首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypotonic dilution of human peripheral blood lymphocytes (PBL) induces large conductive permeabilities for K+ and Cl-, associated with the capacity of the cells to regulate their volumes. When rapid cation leakage is assured by the addition of the ionophore gramicidin, the behavior of the anion conductance pathway can be independently examined. Using this technique it is demonstrated that the volume- induced activation of Cl- transport is triggered at a threshold of approximately 1.15 X isotonic cell volume. If the volume of a cell is increased to this level or above, the Cl- transport system is activated, whereas if the volume of a swollen cell is decreased below the threshold value, the Cl- transport is inactivated. Activation and inactivation are independent of the relative volume changes and of the actual cellular Na+, K+, or Cl- concentrations, as well as of the changes in membrane potential in PBL. When net salt movement and thus volume change are inhibited by specific blockers of K+ transport (e.g., quinine, or Ca2+ depletion), volume-induced Cl- conductance shows a time-dependent inactivation, with a half-time of 5-8 min. The Cl- conductance, when activated, appears to involve an all-or-none response. In contrast, volume-induced K+ conductance is a graded response, with the increase in K+ flux being roughly proportional to the hypotonicity-induced increase in cell volume. The data indicate that during lymphocyte volume response in hypotonic media, anion conductance increases by orders of magnitude, exceeding the K+ conductance, so that the rate of the volume decrease (KCl efflux) is determined by a graded alteration in K+ conductance. When the cell volume approaches the isotonic value, it is stabilized by the inactivation of the anion conductance pathway.  相似文献   

2.
The exposure of human fibroblasts to hypotonic medium (200 mosmolal) evoked the activation of both 36Cl- influx and efflux, which were insensitive to inhibitors of the anion exchanger and of the anion/cation cotransport, and conversely were inhibited by the Cl(-)-channel blocker 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB). 36Cl- efflux was linked to a parallel efflux of 86Rb+; thus conductive K+ and Cl- pathways are activated during volume regulation in human fibroblasts. This conclusion is supported by evidence that, in hypotonic medium, 36Cl- influx and 86Rb+ efflux were both enhanced by depolarization of the plasma membrane. Depletion of the intracellular K+ content, obtained by preincubation with the ionophore gramicidin in Na(+)-free medium, had no effect on Cl- efflux in hypotonic medium. This result has been interpreted as evidence for independent activation of K+ and Cl- pathways. It is also concluded that the anion permeability is the rate-limiting factor in the response of human fibroblasts to hypotonic stress.  相似文献   

3.
Anion-dependent cation transport in erythrocytes   总被引:10,自引:0,他引:10  
A selective survey of the literature reveals at least three major anion-dependent cation transport systems, defined as Na+ + Cl-, K+ + Cl- and Na+ + K+ + Cl- respectively. In human red cells, kinetic data on the fraction of K+ and Na+ influx inhibitable by bumetanide are presented to indicate an Na+:K+ stoichiometry of 1:2. For LK sheep red cells the large Cl- -dependent K+ leak induced by swelling is shown to share many characteristics with that induced by N-ethylmaleimide (NEM) treatment. NEM has complex effects, both inhibiting and then activating Cl- -dependent K+ fluxes dependent on NEM concentration. The alloantibody anti-L can prevent the action of NEM. In human red cells NEM induces a large Cl- -dependent specific K+ flux, which shows saturation kinetics. Its anion preference is Cl- greater than Br- greater than SCN- greater than I- greater than NO3- greater than MeSO4-. This transport pathway is not inhibited by oligomycin or SITS, although phloretin and high concentrations of furosemide and bumetanide (over 0.3 mM) do inhibit. Quinine (0.5 mM) is also an inhibitor. It is concluded that at least two distinct Cl- -dependent transport pathways for K+ are inducible in mammalian red cells, although the evidence for their separation is not absolute.  相似文献   

4.
Human peripheral blood lymphocytes regulate their volumes in hypotonic solutions. In hypotonic media in which Na+ is the predominant cation, an initial swelling phase is followed by a regulatory volume decrease (RVD) associated with a net loss of cellular K+. In media in which K+ is the predominant cation, the rapid initial swelling is followed by a slower second swelling phase. 86Rb+ fluxes increased during RVD and returned to normal when the original volume was approximately regained. Effects similar to those induced by hypotonic stress could also be produced by raising the intracellular Ca++ level. In isotonic, Ca++- containing media cells were found to shrink upon addition of the Ca++ ionophore A23187 in K+-free media, but to swell in K+-rich media. Exposure to Ca++ plus A23187 also increased 86Rb+ fluxes. Quinine (75 microM), an inhibitor of the Ca++-activated K+ pathway in other systems blocked RVD, the associated K+ loss, and the increase in 86Rb+ efflux. Quinine also inhibited the volume changes and the increased 86Rb fluxes induced by Ca++ plus ionophore. The calmodulin inhibitors trifluoperazine, pimozide and chlorpromazine blocked RVD as well as Ca++ plus A23187-induced volume changes. Trifluoperazine also prevented the increase in 86Rb+ fluxes and K+ loss induced by hypotonicity. Chlorpromazine sulfoxide, a relatively ineffective calmodulin antagonist, was considerably less potent as an inhibitor of RVD than chlorpromazine. It is suggested than an elevation in cytoplasmic [Ca++], triggered by cell swelling, increases the plasma membrane permeability to K+, the ensuing increased efflux of K+, associated anions, and osmotically obliged water, leading to cell shrinking (RVD).  相似文献   

5.
B Roux 《Biophysical journal》1996,71(6):3177-3185
The valence selectivity of the gramicidin channel is examined using computer simulations based on atomic models. The channel interior is modeled using a gramicidin-like periodic poly (L,D)-alanine beta-helix. Free energy perturbation calculations are performed to obtain the relative affinity of K+ and Cl- for the channel. It is observed that the interior of the gramicidin channel provides an energetically favorable interaction site for a cation but not for an anion. Relative to solvation in bulk water, the carbonyl CO oxygens can provide a favorable interaction to stabilize K+, whereas the amide NH hydrogens are much less effective in stabilizing Cl-. The results of the calculations demonstrate that, as a consequence of the structural asymmetry of the backbone charge distribution, a K+ cation can partition spontaneously from bulk water to the interior of the gramicidin channel, whereas a Cl- anion cannot.  相似文献   

6.
Volume-induced increase of anion permeability in human lymphocytes   总被引:14,自引:7,他引:7       下载免费PDF全文
Peripheral blood mononuclear cells (PBM) readjust their volumes after swelling in hypotonic media. This regulatory volume decrease (RVD) is associated with a loss of cellular K+ and is thought to be promoted by an increased permeability to this ion. In contrast, no change in volume was observed when K+ permeability of PBM in isotonic media was increased to comparable or higher levels using valinomycin. Moreover, valinomycin-induced 86Rb+ loss in K+-free medium was considerably slower than in K+-rich medium. These results suggest that anion conductance limits net salt loss in isotonic media. Direct measurements of relative conductance confirmed that in volume-static cells, anion conductance is lower than that of K+. In volume-regulating cells depolarization occurred presumably as a result of increased anion conductance. Accordingly, the efflux of 36Cl from PBM was markedly increased by hypotonic stress. Since both membrane potential and intracellular 36Cl concentration are reduced in hypotonically swollen cells, the increased efflux is probably due to a change in Cl- permeability. Anions and cations seem to move independently through the volume-induced pathways: the initial rate of 86Rb uptake in swollen cells was not affected by replacement of external Cl- by SO=4; conversely, 36Cl fluxes were unaffected by substitution of K+ by Na+. The data indicate that anion conductance is rate-determining in salt and water loss from PBM. An increase in anion conductance is suggested to be the critical step of RVD of human PBM.  相似文献   

7.
Summary Arachidonic acid inhibits the cell shrinkage observed in Ehrlich ascites tumor cells during regulatory volume decrease (RVD) or after addition of the Ca ionophore A23187 plus Ca. In Na-containing media, arachidonic acid increases cellular Na uptake under isotonic as well as under hypotonic conditions. Arachidonic acid also inhibits KCl and water loss following swelling in Na-free, hypotonic media even when a high K conductance has been ensured by addition of gramicidin. In isotonic, Na-free medium arachidonic acid inhibits A23187 + Ca-induced cell shrinkage in the absence but not in the presence of gramicidin. It is proposed that inhibition of RVD in hypotonic media by arachidonic acid is caused by reduction in the volume-induced Cl and K permeabilities as well as by an increase in Na permeability and that reduction in A23187 + Ca-induced cell shrinkage is due to a reduction in K permeability and an increase in Na permeability. The A23187 + Ca-activated Cl permeability in unaffected by arachidonic acid. PGE2 inhibits RVD in Na-containing, hypotonic media but not in Na-free, hypotonic media, indicating a PGE2-induced Na uptake. PGE2 has no effect on the volume-activated K and Cl permeabilities. LTB4, LTC4 and LTE4 inhibit RVD insignificantly in hypotonically swollen cells. LTD4, more-over, induces cell shrinkage in steady-state cells and accelerates the RVD following hypotonic exposure. The effect of LTD4 even reflects a stimulating effect on K and Cl transport pathways. Thus none of the leukotrienes show the inhibitory effect found for arachidonic acid on the K and Cl permeabilities. The RVD response in hypotonic, Na-free media is, on the other hand, also inhibited by addition of the unsaturated oleic, linoleic, linolenic and palmitoleic acid, even in the presence of the cationophor gramicidin. The saturated arachidic and stearic acid had no effect on RVD. It is, therefore, suggested that a minor part of the inhibitory effect of arachidonic acid on RVD in Na-containing media is via an increased synthesis of prostaglandins and that the major part of the arachidonic acid effect on RVD in Na-free media, and most probably also in Na-containing media, is due to the inhibition of the volume-induced K and Cl transport pathways, caused by a nonspecific detergent effect of an unsaturated fatty acid.  相似文献   

8.
Volume regulation of Chinese hamster ovary cells in anisoosmotic media   总被引:2,自引:0,他引:2  
Chinese hamster ovary (CHO) cells when suspended in anisoosmotic media regulate their volumes by the activation of specific ion transport pathways. In hypoosmotic media the cells first swell and then return to their isoosmotic volumes by the loss of cellular KCl and osmotically obliged water. This regulatory volume decrease (RVD) is insensitive to ouabain or bumetanide but is blocked by quinine, cetiedil and oligomycin C. Based on cell volume and membrane potential measurements under various experimental conditions, we conclude that hypoosmotic shock activates independent, conductive transport pathways for K+ and for Cl-, respectively. The anion pathway can also transport NO3- and SCN- but not gluconate- anions. Osmotic shrinkage of CHO cells does not produce a regulatory volume increase (RVI) unless the cells have previously undergone a cycle of RVD. RVI is a Na+-dependent, amiloride-sensitive, but ouabain- and oligomycin-insensitive process, probably involving a Na+-H+ exchange system. Internal acidification of isoosmotic cells by addition of a permeable weak acid also activates an amiloride-sensitive Na+-H+ exchange, producing a volume increase. Both RVD and RVI in CHO cells seem to involve molecular mechanisms similar to those described for the volume regulation of lymphocytes, indicating the prevalence of these phenomena in nucleated mammalian cells. Cultured CHO cell lines may provide a basis for a genetic characterization of the volume-regulatory transport pathways.  相似文献   

9.
Under appropriate conditions (presence of cation ionophores) net KCl efflux measured with a K+ electrode can be used to estimate conductive Cl- fluxes, a sensitive procedure that allows continuous recording. The procedure was tested in human red cells by demonstrating effects of ionophores and of an anion transport inhibitor, and in dissociated MDCK cells by demonstration of cAMP and volume-activated Cl- fluxes.  相似文献   

10.
Recently, we showed that at constant extracellular osmolarity, the volume of NG108-15 cells was dependent on the external NaCl concentration and we assumed that the responsible mechanism was mediated by background channels (Rouzaire-Dubois et al. 1999). In order to confirm this view, the mean cell volume and the background current of NG108-15 cells were measured under different experimental conditions, after blockade of specific volume regulating mechanisms and ion channels. When the external NaCl concentration was decreased, the reversal potential of the background current was shifted toward negative values and the membrane conductance decreased. Opposite effects were observed when the NaCl concentration was increased. Substitution of external Na+ with various monovalent cations altered the mean cell volume by: Rb+, +17%; Cs+, +15%; K+, +10%; Li+, -6%; choline, -9%; N-methylglucamine, -25% . The reversal potential of the background current and the membrane conductance were altered by these Na+ substitutes in such a way that the cell volume increased linearly with the background current at -60 mV. Substitution of external Cl- with various monovalent anions altered the mean cell volume by: I-, +4%; Br-, 0%; NO-, -3%; F-, -5%; isethionate, -30%; gluconate, -50%. Cl- substitutes did not significantly alter the background current at -60 mV, except F- which increased it by 39%. These results suggest that 1. the cell volume is dependent on ion fluxes through background channels; 2. electrogenic cation fluxes are larger than anionic ones and the background current is proportional to the difference between these fluxes; 3. whereas external cations do not interfere with anion fluxes, external anions alter cation fluxes.  相似文献   

11.
Increased anion permeability during volume regulation in human lymphocytes   总被引:1,自引:0,他引:1  
Peripheral blood lymphocytes (p.b.ls) readjust their volumes after swelling in hypotonic media. An essential component of the regulatory response is an increase in K+ and Cl- permeability. No evidence was found for a tightly coupled co-transport of K+ and Cl-. The flux of either ion proceeds normally in the virtual absence of the transported counterion. Furthermore, alterations in membrane potential recorded during the phase of volume readjustment can be qualitatively accounted for by an increase in Cl- conductance. In tonsillar lymphocytes, a failure of the K+-permeability is nevertheless increased upon swelling. This further suggests that K+ and Cl- are transported during volume regulation through independent pathways. Cytoplasmic free Ca2+ appears to be involved in regulatory volume decrease. K+ and Cl-. Moreover, swelling and shrinking can be induced in isotonic K+-rich and K+-free media, respectively, by the Ca2+ ionophore. The ion flux and volume changes produced by either swelling or internal Ca2+ can be inhibited by similar concentrations of quinine and phenothiazines. The inhibitory activity of the latter drugs, which are powerful antagonists of calmodulin, suggests the participation of this Ca2+-regulator protein in volume regulation.  相似文献   

12.
Cetiedil, a drug that is reported to block K+-channels, substantially increases the conductive C1- permeability of Chinese hamster ovary (CHO) cells. The permeability was monitored by volume changes in cells treated with gramicidin to increase the cation permeability. Under this circumstance, increases in Cl- conductances result in volume changes detectable by electronic sizing, with the direction determined by the gradients of the permeating ions. In NaCl or KCl media, swelling occurs, but in N-methylglucamine chloride, shrinking. The increases in Cl- conductance could also be measured as an increased 36Cl- flux or by changes in membrane potential (measured by fluorescence of a potential-sensitive dye) toward the Cl- equilibrium potential. The effect of cetiedil was concentration dependent, with maximal effect at 50 microM. The anion specificity for the conductance was NO3- greater than Cl- = Br- much greater than SO4-2 or isethionate. A number of other drugs that influence transport activities had no effect on Cl- conductance. The cetiedil effect on Cl- conductance was observed in one other cell line, but was absent in several other cell types. The cetiedil-induced Cl- conductance in CHO cells appears to involve a different pathway than that induced by exposure to hypotonic medium.  相似文献   

13.
The effects of SCN- on H+-accumulation by inside-out gastric vesicles derived from the apical membrane of secreting oxyntic cells are reported. SCN- inhibited the formation of pH gradients in Cl- and isethionate media. In Cl-, the concentration of SCN- required to achieve a certain degree of inhibition of H+ uptake (or dissipation of performed gradients) was increased with the increase in Cl- concentration, indicating some competitive phenomena between these anions. Comparison of the rates of dissipation of similar pH gradients achieved in Cl- vs. isethionate suggested the existence of a fast Cl-/SCN- exchange. In addition, direct isotopic fluxes confirmed the existence of rapid anion exchange and K-salt transport for both Cl- and SCN-. The rates of anion-exchange and K-salt transport were of similar magnitude, and the rates for SCN- in either countertransport against Cl- or cotransport with K+ were twice as fast as the equivalent values for Cl-. These mediated pathways in the apical membrane provide the possible means for rapid access of SCN- to the acidic canalicular spaces of the oxyntic cell that is implicit in recent proposals to explain SCN- inhibition of gastric HCl secretion.  相似文献   

14.
ATP-dependent Ca2+ transport was investigated in a rat parotid microsomal-membrane preparation enriched in endoplasmic reticulum. Ca2+ uptake, in KCl medium, was rapid, linear with time up to 20 s, and unaffected by the mitochondrial inhibitors NaN3 and oligomycin. This Ca2+ uptake followed Michaelis-Menten kinetics, and was of high affinity (Km approximately 38 nM) and high capacity (approximately 30 nmol/min per mg of protein). In the presence of oxalate, Ca2+ uptake continued to increase for at least 5 min, reaching an intravesicular accumulation approx. 10 times higher than without oxalate. Ca2+ uptake was dependent on univalent cations in the order K+ = Na+ greater than trimethylammonium+ greater than mannitol and univalent anions in the order Cl- greater than acetate- greater than Br- = gluconate- = NO3- greater than SCN-. Ca2+ uptake was not elevated if membranes were incubated in the presence of a lipophilic anion (NO3-) and carbonyl cyanide p-trifluoromethoxyphenylhydrazone. Ca2+ transport was altered by changes in the K+-diffusion potential of the membranes. A relatively negative K+-diffusion potential increased the initial rate of Ca2+ accumulation, whereas a relatively positive potential decreased Ca2+ accumulation. In the presence of an outwardly directed K+ gradient, nigericin had no effect on Ca2+ uptake. In aggregate, these studies suggest that the ATP-dependent Ca2+-transport mechanism present in rat parotid microsomal membranes exhibits an electrogenic Ca2+ flux which requires the movement of other ions for charge compensation.  相似文献   

15.
Tissue slices of shark rectal gland are studied to examine the kinetics of the cellular fluxes of taurine, a major intracellular osmolyte in this organ. Maintenance of high steady-state cell taurine (50 mM) is achieved by a ouabain-sensitive active Na+-dependent uptake process and a relatively slow efflux. Uptake kinetics are described by two saturable taurine transport components (high-affinity, Km 60 microM; and low-affinity, Km 9 mM). [14C]Taurine uptake is enhanced by external Cl-, inhibited by beta-alanine and unaffected by inhibitors of the Na+/K+/2Cl- co-transport system. Two cellular efflux components of taurine are documented. Incubation of slices in p-chloromercuribenzene sulfonate (1 mM) reduces taurine uptake, increases efflux of taurine and induces cell swelling. Studies of efflux in isotonic media with various cation and anion substitutions demonstrate that high-K+ markedly enhances taurine efflux irrespective of cell volume changes (i.e. membrane stretching is not involved). Moreover, iso-osmotic cell swelling induced in media containing propionate is not associated with enhanced efflux of taurine from the cells. It is suggested that external K+ exerts a specific effect on the cytoplasmic membrane to increase its permeability to taurine.  相似文献   

16.
Black lipid membranes and liposomes loaded with Ca2+ or 5,6-carboxyfluorescein were used for exploring the mechanism of action of insulin-releasing sulfonylureas. Unlike the Ca2+/H+ exchanging ionophore A-23187, tolbutamide did not stimulate the net efflux of Ca2+ from the liposomes. Glibenclamide caused a sustained release of Ca2+, but this effect could be attributed to labilization of the liposomal membrane as indicated by a quantitatively similar loss of the stability marker 5,6-carboxyfluorescein. Unlike the neutral ionophore nonactin or the channel forming quasi-ionophore gramicidin A, the sulfonylureas did not alter the conductance of black lipid membranes in medium containing Na+, K+, Ca2+, Mg2+, and Cl-. It is concluded that the sulfonylureas tested lack ionophore properties but that glibenclamide can labilize membranes.  相似文献   

17.
H Rottenberg  R E Koeppe 《Biochemistry》1989,28(10):4361-4367
Gramicidin and the truncated derivatives desformylgramicidin (desfor) and des(formylvalyl)gramicidin (desval) stimulate monovalent cation transport in rat liver mitochondria. Cation fluxes were compared indirectly from the effect of cations on the membrane potential at steady state (state 4) or from the associated stimulation of electron transport. Rb+ transport was measured directly from the uptake of 86Rb. The truncated gramicidins show enhanced selectivity for K+ and Rb+ when compared to gramicidin. Moreover, the pattern of selectivity within the alkali cation series is altered, i.e., Rb+ greater than K+ greater than Cs+ greater than Na+ greater than Li+ for desfor and desval as compared to Cs+ greater than Rb+ greater than K+ = Na+ greater than Li+ for gramicidin. The cation fluxes through the truncated derivatives are more strongly dependent on the cation concentration. The presence of high concentrations of permeating cation enhances the transport of other cations through the truncated derivative channels, suggesting that cations are required for stabilizing the channel structure. In high concentrations of KCl, desfor and desval are nearly as effective as gramicidin in collapsing the mitochondrial membrane potential, and, consequently, in the uncoupling of oxidative phosphorylation and enhancement of ATP hydrolysis. Preliminary experiments with liposomes show that 86Rb exchange is stimulated by desfor and desval almost to the same extent as gramicidin. These results strongly suggest that the truncated gramicidins form a novel conducting channel which differs from the gramicidin head-to-head, single-stranded beta 6.3-helical dimer ("channel") in its conductance characteristic and its structure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Measurements of cytosolic pH (pHi) 36Cl fluxes and free cytosolic Ca2+ concentration ([Ca2+]i) were performed in the clonal osteosarcoma cell line UMR-106 to characterize the kinetic properties of Cl-/HCO3- (OH-) exchange and its regulation by pHi and [Ca2+]i. Suspending cells in Cl(-)-free medium resulted in rapid cytosolic alkalinization from pHi 7.05 to approximately 7.42. Subsequently, the cytosol acidified to pHi 7.31. Extracellular HCO3- increased the rate and extent of cytosolic alkalinization and prevented the secondary acidification. Suspending alkalinized and Cl(-)-depleted cells in Cl(-)-containing solutions resulted in cytosolic acidification. All these pHi changes were inhibited by 4',4',-diisothiocyano-2,2'-stilbene disulfonic acid (DIDS) and H2DIDS, and were not affected by manipulation of the membrane potential. The pattern of extracellular Cl- dependency of the exchange process suggests that Cl- ions interact with a single saturable external site and HCO3- (OH-) complete with Cl- for binding to this site. The dependencies of both net anion exchange and Cl- self-exchange fluxes on pHi did not follow simple saturation kinetics. These findings suggest that the anion exchanger is regulated by intracellular HCO3- (OH-). A rise in [Ca2+]i, whether induced by stimulation of protein kinase C-activated Ca2+ channels, Ca2+ ionophore, or depolarization of the plasma membrane, resulted in cytosolic acidification with subsequent recovery from acidification. The Ca2+-activated acidification required the presence of Cl- in the medium, could be blocked by DIDS, and H2DIDS and was independent of the membrane potential. The subsequent recovery from acidification was absolutely dependent on the initial acidification, required the presence of Na+ in the medium, and was blocked by amiloride. Activation of protein kinase C without a change in [Ca2+]i did not alter pHi. Likewise, in H2DIDS-treated cells and in the absence of Cl-, an increase in [Ca2+]i did not activate the Na+/H+ exchanger in UMR-106 cells. These findings indicate that an increase in [Ca2+]i was sufficient to activate the Cl-/HCO3- exchanger, which results in the acidification of the cytosol. The accumulated H+ in the cytosol activated the Na+/H+ exchanger. Kinetic analysis of the anion exchange showed that at saturating intracellular OH-, a [Ca2+]i increase did not modify the properties of the extracellular site. A rise in [Ca2+]i increased the apparent affinity for intracellular OH- (or HCO3-) of both net anion and Cl- self exchange. These results indicate that [Ca2+]i modifies the interaction of intracellular OH- (or HCO3-) with the proposed regulatory site of the anion exchanger in UMR-106 cells.  相似文献   

19.
The Ehrlich ascites tumor cell has been used as a model of an unspecialized mammalian cell, in an attempt to disclose the mechanisms involved in the regulation of cellular water and salt content. In hypotonic medium Ehrlich cells initially swell as nearly perfect osmometers, but subsequently recover their volume within about 10 min with an associated net loss of KCl, amino acids, taurine and cell water. The net loss of KCl takes place mainly via separate, conductive K+ and Cl- transport pathways, and the net loss of taurine through a passive leak pathway. Ca2+ and calmodulin appear to be involved in the activation of the K+ and Cl- channels, as well as the taurine leak pathway. In hypertonic medium Ehrlich cells initially shrink as osmometers, but subsequently recover their volume with an associated net uptake of KCl and water. In this case, the net uptake of KCl is the result of the activation of an electroneutral, Na+- and Cl- -dependent cotransport system with subsequent replacement of cellular Na+ by extracellular K+ via the Na+/K+ pump. In the present review we describe the ion and taurine transporting systems which have been identified in the plasma membrane of the Ehrlich ascites tumor cell. We have emphasized the selectivity of these transport pathways and their activation mechanisms. Finally, we propose a model for the activation of the conductive K+ and Cl- transport pathways in Ehrlich cells which includes Ca2+, leukotrienes, and inositol phosphate as intracellular second messengers.  相似文献   

20.
The effects of ionophores, which can carry alkali metal cations, on platelet aggregation were examined. At an alkaline extracellular pH, alkali metal cation/H+ exchanger nigericin accelerated aggregation in K+-enriched medium, whereas it rather inhibited aggregation in Na+-enriched medium, even though the intracellular pH was only slightly alkaline. The inhibitory effect of Na+ on platelet aggregation was more clearly shown with the alkali metal cation exchanger gramicidin D. The ionophore had no effect or a slightly accelerative effect on aggregation in K+-enriched medium, whereas it significantly inhibited aggregation induced by thrombin, ADP and platelet activating factor in Na+-enriched medium. Fluorescence studies on fura-2-labeled platelets revealed that in Na+-enriched medium gramicidin D inhibited agonist-induced Ca2+ mobilization both in the presence and absence of extracellular Ca2+. These results suggest that the intracellular Na+ inhibits platelet aggregation by inhibiting Ca2+ mobilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号