首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Soybean cyst nematode (Heterodera glycines Ichinohe; SCN) is the primary disease responsible for yield loss of soybean [Glycine max (L.) Merr.]. Resistant cultivars are an effective management tool; however, the sources currently available have common resistant genes. Glycine soja Sieb. and Zucc., the wild ancestor of domesticated soybean, represents a diverse germplasm pool with known SCN resistance. The objectives of this research were to: (1) determine the genetic variation and inheritance of SCN resistance in a G. max (‘S08-80’) × G. soja (PI464925B) F 4:5 recombinant inbred line (RIL) population; and (2) identify and evaluate quantitative trait loci (QTL) associated with SCN resistance. Transgressive segregation for resistance was observed, although neither parent was resistant to the Chatham and Ruthven SCN isolates. Broad sense heritability was 0.81 for the Ruthven and 0.91 for the Chatham isolate. Root dry weight was a significant covariate that influenced cyst counts. One RIL [female index (FI) = 5.2 ± 1.11] was identified as resistant to the Chatham isolate (FI < 10). Seventeen and three RILs infected with Chatham and Ruthven isolates, respectively, had mean adjusted cyst counts of zero. Unique and novel QTL, which derived resistance from G. soja, were identified on linkage groups I, K, and O, and individually explained 8, 7 and 5% (LOD = 2.1–2.7) of the total phenotypic variation, respectively. Significant epistatic interactions were found between pairs of SSR markers that individually may or may not have been associated with SCN resistance, which explained between 10 and 15% of the total phenotypic variation. Best-fit regression models explained 21 and 31% of the total phenotypic variation in the RIL population to the Chatham and Ruthven isolates, respectively. The results of this study help to improve the understanding of the genetic control of SCN resistance in soybean caused by minor genes resulting in horizontal resistance. The incorporation of the novel resistance QTL from G. soja could increase the durability of SCN-resistance in soybean cultivars, especially if major gene resistance breaks down.  相似文献   

3.
Resistance to the soybean cyst nematode (SCN) (Heterodera glycines Ichinohe) is difficult to evaluate in soybean [Glycine max (L.) Merr.] breeding. PI 437.654 has resistance to more SCN race isolates than any other known soybean. We screened 298 F67 recombinant-inbred lines from a cross between PI 437.654 and BSR101 for SCN race-3 resistance, genetically mapped 355 RFLP markers and the I locus, and tested these markers for association with resistance loci. The Rhg 4 resistance locus was within 1 cM of the I locus on linkage group A. Two additional QTLs associated with SCN resistance were located within 3cM of markers on groups G and M. These two loci were not independent because 91 of 96 lines that had a resistant-parent marker type on group G also had a resistant-parent marker type on group M. Rhg 4 and the QTL on G showed a significant interaction by together providing complete resistance to SCN race-3. Individually, the QTL on G had greater effect on resistance than did Rhg 4, but neither locus alone provided a degree of resistance much different from the susceptible parent. The nearest markers to the mapped QTLs on groups A and G had allele frequencies from the resistant parent indicating 52 resistant lines in this population, a number not significantly different from the 55 resistant lines found. Therefore, no QTLs from PI 437.654 other than those mapped here are expected to be required for resistance to SCN race-3. All 50 lines that had the PI 437.654 marker type at the nearest marker to each of the QTLs on groups A and G were resistant to SCN race-3. We believe markers near to these QTLs can be used effectively to select for SCN race-3 resistance, thereby improving the ability to breed SCN-resistant soybean varieties.  相似文献   

4.
5.
Resistance of soybean [Glycine max (L.) Merr.] to cyst nematode (SCN) (Heterodera glycines Ichinohe), one of the most destructive pathogens affecting soybean, involves a complex genetic system. The identification of QTLs associated with SCN resistance may contribute to the understanding of such system. The objective of this work was to identify and map QTLs for resistance to SCN Race 14 with the aid of molecular markers. BC3F2:3 and F2:3 populations, both derived from an original cross between resistant cv. Hartwig and the susceptible line BR-92–31983 were screened for resistance to SCN Race 14. Four microsatellite (Satt082, Sat_001, Satt574 and Satt301) and four RAPD markers (OPAA-11795, OPAE-08837, OPR-07548 and OPY-072030) were identified in the BC3F2:3 population using the bulked segregant analysis (BSA) technique. These markers were amplified in 183 F2:3 families and mapped to a locus that accounts for more than 40% of the resistance to SCN Race 14. Selection efficiency based on these markers was similar to that obtained with the conventional method. In the case of the microsalellite markers, which identify homozygous resistant genotypes, the efficiency was even higher. This new QTL has been mapped to the soybean linkage group D2 and, in conjunction with other QTLs already identified for SCN resistance, will certainly contribute to our understanding of the genetic basis of resistance of this important disease in soybean. Received: 12 October 1999 / Accepted: 14 April 2000  相似文献   

6.
The objective of this research was to characterise the degree of dominance of a soybean cyst nematode (Heterodera glycines) allele for incompatibility which interacts with a recessive soybean (Glycine max) allele for incompatibility to prevent the formation of cysts. Crosses of inbred nematode populations were made and the F, and F, populations evaluated for the numbers of cysts they could produce on several soybean lines. The nematode gene for avirulence interacts with the one recessive gene for resistance in soybean line PI 88287 and also appears to be recessive. This is the first example of a recessive-recessive gene-for-gene interaction; genes for avirulence and resistance are usually dominant. The difficulties of doing definitive genetic studies with cyst nematodes are discussed.  相似文献   

7.
Summary Soybean (S, Glycine max (L.) Merr.) lines with relatively few cysts of soybean cyst nematode (CN, Heterodera glycines Ichinohe) populations are usually called CN-resistant. The phenotype of number of cysts per plant is of the CN-S (Cyst Nematode-Soybean) association and determined by the interactions of genes for avirulence-resistance. The acronym alins was proposed for these alleles for incompatibility, with xalin representing the interaction X of one microsymbiont malin with its host h-alin. These alins are dominant in the gene-for-gene model but may be mostly recessive with CN-S. Definitive genetic studies have been hindered by the heterogeneity of sexually reproducing CN populations and lack of the appropriate genetic models. Loegering's abstract interorganismal genetic model was modified so that one model represented all four possible interactions of dominant-recessive alins for an incompatible phenotype. This involved redefining the Boolean algebra symbol 1 to represent both the alins AND their frequencies. The model was used to derive the relationship: {ie893-01} where the expectation E of cysts (of any CN-S combination, as proportion of number of cysts on a check cultivar) is proportional to the product of CN genotypic frequencies expressed as functions of m-alin frequencies. Each m-alin is at a different locus, i.e., {ie893-02}. The number of terms multiplied for each CN-S is equal to the number of alins in the S line (or F2 plant). There are too many unknowns in the equation to solve for any of them. The relationship does explain the continuous distributions of phenotypes that were nearly always observed. Basic genetic principles were used to concurrently derive the models and to obtain discontinuous distributions of numbers of cyst phenotypes in segregating generations due to one recessive alin in a CN-susceptible soybean line.Contribution from the Missouri Agricultural Experiment Station, Journal Series No. 9739  相似文献   

8.
Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is the most destructive pest of soybean worldwide. Host plant resistance is an effective approach to control this pest. Plant introduction PI 567516C has been reported to be highly resistant to multiple-HG types of SCN. The objectives of this study were to identify and map novel quantitative trait loci (QTL) for SCN resistance to six HG types (also known as races 1, 2, 3, 5, 14, and LY1). Mapping was conducted using 250 F2:3 progeny derived from a Magellan (susceptible) × PI 567516C (resistant) cross. F6:7 recombinant inbred lines (RILs) developed from the F2:3 progeny were employed to confirm the putative QTL identified. A total of 927 polymorphic simple sequence repeats (SSR) and single nucleotide polymorphism (SNP) markers were genotyped. Following the genetic linkage analysis, permutation tests and composite interval mapping were performed to identify and map QTL. Four QTL were associated with resistance to either multiple- or single-SCN HG types. Two QTL for resistance to multiple-SCN HG types were mapped to Chromosomes 10 and 18 and have not been reported in other SCN resistance sources. New QTL were confirmed by analysis of 250 F6:7 RILs from the same population. SSR and SNP markers closely associated with these QTL can be useful for the development of near-isogenic lines for fine-mapping and positional cloning of candidate genes for SCN resistance.  相似文献   

9.
Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in soybean defence against soybean cyst nematode (Heterodera glycines Ichinohe, SCN). GmSAMT1 was identified as a candidate SCN defence‐related gene in our previous analysis of soybean defence against SCN using GeneChip microarray experiments. The current study started with the isolation of the full‐length cDNAs of GmSAMT1 from a SCN‐resistant soybean line and from a SCN‐susceptible soybean line. The two cDNAs encode proteins of identical sequences. The GmSAMT1 cDNA was expressed in Escherichia coli. Using in vitro enzyme assays, E. coli‐expressed GmSAMT1 was confirmed to function as salicylic acid methyltransferase. The apparent Km value of GmSAMT1 for salicylic acid was approximately 46 μm . To determine the role of GmSAMT1 in soybean defence against SCN, transgenic hairy roots overexpressing GmSAMT1 were produced and tested for SCN resistance. Overexpression of GmSAMT1 in SCN‐susceptible backgrounds significantly reduced the development of SCN, indicating that overexpression of GmSAMT1 in the transgenic hairy root system could confer resistance to SCN. Overexpression of GmSAMT1 in transgenic hairy roots was also found to affect the expression of selected genes involved in salicylic acid biosynthesis and salicylic acid signal transduction.  相似文献   

10.
Soybean cyst nematode (SCN) (Heterodera glycines Ichinohe) is an important soybean [Glycine max (L.) Merr.] pest in the U.S. and throughout the world. Genetic resistance is the primary method for controlling SCN and there is a need to identify new resistance genes. Glycine soja Sieb. and Zucc. is the wild ancestor of domesticated soybean and is a potential source of new SCN resistance genes. The goal of this research was to map quantitative trait loci (QTLs) that provide resistance to SCN Race 3 from the G. soja plant introduction (PI) 468916. Fifty seven F2-derived lines from a cross between the G. soja PI 468916 and the G. max experimental line A81-356022 were tested for resistance to an SCN population with a Race-3 phenotype. These lines were also genotyped with 1,004 genetic markers and resistance genes were mapped by composite interval mapping with the computer program QTL-Cartographer. In the F2 population, three significant (LOD > 3.0) QTLs were detected that explained from 5% to 27% of the variation for Race-3 resistance. The two most significant QTLs identified in the F2 population were tested in a population of 100 BC1F2 plants developed by crossing A81-356022 to a line from the F2 population that carried the two resistance QTLs from G. soja. In the backcross population, both Race-3 resistance QTLs were significant, which confirms the existence of these QTLs. The QTLs identified in this experiment map to positions where SCN resistance genes have not been previously identified, suggesting that these are novel genes that could be useful for diversifying the resistance genes currently used in cultivar development. Received: 7 August 2000 / Accepted: 4 December 2000  相似文献   

11.
X Li  X Wang  S Zhang  D Liu  Y Duan  W Dong 《PloS one》2012,7(6):e39650
Soybean cyst nematode (SCN), Heterodera glycines, is the most devastating pathogen of soybean worldwide. MicroRNAs (miRNAs) are a class of small, non-coding RNAs that are known to play important role in plant stress response. However, there are few reports profiling the miRNA expression patterns during pathogen stress. We sequenced four small RNA libraries from two soybean cultivar (Hairbin xiaoheidou, SCN race 3 resistant, Liaodou 10, SCN race 3 susceptible) that grown under un-inoculated and SCN-inoculated soil. Small RNAs were mapped to soybean genome sequence, 364 known soybean miRNA genes were identified in total. In addition, 21 potential miRNA candidates were identified. Comparative analysis of miRNA profiling indicated 101 miRNAs belong to 40 families were SCN-responsive. We also found 20 miRNAs with different express pattern even between two cultivars of the same species. These findings suggest that miRNA paly important role in soybean response to SCN and have important implications for further identification of miRNAs under pathogen stress.  相似文献   

12.
13.
Macronutrient concentrations of soybean infected with soybean cyst nematode   总被引:3,自引:0,他引:3  
Smith  G. J.  Wiebold  W. J.  Niblack  T. L.  Scharf  P. C.  Blevins  D. G. 《Plant and Soil》2001,235(1):21-26
Soybean cultivars (Glycine max(L.) Merr.) infected with soybean cyst nematode (SCN; Heterodera glycinesIchinohe) often show symptoms similar to K deficiency. The objectives of this experiment were to determine if SCN infection affected macronutrient concentrations in soybean seedling vegetative tissues, determine whether increased K fertility can overcome these possible effects, and to determine if these possible effects are localized at the site of infection or expressed systemically throughout the root system. Soybean plants were grown with root systems split into two halves. This allowed differential K (0.2, 2.4 and 6.0 mM K nutrient solutions) and SCN (0 and 15 000 eggs/plant) treatments to be applied to opposite root-halves of the same plant. Thirty days after plants were inoculated with SCN, macronutrient concentrations of shoot and root tissues were determined. Potassium concentration in leaf blades was not affected; but K concentrations in leaf-petiole and stem tissues were increased with SCN infection. Roots infected with SCN contained lower K concentrations than uninfected roots, but only for the 2.4 mM K treatment. Thus, at the medium level of K fertility, SCN reduced K concentration in soybean roots, and increasing K fertility to the high level overcame the effect. Because K concentrations in the shoot tissues were not reduced by SCN infection, above ground portions of the plant may be able to overcome limitations that occur in roots during the first 30 days of infection. Increasing K fertility level in soybean fields may not benefit vegetative growth of soybean infected with SCN.  相似文献   

14.
Fusarium head blight (FHB) in barley and wheat, caused by Fusarium graminearum, is a continual problem worldwide. Primarily, FHB reduces yield and quality, and results in the production of the toxin deoxynivalenol (DON), which can affect food safety. Identification of QTLs for FHB severity, DON level and related traits heading-date (HD) and plant-height (HT) with consistent effects across a set of environments, would provide the basis for marker-assisted selection (MAS) and potentially increase the efficiency of selection for resistance. A segregating population of 75 double-haploid lines, developed from the three-way cross Zhedar 2/ND9712//Foster, was used for genome mapping and FHB severity evaluation. A linkage map of 214 RFLP, SSR and AFLP markers was constructed. Phenotypic data were collected in replicated field trials from five environments in two growing seasons. The data were analyzed using MQTL software to detect quantitative trait locus (QTL) × environment (E) interactions. Because of the presence of QTL × E, the MQM procedure in MAPQTL was applied to identify QTLs in single environments. We identified nine QTLs for FHB severity and five for low DON. Many of the disease-related QTLs identified were coincident with FHB QTLs identified in previous studies. Only two of the QTLs identified in this study were consistent across all five environments, and both were Zhedar 2 specific. Five of the FHB QTLs were associated with HD, and two were associated with HT. Regions that appear to be promising candidates for MAS and further genetic analysis include the two FHB QTLs on chromosome 2H and one on 6H, which were also associated with low DON and later heading-date in multiple environments. This study provides a starting point for manipulating Zhedar 2-derived resistance by MAS in barley to develop cultivars that will show effective resistance under disease pressure.Communicated by H.F. Linskens  相似文献   

15.
Soybean cyst nematode (SCN) (Heterodera glycines Ichinohe) is a highly recalcitrant endoparasite of soybean roots, causing more yield loss than any other pest. To identify quantitative trait loci (QTL) controlling resistance to SCN (HG type 2.5.7, race 1), a genome-wide association study (GWAS) was performed. The association panel, consisting of 120 Chinese soybean cultivars, was genotyped with 7189 single nucleotide polymorphism (SNPs). A total of 6204 SNPs with minor allele frequency >0.05 were used to estimate linkage disequilibrium (LD) and population structure. The mean level of LD measured by r 2 declined very rapidly to half its maximum value (0.51) at 220 kb. The overall population structure was approximately coincident with geographic origin. The GWAS results identified 13 SNPs in 7 different genomic regions significantly associated with SCN resistance. Of these, three SNPs were localized in previously mapped QTL intervals, including rhg1 and Rhg4. The GWAS results also detected 10 SNPs in 5 different genomic regions associated with SCN resistance. The identified loci explained an average of 95.5% of the phenotypic variance. The proportion of phenotypic variance was due to additive genetic variance of the validated SNPs. The present study identified multiple new loci and refined chromosomal regions of known loci associated with SCN resistance. The loci and trait-associated SNPs identified in this study can be used for developing soybean cultivars with durable resistance against SCN.  相似文献   

16.
Citrus gummosis, caused by Phytophthora spp., is an important citrus disease in Brazil. Almost all citrus rootstock varieties are susceptible to it to some degree, whereas resistance is present in Poncirus trifoliata, a closely related species. The objective of this study was to detect QTLs linked to citrus Phytophthora gummosis resistance. Eighty individuals of the F1 progeny, obtained by controlled crosses between Sunki mandarin Citrus sunki (susceptible) and Poncirus trifoliata cv. Rubidoux (resistant), were evaluated. Resistance to Phytophthora parasitica was evaluated by inoculating stems of young plants with a disc of fungal mycelia and measuring lesion lengths a month later. Two QTLs linked to gummosis resistance were detected in linkage groups 1 and 5 of the P. trifoliata map, and one QTL in linkage group 2 of the C. sunki map. The phenotypic variation explained by individual QTLs was 14% for C. sunki and ranged from 16 to 24% for P. trifoliata. The low character heritability (h2 = 18.7%) and the detection of more than one QTL associated with citrus Phytophthora gummosis resistance showed that inheritance of the resistance is quantitative.  相似文献   

17.
CLE peptides are small extracellular proteins important in regulating plant meristematic activity through the CLE‐receptor kinase‐WOX signalling module. Stem cell pools in the SAM (shoot apical meristem), RAM (root apical meristem) and vascular cambium are controlled by CLE signalling pathways. Interestingly, plant‐parasitic cyst nematodes secrete CLE‐like effector proteins, which act as ligand mimics of plant CLE peptides and are required for successful parasitism. Recently, we demonstrated that Arabidopsis CLE receptors CLAVATA1 (CLV1), the CLAVATA2 (CLV2)/CORYNE (CRN) heterodimer receptor complex and RECEPTOR‐LIKE PROTEIN KINASE 2 (RPK2), which transmit the CLV3 signal in the SAM, are required for perception of beet cyst nematode Heterodera schachtii CLEs. Reduction in nematode infection was observed in clv1, clv2, crn, rpk2 and combined double and triple mutants. In an effort to develop nematode resistance in an agriculturally important crop, orthologues of Arabidopsis receptors including CLV1, CLV2, CRN and RPK2 were identified from soybean, a host for the soybean cyst nematode Heterodera glycines. For each of the receptors, there are at least two paralogues in the soybean genome. Localization studies showed that most receptors are expressed in the root, but vary in their level of expression and spatial expression patterns. Expression in nematode‐induced feeding cells was also confirmed. In vitro direct binding of the soybean receptors with the HgCLE peptide was analysed. Knock‐down of the receptors in soybean hairy roots showed enhanced resistance to SCN. Our findings suggest that targeted disruption of nematode CLE signalling may be a potential means to engineer nematode resistance in crop plants.  相似文献   

18.
Selection and inbreeding of soybean cyst nematodes increased populations' ability to produce cysts on some soybean lines with concurrent decreases in numbers of cysts on other soybean lines: evidence that some alleles for incompatibility were either linked or at the same loci. Some responses could be explained only by linkage of nematode genes for avirulence. Linkage of nematode alleles for incompatibility could be involved when selection increased numbers of cysts on several lines even though the usual interpretation has been that the lines had some of the same genes for resistance. Most of the lines used in this study may have fewer alleles for incompatibility than most "resistant" lines. Use of these lines with fewer genes for resistance should help in the identification of individual alleles for incompatibility necessary for resolving the allelism and/or linkage of these nematode genes.  相似文献   

19.
We have constructed a soybean bacterial artificial chromosome (BAC) library using the plant introduction (PI) 437654. The library contains 73728 clones stored in 192384-well microtiter plates. A random sampling of 230 BACs indicated an average insert size of 136 kb with a range of 20 to 325 kb, and less than 4% of the clones do not contain inserts. Ninety percent of BAC clones in the library have an average insert size greater than 100 kb. Based on a genome size of 1115 Mb, library coverage is 9 haploid genome equivalents. Screening the BAC library colony filters with cpDNA sequences showed that contamination of the genomic library with chloroplast clones was low (1.85%). Library screening with three genomic RFLP probes linked to soybean cyst nematode (SCN) resistance genes resulted in an average of 18 hits per probe (range 7 to 30). Two separate pools of forward and reverse suppression subtractive cDNAs obtained from SCN-infected and uninfected roots of PI 437654 were hybridized to the BAC library filters. The 488 BACs identified from positive signals were fingerprinted and analyzed using FPC software (version 4.0) resulting in 85 different contigs. Contigs were grouped and analyzed in three categories: (1) contigs of BAC clones which hybridized to forward subtracted cDNAs, (2) contigs of BAC clones which hybridized to reverse subtracted cDNAs, and (3) contigs of BAC clones which hybridized to both forward and reverse subtracted cDNAs. This protocol provides an estimate of the number of genomic regions involved in early resistance response to a pathogenic attack.  相似文献   

20.
Protein kinases phosphorylate proteins for functional changes and are involved in nearly all cellular processes, thereby regulating almost all aspects of plant growth and development, and responses to biotic and abiotic stresses. We generated two independent co-expression networks of soybean genes using control and stress response gene expression data and identified 392 differentially highly interconnected kinase hub genes among the two networks. Of these 392 kinases, 90 genes were identified as “syncytium highly connected hubs”, potentially essential for activating kinase signalling pathways in the nematode feeding site. Overexpression of wild-type coding sequences of five syncytium highly connected kinase hub genes using transgenic soybean hairy roots enhanced plant susceptibility to soybean cyst nematode (SCN; Heterodera glycines) Hg Type 0 (race 3). In contrast, overexpression of kinase-dead variants of these five syncytium kinase hub genes significantly enhanced soybean resistance to SCN. Additionally, three of the five tested kinase hub genes enhanced soybean resistance to SCN Hg Type 1.2.5.7 (race 2), highlighting the potential of the kinase-dead approach to generate effective and durable resistance against a wide range of SCN Hg types. Subcellular localization analysis revealed that kinase-dead mutations do not alter protein cellular localization, confirming the structure–function of the kinase-inactive variants in producing loss-of-function phenotypes causing significant decrease in nematode susceptibility. Because many protein kinases are highly conserved and are involved in plant responses to various biotic and abiotic stresses, our approach of identifying kinase hub genes and their inactivation using kinase-dead mutation could be translated for biotic and abiotic stress tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号