首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigated pollen dispersal in an obligate pollination mutualism between Yucca filamentosa and Tegeticula yuccasella. Yucca moths are the only documented pollinator of yuccas, and moth larvae feed solely on developing yucca seeds. The quality of pollination by a female moth affects larval survival because flowers receiving small amounts of pollen or self-pollen have a high abscission probability, and larvae die in abscised flowers. We tested the prediction that yucca moths primarily perform outcross pollinations by using fluorescent dye to track pollen dispersal in five populations of Y. filamentosa. Dye transfers within plants were common in all populations (mean ± 1 SE, 55 ± 3.0%), indicating that moths frequently deposit self-pollen. Distance of dye transfers ranged from 0 to 50 m, and the mean number of flowering plants between the pollen donor and recipient was 5 (median = 0), suggesting that most pollen was transferred among near neighbors. A multilocus genetic estimate of outcrossing based on seedlings matured from open-pollinated fruits at one site was 94 ± 6% (mean ± 1 SD). We discuss why moths frequently deposit self-pollen to the detriment of their offspring and compare the yucca-yucca moth interaction with other obligate pollinator mutualisms in which neither pollinator nor plant benefit from self-pollination.  相似文献   

2.
Coevolution between flowering plants and their pollinators is thought to have generated much of the diversity of life on Earth, but the population processes that may have produced these macroevolutionary patterns remain unclear. Mathematical models of coevolution in obligate pollination mutualisms suggest that phenotype matching between plants and their pollinators can generate reproductive isolation. Here, we test this hypothesis using a natural experiment that examines the role of natural selection on phenotype matching between yuccas and yucca moths (Tegeticula spp.) in mediating reproductive isolation between two varieties of Joshua tree (Yucca brevifolia var. brevifolia and Y. brevifolia var. jaegeriana). Using passive monitoring techniques, DNA barcoding, microsatellite DNA genotyping, and sibship reconstruction, we track host specificity and the fitness consequences of host choice in a zone of sympatry. We show that the two moth species differ in their degree of host specificity and that oviposition on a foreign host plant results in the production of fewer offspring. This difference in host specificity between the two moth species mirrors patterns of chloroplast introgression from west to east between host varieties, suggesting that natural selection acting on pollinator phenotypes mediates gene flow and reproductive isolation between Joshua‐tree varieties.  相似文献   

3.
Ecological interactions between yucca moths (Tegeticula, Prodoxidae) and their host plants (Yucca, Agavaceae) are exemplary of obligate plant-pollinator mutualism and co-evolution. We describe a multiplex microsatellite DNA protocol for species identification and sibship assignment of sympatric larvae from Tegeticula synthetica and Tegeticula antithetica, pollinators of the Joshua tree (Yucca brevifolia). Bayesian clustering provides correct diagnosis of species in 100% of adult moths, with unambiguous identification of sympatric larvae. Sibship assignments show that larvae within a single fruit are more likely to be full-sibs or half-sibs than larvae from different fruit, consistent with the hypothesis that larval clutches are predominantly the progeny of an individual female.  相似文献   

4.
The yucca moths (Tegeticula and Parategeticula) are of great importance in studies of coevolution because of their obligate mutualism with their yucca hosts. Historically, three species of Tegeticula have been recognized. One of them, T. yuccasella, has been regarded as the pollinator of all but two yucca species, but morphological, molecular and biological data show that this is a large complex of monophagous and oligophagous species that differ greatly in their biology. It also includes derived ‘cheater’ species that do not pollinate their hosts and oviposit into fruits rather than flowers. Here the yuccasella complex north of Mexico is revised. The nominotypic pollinator species yuccasella is redescribed, and ten new pollinator species described: altiplanella, baccatella, carnerosanella, cassandra, elatella, maderae, mojavella, rostratella, superficiella and treculeanella. Two non-pollinating cheater species are recognized. One such species originally misidentified as a Prodoxus species, then synonymised with yuccasella, is re-erected as the non-pollinating intermedia. In addition, the new non-pollinator species corruptrix is described.  相似文献   

5.
The yucca moths ( Tegeticula and Parategeticula ; Lepidoptera, Prodoxidae) are well known for their obligate relationship as exclusive pollinators of yuccas. Revisionary work in recent years has revealed far higher species diversity than historically recognized, increasing the number of described species from four to 20. Based on field surveys in Mexico and examination of collections, we describe five additional species: T. californica Pellmyr sp. nov. , T. tehuacana Pellmyr & Balcázar-Lara sp. nov. , T. tambasi Pellmyr & Balcázar-Lara sp. nov., T. baja Pellmyr & Balcázar-Lara sp. nov. and P. ecdysiastica Pellmyr & Balcázar-Lara sp. nov . Tegeticula treculeanella Pellmyr is identified as a junior synonym of T. mexicana Bastida. A diagnostic key to the adults of all species of the T. yuccasella complex is provided. A phylogeny based on a 2104-bp segment of mitochondrial DNA (mtDNA) in the cytochrome oxidase I and II region supported monophyly of the two pollinator genera, and strongly supported monophyly of the 17 recognized species of the T. yuccasella complex. Most relationships are well supported, but some relationships within a recent and rapidly diversified group of 11 taxa are less robust, and in one case conflicts with a whole-genome data set (amplified fragment length polymorphism, AFLP). The current mtDNA-based analyses, together with previously published AFLP data, provide a robust phylogenetic foundation for future studies of life-history evolution and host interactions in one of the classical models of coevolution and obligate mutualism.  © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society , 2008, 152 , 297–314.  相似文献   

6.
For over 100 years the association between Yucca (Agavaceae) and Tegeticula (Lepidoptera: Incurvariidae) has been accepted as a quintessential example of an obligate mutualism. The yucca moth is purported to be the sole pollinator of Yucca, while Yucca flowers provide courtship and mating arenas, and Yucca seeds provide food for developing Tegeticula larvae. We studied Yucca glauca in northern Colorado, comparing the reproductive ecology and breeding systems of Yucca in plains populations, the “preferred” habitat of Yucca, with “marginal” sites at the edge of the local elevational distribution. Tegeticula are abundant at plains sites, and fruit set is significantly higher than in the foothills, where fruit set is limited by the paucity of moths. The low frequency of moths at high elevation, coupled with behaviors of adult female Tegeticula which lead to self-pollination, failure to pollinate, and periodic overloading of fruits with eggs, may help explain why Yucca glauca appears to maintain alternative pollinators. Some fruits lack evidence of Tegeticula infestation, suggesting that larvae die before completing development, or that fertilization of Yucca sometimes occurs without the intervention of Tegeticula. Biochemical analyses of nectar and observations of floral visitors revealed that it is highly likely that the fly Pseudocalliope sp. nov. (Lauxaniidae), which congregates and mates on Yucca glauca blossoms, acts as a secondary pollinator. Autogamy appears to occur infrequently in natural populations. We therefore propose that the yucca-yucca moth symbiosis be viewed as a facultative mutualism.  相似文献   

7.
Jerry A. Powell 《Oecologia》1989,81(4):490-493
Summary In 1985 and 1986, more than 180 adults of Prodoxus y-inversus Riley eclosed from cocoons of the 1969 generation in Yucca baccata, after prepupal larvae spent 16 and 17 years in diapause, intervals prior to mass emergence that are unmatched by any other insect on record. The emergences, which occurred during 15- to 16-day periods, followed many years of virtually no maturation by other individuals of the colony, and the size of the moths was not diminished by the long wait. Successful delay of development and synchronous emergence by many individuals indicates that whole populations can postpone activities through long periods of conditions that would be adverse for adult activity.  相似文献   

8.
Abstract. Yucca moths (Lep., Prodoxidae) are well‐known for their obligate pollination mutualism with yuccas. In addition to the pollinators, yuccas also host many non‐pollinating yucca moths. Here the genus Prodoxus, the non‐pollinating sister group of the pollinators, is revised using morphological and molecular data, their phylogenetic relationships are analysed, and the evolution of host tissue specialization explored. Twenty‐two species are recognized, including nine new species: Prodoxus gypsicolor sp.n. , P. sonorensis sp.n. , P. carnerosanellus sp.n. , P. tamaulipellus sp.n. , P. weethumpi sp.n. , P. tehuacanensis sp.n. , P. californicus sp.n. , P. mapimiensis sp.n. and P. atascosanellus sp.n. Prodoxus y‐inversus Riley, P. coloradensis Riley and P. sordidus Riley are redescribed. The genus Agavenema is synonymized with Prodoxus. Phylogenetic analyses indicated that stalk‐feeding is basal within the group, that there are three separate origins of fruit‐feeding, and one origin of leaf‐mining from a stalk‐feeding ancestor. Although species with different feeding habits often coexist within hosts, the analyses suggest that ecological specialization and diversification within a host only may have occurred within one or possibly two hosts.  相似文献   

9.
The pollination mutualism between yucca moths and yuccas highlights the potential importance of host plant specificity in insect diversification. Historically, one pollinator moth species, Tegeticula yuccasella, was believed to pollinate most yuccas. Recent phylogenetic studies have revealed that it is a complex of at least 13 distinct species, eight of which are specific to one yucca species. Moths in the closely related genus Prodoxus also specialize on yuccas, but they do not pollinate and their larvae feed on different plant parts. Previous research demonstrated that the geographically widespread Prodoxus quinquepunctellus can rapidly specialize to its host plants and may harbor hidden species diversity. We examined the phylogeographic structure of P. quinquepunctellus across its range to compare patterns of diversification with six coexisting pollinator yucca moth species. Morphometric and mtDNA cytochrome oxidase I sequence data indicated that P. quinquepunctellus as currently described contains two species. There was a deep division between moth populations in the eastern and the western United States, with limited sympatry in central Texas; these clades are considered separate species and are redescribed as P. decipiens and P. quinquepunctellus (sensu stricto), respectively. Sequence data also showed a lesser division within P. quinquepunctellus s.s. between the western populations on the Colorado Plateau and those elsewhere. The divergence among the three emerging lineages corresponded with major biogeographic provinces, whereas AMOVA indicated that host plant specialization has been relatively unimportant in diversification. In comparison, the six pollinator species comprise three lineages, one eastern and two western. A pollinator species endemic to the Colorado Plateau has evolved in both of the western lineages. The east-west division and the separate evolution of two Colorado Plateau pollinator species suggest that similar biogeographic factors have influenced diversification in both Tegeticula and Prodoxus. For the pollinators, however, each lineage has produced a monophagous species, a pattern not seen in P. quinquepunctellus.  相似文献   

10.
Tegeticula maculata is one of the most ancient and morphologically variable lineages within the yucca moths, yet has apparently undergone little diversification in comparison with much younger yucca moth lineages that have rapidly diversified. A phylogeographic approach was used to determine the number of independent lineages within T. maculata and to examine whether these patterns corresponded with morphological differences between its subspecies maculata and extranea. Phylogenetic analysis of mitochondrial DNA sequence variation indicated that the two subspecies are in separate clades, but there was also an equally deep split within subspecies maculata. There was no evidence for gene flow among regions and there was considerable substructure within clades. The phylogeographic structure of moth populations among and within subspecies can be explained in part by historical biogeographic boundaries and increasingly patchy postglacial distribution of the exclusive host plant, Hesperoyucca whipplei. Local specialization and co-adaptation would be possible in the absence of apparent gene flow, yet gross morphological divergence is limited to the very old split between the subspecies. Sorting of ancient mitochondrial lineages followed by local genetic differentiation may explain the pattern of high genetic structure with limited speciation.  相似文献   

11.
Charles L. Aker 《Oecologia》1982,54(2):243-252
Summary A field investigation of the mutualistic interaction between a monocarpic perennial plant, Yucca whipplei, and its host-specific pollinator and seed predator, Tegeticula maculata (Lepidoptera: Prodoxidae), was conducted to determine how the resource utilization pattern and population dynamics of the pollinator have influenced the evolution of the flowering and fruiting pattern of the plant. Although the temporal pattern of emergence of pollinators results in a relatively close tracking of flower abundance within a season, the ratio of pollinators to open flowers does vary significantly within a season, as well as between seasons. At any point in time during the flowering season, the population of adult yucca moths is distributed evenly among the available flowers, so that the number of pollinators on an inflorescence is directly proportional to the number of open flowers available. The relative isolation of individual flowering plants appears to have little effect on the distribution of pollinators among inflorescences. The number of fruits initiated on a plant is directly proportional to the number of flowers produced, and is also partially determined by the time of flowering. Yucca whipplei always produces many more flowers than fruits. Most flowers are not fertilized, and the plants also generally abort and abscise immature fruits after flowering. Fruit production of at least some plants, however, appeared limited by pollination. It is also expected that in some years the relative abundance of pollinators will be low enough that most plants will be pollinator-limited. It is suggested that the pattern of flowering and fruiting of this species has evolved in response to the unpredictability of pollinator availability, both within and between seasons. Resource uncertainty and selection acting on the male component of fitness may also be involved.  相似文献   

12.
The yucca-yucca moth interaction is one of the most well-known and remarkable obligate pollination mutualisms, and is an important study system for understanding coevolution. Previous research suggests that specialist pollinators can promote rapid diversification in plants, and theoretical work has predicted that obligate pollination mutualism promotes cospeciation between plants and their pollinators, resulting in contemporaneous, parallel diversification. However, a lack of information about the age of Yucca has impeded efforts to test these hypotheses. We used analyses of 4322 AFLP markers and cpDNA sequence data representing six non-protein-coding regions (trnT-trnL, trnL, trnL intron, trnL-trnF, rps16 and clpP intron 2) from all 34 species to recover a consensus organismal phylogeny, and used penalized likelihood to estimate divergence times and speciation rates in Yucca. The results indicate that the pollination mutualism did not accelerate diversification, as Yucca diversity (34 species) is not significantly greater than that of its non-moth-pollinated sister group, Agave sensu latissimus (240 species). The new phylogenetic estimates also corroborate the suggestion that the plant-moth pollination mutualism has at least two origins within the Agavaceae. Finally, age estimates show significant discord between the age of Yucca (ca 6-10Myr) and the current best estimates for the age of their pollinators (32-40Myr).  相似文献   

13.
AlthoughPlutella xylostella (L.) is a worldwide pest of cruciferous crops, relatively little is known about its oviposition behaviour. This study was undertaken to provide necessary information about mechanisms involved inP. xylostella host selection. Four oviposition behaviours were described. Moths were given artificial substrates treated with water, sinigrin, orBrassica napus (cv. Westar) squashes, combined withB. napus volatiles and/or grooves in the substrate. No eggs were deposited in the absence of olfactory and gustatory stimuli. Moths given gustatory but not olfactory stimuli deposited similar numbers of eggs but spent significantly more time performing olfactory-related behaviours. Conversely, moths given olfactory but not gustatory stimuli did not oviposit.SSubstrate grooves did not influence egg numbers but appeared to influence egg location. The order in which oviposition behaviours occurs and the relative importance of stimuli type are discussed.  相似文献   

14.
There is a need to identify potential biological control agents for use against lepidopterous pests in greenhouses. The solitary endoparasitoid Meteorus gyrator (Thunberg) attacks a range of macrolepidopterous larvae, including those of some important horticultural pest species. Laboratory trials designed to investigate the biology of M. gyrator on larvae of the tomato moth, Lacanobia oleracea Linnaeus, reveal that this parasitoid is capable of parasitizing all larval stages of its host, third instars being parasitized most frequently. Each female parasitoid lives for up to 40 days (at 25 degrees C), ovipositing into an average of 78 hosts. Preadult development is rapid ( approximately 2 weeks), and the sex ratio of offspring is 1:1. Parasitism by M. gyrator suppresses the growth of both early and late host instars, and there is a concomitant reduction in the amount of food consumed (overall feeding reduction over a 12 day period is 68%). Our results indicate that inoculative releases of M. gyrator could provide effective biological control of L. oleracea and other noctuid pests of greenhouses.  相似文献   

15.
Unlike most pollinators, yucca moths are active pollinators of their host plants. Females lay their eggs in the flowers they pollinate, and their larvae feed solely on the resulting seeds. Previous evidence suggests that the yucca moth Tegeticula maculata avoids self-pollinating their host Yucca whipplei . Other yucca moths may self-pollinate more frequently. When pollinating, yucca moths are also reported to fly large distances between plants, bypassing neighbouring plants in the process. We experimentally verify the suggestion of Pellmyr et al . that yucca is more likely to retain fruits from self-pollination if overall fruit set is low. Thus, selection on moths to avoid self-pollinating should be density dependent. We found no evidence that mating with close neighbours resulted in inbreeding depression, thus the moth's long-distance flights between plants are yet to be explained.  相似文献   

16.

The fecundity of individually held potato tuber moths ranged from 0 to 236 eggs deposited over the total life span. The number of eggs laid was not correlated with pupal weight, but pupal weight and the number of mature eggs in the ovaries shortly after emergence from the pupa were positively correlated. This initial egg complement accounted for slightly more than half of the total number of eggs laid. Among moths held in groups at 25°c in the absence of host‐plant material, multiple‐mated females did not lay significantly more eggs (mean 98.4) than those mated only once (mean 91.0), but their life span was shorter (8.5 days cf. 14.4). Virgin females laid a small number of non‐viable eggs (mean 7.7), and lived about as long as single‐mated females. Males were significantly longer‐lived (23.6 days) than all groups of females. Peak oviposition of mated females occurred 2–5 days after emergence, and declined to low levels by age 7 days.  相似文献   

17.
The dichotomous spermatogenesis of many Lepidopterans results in the production of two types of sperm: eupyrene sperm possessing a cell nucleus which participates in fertilisation, and apyrene ones, which lose their nuclei during development and whose function remains a mystery. The goal of our study was to analyse spermatogenesis at the end of the larval development of the wax moth, Galleria mellonella, at an optimal temperature of 30 degrees C as well as to describe how they are affected by diapause brought on by a reduction of temperature to 18 degrees C. Spermatogenesis in non-diapausing insects did not differ significantly from that described in other species of Lepidoptera, and any differences found were compared against available literature. Based on the results presented, it may be unequivocally stated that changes in spermatogenesis occur in diapause caused by a suboptimal temperature of 18 degrees C. The main effect of diapause observed in the testes is the degeneration of germ cells, immediately following their differentiation from bipotential spermatocytes. Eupyrene cells seem to reach a more advanced stage of development. Due to the absence of secondary eupyrene spermatocytes in the testis of diapausing insects, it may be surmised that the meiotic divisions, which lead to the formation of secondary spermatocytes and eventually spermatids, do not occur, or are somehow altered. Lastly, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labelling (TUNEL) analyses we performed show that the degenerative changes of eupyrene cells are apoptotic in character.  相似文献   

18.
False codling moth, Cryptophlebia leucotreta (Meyrick), male and female mature pupae and newly emerged adults were treated with increasing doses of gamma radiation and either inbred or out-crossed with fertile counterparts. For newly emerged adults, there was no significant relationship between dose of radiation and insect fecundity when untreated females were mated to treated males (N female by T male). However, fecundity of treated females mated to either untreated (T female by N male) or treated males (T female by T male) declined as the dose of radiation increased. A similar trend was observed when mature pupae were treated. The dose at which 100% sterility was achieved in treated females mated to untreated males (T female by N male) for both adults and pupae was 200 Gy. In contrast, newly emerged adult males treated with 350 Gy still had a residual fertility of 5.2% when mated to untreated females, and newly emerged adult males that were treated as pupae had a residual fertility of 3.3%. Inherited effects resulting from irradiation of parental (P1) males with selected doses of radiation were recorded for the F1 generation. Decreased F1 fecundity and fertility, increased F1 mortality during development, and a significant shift in the F1 sex ratio in favor of males was observed when increasing doses of radiation were applied to the P1 males.  相似文献   

19.
Yucca linearifolia is described, illustrated, and distinguished from other yucca species. Its distinctive combination of fleshy fruit and narrow, linear, denticulate leaves sets it apart from all other yuccas. Se describe e ilustraYucca linearifolia y se discute su separación de otras especies del géneroYucca. La combinación de caracteres tales como el fruto, carnoso y la hoja linear y denticulada la distingue del resto de las especies del género.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号