首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A simple, rapid and sensitive method for the determination of iothalamic acid (IA) in both plasma and urine is reported. After extraction with ethyl acetate, IA was determined by strong anion-exchange high-performance liquid chromatography with ultraviolet detection at 254 nm. The lower limit of detection was 0.5 μg/ml. The average recovery was 73 and 57% from plasma and urine, respectively. Linearity was found over the investigated concentration range (up to 500 μg/ml for plasma and up to 10.0 mg/ml for urine). The reproducibility of the technique was good (coefficient of variation less than 6%) as was the precision and accuracy (coefficient of variation less than 2.5%). No interference from endogenous substances or any of the common drugs tested was found.  相似文献   

3.
Polyethylene glycols (PEGs) are non-ionic, water-soluble synthetic polymers which have been widely used for many applications. Since they are of very low toxicity and are readily excreted in urine, PEGs in the molecular weight range 400–6000 have been used extensively in the study of intestinal physiology in man. A high-performance liquid chromatographic (HPLC) method has been developed for the determination of PEG 600 in human urine, which includes a pre-column derivatisation step. The dibenzoate derivatives of PEG 600 can be quantitatively prepared, and this, coupled with ultraviolet detection at 230 nm, has greatly improved the limit of detection for the determination of PEGs by HPLC. A suitable extraction procedure has also been developed which enabled PEG levels in urine to be monitored with much greater sensitivity than any previously reported method.  相似文献   

4.
5.
Described is a method for the determination of orotic acid as its methyl ester in human urine. The method involves the use of solid-phase extraction to isolate pyrimidines from urine and derivatization with methanol and sulfuric acid, followed by isocratic high-performance liquid chromatography on a reversed-phase C18 column with UV absorbance detection. The assay is shown to be sufficiently sensitive for use in clinical investigations where elevated orotic acid excretion is suspected.  相似文献   

6.
7.
A high-performance liquid chromatographic method has been developed for the determination of pipotiazine in human plasma and urine. After selective extraction, pipotiazine and the internal standard (7-methoxypipotiazine) are chromatographed on a column packed with Spherosil XOA 600 (5 μm) using a 7:3 (v/v) mixture of diisopropyl ether—isooctane (1:1, v/v) + 0.2% triethylamine and diisopropyl ether—methanol (1:1, v/v) + 0.2% triethylamine + 2.6% water. The eluted compounds are measured by fluorescence detection. The sensitivity of the method was established at 0.25 ng/ml pipotiazine in plasma and 2 ng/ml pipotiazine in urine (C.V. < 5%). The method has been successfully applied to a pharmacokinetic study following a single oral administration of 10 mg of pipotiazine.  相似文献   

8.
9.
A high-performance liquid chromatographic (HPLC) method with ultraviolet (UV) absorbance was developed for the analysis of piperacillin-tazobactam (tazocillin), in plasma and urine. The detection was performed at 218 nm for tazobactam and 222 nm for piperacillin. The procedure for assay of these two compounds in plasma and of piperacillin in urine involves the addition of an internal standard (ceftazidime for tazobactam and benzylpenicillin for piperacillin) followed by a treatment of the samples with acetonitrile and chloroform. To quantify tazobactam in urine, diluted samples were analysed using a column-switching technique without internal standard. The HPLC column, LiChrosorb RP-select B, was equilibrated with an eluent mixture composed of acetonitrile-ammonium acetate (pH 5). The proposed technique is reproducible, selective, and reliable. The method has been validated, and stability tests under various conditions have been performed. Linear detector responses were observed for the calibration curve standards in the ranges 5–60 μg/ml for tazobactam, and 1–100 μg/ml for piperacillin and spans what is currently though to be the clinically relevant range for tazocillin concentrations in body fluids. The limit of quantification was 3 μg/ml for tazobactam and 0.5 μg/ml for piperacillin in plasma and urine. Extraction recoveries from plasma proved to be more than 85%. Precision, expressed as C.V., was in the range 0.4–18%.  相似文献   

10.
11.
A high-performance liquid chromatographic method has been developed for the determination of α-keto acids in human urine and plasma. These acids were prepurified using a column of hydrazide gel and derivatized with o-phenylenediamine into 2-quinoxalinol derivatives, which were extracted into ethyl acetate. The 2-quinoxialinol derivatives were separated by reversed-phase paired-ion chromatography using a 250 × 4 mm-i.d. column packed with LiChrosorb RP-8 (5 μm). This method is sensitive, selective, and reproducible. The α-keto acids in urine and plasma from normal individuals were determined.  相似文献   

12.
13.
A simple high-performance liquid chromatographic method has been developed for determining N1-alkylnicotinamides, including C1-C5 alkyl derivatives, in urine. N1-Alkylnicotinamides were reacted with acetophenone in strong alkali medium at 0 degrees C and then formic acid was added. The reaction mixture was heated in acidic medium at above 93 degrees C, and the fluorescent product, 1-alkyl-7-phenyl-1,5-dihydro-5-oxo-1,6-naphthyridine, was chromatographed by HPLC, using a Zorbax SCX-300 column with a mixed mobile phase of acetonitrile-0.04 M ammonium phosphate, monobasic. N1-Alkylnicotinamides can be determined as 1,6-naphthyridine derivatives by a fluorometric detector at a level of 100 pg (signal/noise = 2). Recoveries of N1-alkylnicotinamides in urine were satisfactory. Interfering reaction products from NAD+ and NADP+ were clearly eliminated for determination of N1-alkylnicotinamides without pentyl derivatives.  相似文献   

14.
A method for the quantitative determination of ammonium in human urine by high-performance liquid chromatography (HPLC) is described. After making fluorescent substances with fluorescamine, they were separated and quantified by their fluorometric intensity. The intensity (as measured by peak height) was linear between 0.5 and 5.0 micrograms, and coefficients of variation for elution time and peak height on replicate analysis of the standard were 0.15 and 4.2%, respectively. Recoveries of added ammonium were 96.5 and 97.3%, respectively, on 2.0 and 3.0 micrograms by this method. Detection limit of this method was 0.2 microgram. There was good agreement between the proposed HPLC method (X) and ion chromatographic method (Y), giving the relationships as Y = 0.956X + 0.012, r = 0.991.  相似文献   

15.
16.
The use of micellar liquid chromatography for the determination of diuretics in urine by direct injection of the sample into the chromatographic system is discussed. The retention of the urine matrix at the beginning of the chromatograms was observed for different sodium dodecyl sulphate (SDS) mobile phases. The eluent strengths of a hybrid SDS—methanol micellar mobile phase for several diuretics were compared and related to the stationary phase/water partition coefficient with a purely micellar mobile phase. The urine band was appreciably narrower with a mobile phase of 0.05 M SDS—5% methanol (v/v) at 50°C (pH 6.9). With this mobile phase the determination of bendroflumethiazide and chlorthalidone was adequate. Acetazolamide, ethacrynic acid, furosemide, hydrochlorothiazide and probenecid were overlapped by the urine matrix, and the retention of amiloride and triamterene was too long.  相似文献   

17.
A simple procedure for the determination of cotinine, major metabolite of nicotine in urine, is described. The assay involved a liquid–liquid extraction with dichloromethane in alkaline environment. The extract was dried at ambient temperature under a gentle stream of nitrogen. The residue was dissolved in 300 μl of mobile phase and 30 μl aliquot was injected via an automatic sampler into the liquid chromatograph and eluted with the mobile phase (10–9%, v/v methanol and acetonitrile, respectively in potassium dihydrogenphosphate buffer adjusted to pH 3.4) at a flow rate of 1 ml/min on a C8 Symmetry cartridge column (5 μm, 150 mm×3.9 mm, Waters) at 25°C. The eluate was detected at 260 nm. Internal standard was 2-phenylimidazole. Sensitive and specific, this technique was performed to test urine of diabetic patients (smokers and non-smokers) admitted in an endocrinology service. Urinary cotinine seems to be a better marker of smoking status than thiocyanates.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号