gly199, Phe29, and Lys28 in human chymase.  相似文献   

2.
We studied whether lipoxygenase inhibition suppressed angiotensin II-induced vascular contraction. In the present study, we used a new 12-lipoxygenase inhibitor, daphnodorin A, and an analogue of daphnodorin A, daphnodorin B, which has no inhibitory effects on 12-lipoxygenase. Daphnodorin A at 30 microM and 100 microM significantly suppressed the contractile responses induced by angiotensin 11 (3 x 10(-8) M) in isolated hamster aorta, while daphnodorin B up to 100 microM did not affect the responses. These results suggest that daphnodorin A, but not daphnodorin B, may suppress angiotensin II-induced vascular contractile responses through the inhibition of 12-lipoxygenase.  相似文献   

3.
We investigated the profound involvement of chymase, an alternative angiotensin II-generating enzyme, in angiogenesis using a hamster sponge implant model. In vivo transfection of human pro-chymase cDNA or a direct injection of purified chymase into the sponges implanted resulted in marked increment of hemoglobin contents in the sponge granuloma tissues, demonstrating that chymase has an ability to elicit angiogenesis and is a potent angiogenic factor. Daily injection of basic fibroblast growth factor into the sponges implanted also induced angiogenesis, which was suppressed by the treatment with chymostatin, an inhibitor of chymase, or TCV-116, an antagonist of angiotensin II (Ang II) type 1 receptor. Expression of chymase mRNA and production of Ang II in the granuloma tissues were enhanced by the stimulation with basic fibroblast growth factor. Chymase activity in the sponge granulomas increased in parallel with the rise in hemoglobin contents, and mast cells observed in the granuloma tissues were positively stained with anti-chymase antibody. Exogenous administration not only of Ang II but of angiotensin I (Ang I) directly into the sponges could enhance angiogenesis. Chymostatin inhibited the angiogenesis induced by Ang I but not Ang II, suggesting the presence of a chymase-like Ang II-generating activity in the sponge granulomas. Our results may suggest a potential ability of chymase to promote angiogenesis through the local chymase-dependent and angiotensin-converting enzyme-dependent Ang II generating system in pathophysiological angiogenesis.  相似文献   

4.
High glucose (HG) increases angiotensin II (AngII) generation in mesangial cells (MC). Chymase, an alternative AngII-generating enzyme, is upregulated in the glomeruli of diabetic kidneys. In this study, we examined AngII synthesis by human MC via angiotensin-converting enzyme (ACE)-dependent and chymase-dependent pathways under normal glucose (NG, 5 mM) and HG (30 mM) conditions. NG cells expressed ACE and chymase mRNA. Under NG conditions the chymase inhibitor chymostatin reduced AngII levels in cell lysates and in the culture medium, and the ACE inhibitor captopril had no effect. HG induced a 3-fold increase in chymase mRNA and protein but not in ACE mRNA; however, HG induced a 10-fold increase in intracellular ACE activity. The increase in AngII generation induced by HG was found in the cell lysate but not in the culture medium. The rise in intracellular AngII was not prevented by captopril or by chymostatin. Moreover, captopril inhibited extracellular ACE activity but failed to block intracellular ACE activity; these results suggested that captopril was unable to reach intra-cellular ACE. Losartan did not change the intracellular AngII content in either NG or HG conditions, and this lack of change suggested that the increase in AngII was due to intracellular generation. Together these results suggest that chymase may be active in human MC and that both ACE and chymase are involved in increased AngII generation during the HG stimulus by different mechanisms, including an upregulation of chymase mRNA and a rise in intracellular ACE activity, favoring the generation and accumulation of intracellular AngII.  相似文献   

5.
Although angiotensin II (Ang II)-forming enzymatic activity in the human left cardiac ventricle is minimally inhibited by angiotensin I (Ang I) converting enzyme inhibitors, over 75% of this activity is inhibited by serine proteinase inhibitors (Urata, H., Healy, B., Stewart, R. W., Bumpus, F. M., and Husain, A. (1990) Circ. Res. 66, 883-890). We now report the identification and characterization of the major Ang II-forming, neutral serine proteinase, from left ventricular tissues of the human heart. A 115,150-fold purification from human cardiac membranes yielded a purified protein with an Mr of 30,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Based upon its amino-terminal sequence, the major human cardiac Ang II-forming proteinase appears to be a novel member of the chymase subfamily of chymotrypsin-like serine proteinases. Human heart chymase was completely inhibited by the serine proteinase inhibitors, soybean trypsin inhibitor, phenylmethylsulfonyl fluoride, and chymostatin. It was partially inhibited by p-tosyl-L-phenylalanine chloromethyl ketone, but was not inhibited by p-tosyl-L-lysine chloromethyl ketone, and aprotinin. Also, human heart chymase was not inhibited by inhibitors of the other three classes of proteinases. Human heart chymase has a high specificity for the conversion of Ang I to Ang II and the Ang I-carboxyl-terminal dipeptide His-Leu (Km = 60 microM; Kcat = 11,900 min-1; Kcat/Km = 198 min-1 microM-1). Human heart chymase did not degrade several peptide hormones, including Ang II, bradykinin, and vasoactive intestinal peptide, nor did it form Ang II from angiotensinogen. The high substrate specificity of human heart chymase for Ang I distinguishes it from other Ang II-forming enzymes including Ang I converting enzyme, tonin, kallikrein, cathepsin G, and other known chymases.  相似文献   

6.
A series of 2-sec.amino-4H-3,1-benzoxazin-4-ones was evaluated as acyl-enzyme inhibitors of human recombinant chymase. The compounds were also assayed for inhibition of human cathepsin G, bovine chymotrypsin, and human leukocyte elastase. Introduction of an aromatic moiety into the 2-substituent resulted in strong inhibition of chymase, cathepsin G, and chymotrypsin. Extension of the N(Me)CH2Ph substituent by one methylene unit was unfavourable to inhibit these proteases. Towards chymase, 2-(N-benzyl-N-methylamino)-4H-3,1-benzoxazin-4-one (32) and 2-(N-benzyl-N-methylamino)-6-methyl-4H-3,1-benzoxazin-4-one (33) were found to exhibit Ki values of 11 and 17 nM, respectively, and form stable acyl-enzymes with half-lives of 53 and 25 min, respectively. Benzoxazinone 33 also inhibited the human chymase-catalyzed formation of angiotensin 11 from angiotensin I.  相似文献   

7.
Serine proteases in mast cell granules, such as chymase, atypical chymase, and tryptase, which are major proteins in the granules, may play important roles in the process of immunoglobulin E (IgE)-mediated degranulation and in pathobiological alterations in tissues. Indeed, inhibitors of chymase, substrate analogs, and antichymase F(ab')2, but not inhibitors of tryptase, markedly inhibited histamine release induced by IgE-receptor bridging but not that induced by Ca ionophore. In contrast, inhibitors of metalloprotease inhibited histamine release induced not only by IgE-receptor bridging but also by Ca ionophore. These results suggest that chymase and metalloprotease are involved at different steps in the process of degranulation. The extents of inhibition of histamine release were closely correlated with the amounts of the inhibitors of chymase accumulated in the granules. After degranulation, the released proteases may in part contribute to pathobiological alterations in allergic disorders through generations of C3a anaphylatoxin and thrombin by human and rat tryptase, respectively, and those of angiotensin II and a chemotactic factor of neutrophils by human and rat chymase, respectively. Moreover, chymase and atypical chymase from rat were shown to destroy type IV collagen, and human tryptase was found to hydrolyze various plasma proteins, such as fibrinogen and high-molecular-weight kininogen. The biological activities of tryptase and chymase from rat may be regulated by their dissociation from and association with trypstatin, an endogenous inhibitor of these proteases.  相似文献   

8.
The ability to convert angiotensin (Ang) I to Ang II was compared between human alpha-chymase and two mouse beta-chymases, mouse mast cell protease (mMCP)-1 and mMCP-4. Human chymase hydrolyzed Ang I to produce Ang II without further degradation. mMCP-1 similarly generated Ang II from Ang I in a time-dependent manner and the formation of the fragment other than Ang II was marginal. In contrast, mMCP-4 hydrolyzed Ang I at two sites, Tyr(4)-Ile(5) and Phe(8)-His(9), with Ang II formation being tentative. Consistently, mMCP-4 but not human chymase hydrolyzed Ang II and mMCP-1 showed little hydrolytic activity against Ang II. These data suggest that not only human chymase but also mMCP-1 might possess a physiological role in Ang II formation. Our findings also imply that the Ang-converting activity of chymase may not be related to the categorization of chymase into alpha- or beta-type based on their primary structure.  相似文献   

9.
Human chymase from vascular tissues was purified to homogeneity by heparin affinity and gel filtration chromatography. Treatment of human chymase with endoglycosidase F resulted in cleavage of the carbohydrate moiety yielding a deglycosylation product that did not lose its catalytic activity. This enzymatic deglycosylation product was enough to explore possibilities that N-glycan might modify some properties of human chymase. Substrate specificity, optimum pH and the elution profile from the heparin affinity gel were not affected by the deglycosylation. Only a slight but significant difference was observed in the Km value for conversion of angiotensin I to angiotensin II. Other kinetic constants such as kcat were not influenced. The kinetics of conversion of big endothelin-1 to endothelin-1(1-31) were not significantly affected. The deglycosylated human chymase was more susceptible to deactivation under alkaline pH and thermal stress. Even at physiological temperature and pH, the activity of glycosylated human chymase was more stable. From these results, it appears that the N-glycan of human chymase contributes to the stability of this enzyme but not to its functional properties.  相似文献   

10.
The octapeptide angiotensin II (Ang II) exerts a wide range of effects on the cardiovascular system but has also been implicated in the regulation of cell proliferation, fibrosis, and apoptosis. Ang II is formed by cleavage of Ang I by angiotensin-converting enzyme, but there is also evidence for non-angiotensin-converting enzyme-dependent conversion of Ang I to Ang II. Here we address the role of mast cell proteases in Ang II production by using two different mouse strains lacking mast cell heparin or mouse mast cell protease 4 (mMCP-4), the chymase that may be the functional homologue to human chymase. Ang I was added to ex vivo cultures of peritoneal cells, and the generation of Ang II and other metabolites was analyzed. Activation of mast cells resulted in marked increases in both the formation and subsequent degradation of Ang II, and both of these processes were strongly reduced in heparin-deficient peritoneal cells. In the mMCP-4(-/-) cell cultures no reduction in the rate of Ang II generation was seen, but the formation of Ang-(5-10) was completely abrogated. Addition of a carboxypeptidase A (CPA) inhibitor to wild type cells caused complete inhibition of the formation of Ang-(1-9) and Ang-(1-7) but did not inhibit Ang II formation. However, when the CPA inhibitor was added to the mMCP-4(-/-) cultures, essentially complete inhibition of Ang II formation was obtained. Taken together, the results of this study indicate that mast cell chymase and CPA have key roles in both the generation and degradation of Ang II.  相似文献   

11.
Recently, the presence of the chymase-dependent angiotensin (Ang) II-generating system in hamsters, dogs, monkeys, as well as human cardiovascular tissues has been identified. We have reported that the activation of cardiac chymase was more prominent than that of angiotensin converting enzyme (ACE) and that AT1 receptor antagonist treatment rather than ACE inhibitor treatment alone provided significant beneficial effects on cardiac function and survival after MI in hamsters. The aim of the present study was to determine whether this different effects between AT1 receptor antagonist and ACE inhibitor were due to the activation of cardiac chymase after MI in hamsters by using 4-[1-[[bis-(4-methyl-pheny)-methyl]-carbamoyl]-3-(2-ethoxy-benzyl)-4-oxo-azetidine-2-yloxy]-benzoic acid (BCEAB), a novel, orally active and specific chymase inhibitor. The ACE and chymase activities in the infarcted left ventricle were significantly increased 3 days after MI. BCEAB (100 mg/kg/day, p.o.) treatment starting 3 days before MI significantly suppressed the cardiac chymase activity, while it did not affect the plasma and cardiac ACE activities 3 days after MI. A significant improvement in hemodynamics (maximal negative and positive rates of pressure development; left ventricular systolic pressure) was observed for the treatment with BCEAB 3 days after MI. BCEAB (100 mg/kg/day, p.o.) treatment starting 3 days before MI significantly reduced the mortality rate during 14 days of observation following MI (vehicle, 61.1%, n = 18; BCEAB, 27.8%, n = 18; P < 0.05). These findings demonstrated for the first time that cardiac chymase participates directly in the pathophysiologic state after MI in hamsters.  相似文献   

12.
从凹叶瑞香的乙酸乙酯部位分离得到14个化合物,经理化性质及波谱数据分析分别鉴定为瑞香黄烷A(1),瑞香黄烷B(2),瑞香黄烷C(3),瑞香黄烷E(4),瑞香黄烷F(5),芫花素(6),芫根苷(7),4,′5-二羟基-3,′7-二甲氧基黄酮(8),瑞香新素(9),5′′-去甲氧基瑞香新素(10),左旋松脂酚(11),瑞香醇酮(12),紫丁香苷(13)和丁香醛(14)。化合物1~14均为首次从该植物中分离得到。  相似文献   

13.
《Phytochemistry》1996,42(5):1447-1453
Three new biflavonoids, daphnodorins G-I, were isolated from the roots of Daphne odora and their structures established from spectral and chemical means. These are two C-7/C-2″, C-8/C-3″ biflavonoids (upper half: apigenin, lower half: afzelechin), daphnodorins G and H and a spirobiflavonoid, daphnodorin I.  相似文献   

14.
Accumulating evidence suggests that the intrarenal renin-angiotensin system may be involved in the progression of diabetic nephropathy. Chymase is a potent local angiotensin II-forming enzyme in several species, including humans and hamsters. However, the pathophysiological role of chymase is not fully understood. Here, we report a causal role of chymase in diabetic nephropathy and the therapeutic effectiveness of chymase inhibition. In the present study, renal chymase expression was markedly upregulated in streptozotocin-induced diabetic hamsters. Oral administration of a specific chymase inhibitor, TEI-F00806, completely ameliorated proteinuria, the overexpression of transforming growth factor-β and fibronectin in glomeruli, and renal mesangial expansion, by normalizing the increase in intrarenal angiotensin II levels in diabetic hamsters independently of blood pressure levels. In contrast, ramipril did not show such sufficient effects. These effects occurred in parallel with improvements in superoxide production and expression of NAD(P)H oxidase components [NAD(P)H oxidase 4 and p22(phox)] in glomeruli. This study showed for the first time that chymase inhibition may protect against elevated intrarenal angiotensin II levels, oxidative stress, and renal dysfunction in diabetes. These findings suggest that chymase offers a new therapeutic target for diabetic nephropathy.  相似文献   

15.
In vitro regulation of cytosolic tyrosine protein (Tyr-P) kinase from human erythrocytes by polyamines, polyamino acids, negative charged compounds or by insulin using angiotensin II or poly (Glu-Tyr)4:1 as substrates was studied. All the three polyamines, putrescine (Put), spermidine (Spd) and spermine (Spm) stimulated the Tyr-P kinase activity in a dose dependent manner. Spm stimulated Tyr-P kinase activity higher than Put and Spd whether the substrate was angiotension II or poly (Glu-Tyr)4:1. Polyamino acids (polyornithine, polyarginine, polyglutamic acid and polyaspartic acid) did not affect significantly the Tyr-P kinase phosphorylation except polylysine which significantly stimulated the Tyr-P kinase activity. Negative charged compounds (chondroitin sulfate A, B and C) and heparin inhibited the Tyr-P kinase phosphorylation while insulin did not influence the enzyme activity in the presence of either substrates.  相似文献   

16.
Cloning of the gene and cDNA for human heart chymase   总被引:9,自引:0,他引:9  
We have recently identified and characterized a chymotrypsin-like serine proteinase in human heart (human heart chymase) that is the most catalytically efficient enzyme described, thus far, for the cleavage of angiotensin I to yield angiotensin II and the dipeptide His-Leu. Compared to other chymases, this enzyme also has an unusually high degree of specificity for the substrate angiotensin I. We report here the molecular cloning and nucleotide sequence of the gene and cDNA encoding human heart chymase, and determination of its entire deduced amino acid sequence. These data indicate that human heart chymase is highly homologous to other members of the chymase subfamily of chymotrypsin-like proteinases and, most likely, all evolved from a common ancestral gene. Potential regulatory elements found in the 5'-untranslated region of other chymases are also found in the human heart chymase gene. However, this gene lacks mast cell-specific sequences found in the 5'- and 3'-untranslated regions of the rat chymase II gene. In addition, human heart chymase contains clusters of unique amino acid sequences located at key positions likely involved in substrate binding, which may contribute to its high substrate specificity. These contrasting features of the human heart chymase gene and cDNA, and the potential determinants of its primary structure that underlie its unique functional characteristics are considered.  相似文献   

17.
We utilized mice with homozygous disruption of angiotensin-converting enzyme (ACE) (-/-), mice with heterozygous deletion of ACE (+/-), and wild-type mice (+/+) to test the hypothesis that genetic variation in ACE modulates tissue and plasma angiotensin (ANG) II concentrations. With the use of ANG I as substrate, kidney, heart, and lung ACE activity was reduced 80% in -/- mice compared with +/+ mice. However, ANG II concentrations and ANG II-to-ANG I ratios in the kidney, heart, and lung did not differ among genotypes. In contrast, plasma ANG II concentrations in -/- mice were <2 fmol/ml, whereas plasma ANG I concentrations were extremely high (765 fmol/ml). Chymase activity was increased 14-fold in the kidney (P < 0.05) and 1.5-fold in the heart (P < 0.05) of -/- versus +/+ mice but did not differ among genotypes in the lung. ANG II formation from enzymes other than ACE and chymase contributed <2% of total ANG II formation in all genotypes. These data suggest that ACE is essential to ANG II formation in the vascular space, whereas chymase may provide an important mechanism in maintaining steady-state ANG II levels in tissue.  相似文献   

18.
Membrane-bound aminopeptidase activities in livers of rats with experimental renal failure were assayed. Only aminopeptidase A activity was decreased with the reduction in renal function, but aminopeptidase B and Leu-aminopeptidase activity did not change. The liver membrane-bound aminopeptidase A activity was inhibited by the addition of angiotensin I or -II in the enzyme assay system. From these results, it is expected that a decrease in liver membrane-bound aminopeptidase A activity may play a role in increasing angiotensin II during renal failure.  相似文献   

19.
We have found that degranulation from mast cells is specifically inhibited by the inhibitors of chymase (10). Among the natural serine protease inhibitors tested, Bowman-Birk soybean protease inhibitor, Eglin C, and human alpha 1-antichymotrypsin inhibited chymase more strongly than did chymostatin, Kunitz soybean protease inhibitor, and phosphatidylserine. Of the inhibitors tested, Bowman-Birk soybean protease inhibitor was the strongest inhibitor of chymase, its Ki value being 13.2 X 10(-9) M. Kinetic studies showed that these inhibitors were all noncompetitive inhibitors of chymase. Bowman-Birk and Kunitz soybean protease inhibitors inhibited both chymotrypsin-type and trypsin-type serine proteases but Eglin C specifically inhibited chymotrypsin-type proteases.  相似文献   

20.
On release from cardiac mast cells, alpha-chymase converts angiotensin I (Ang I) to Ang II. In addition to Ang II formation, alpha-chymase is capable of activating TGF-beta1 and IL-1beta, forming endothelins consisting of 31 amino acids, degrading endothelin-1, altering lipid metabolism, and degrading the extracellular matrix. Under physiological conditions the role of chymase in the mast cells of the heart is uncertain. In pathological situations, chymase may be secreted and have important effects on the heart. Thus, in animal models of cardiomyopathy, pressure overload, and myocardial infarction, there are increases in both chymase mRNA levels and chymase activity in the heart. In human diseased heart homogenates, alterations in chymase activity have also been reported. These findings have raised the possibility that inhibition of chymase may have a role in the therapy of cardiac disease. The selective chymase inhibitors developed to date include TY-51076, SUN-C8257, BCEAB, NK320, and TEI-E548. These have yet to be tested in humans, but promising results have been obtained in animal models of myocardial infarction, cardiomyopathy, and tachycardia-induced heart failure. It seems likely that orally active inhibitors of chymase could have a place in the treatment of cardiac diseases where injury-induced mast cell degranulation contributes to the pathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号