首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Heat shock protein 72 (Hsp72) is thought to protect cells against cellular stress. The protective role of Hsp72 was investigated by determining the effect of this protein on the stress-activated protein kinase signaling pathways. Prior exposure of NIH 3T3 cells to mild heat shock (43 degrees C for 20 min) resulted in inhibition of H(2)O(2)-induced activation of apoptosis signal-regulating kinase 1 (ASK1). Overexpression of Hsp72 also inhibited H(2)O(2)-induced activation of ASK1 as well as that of downstream kinases in the p38 mitogen-activated protein kinase (MAPK) signaling cascade. Recombinant Hsp72 bound directly to ASK1 and inhibited ASK1 activity in vitro. Furthermore, coimmunoprecipitation analysis revealed a physical interaction between endogenous Hsp72 and ASK1 in NIH 3T3 cells exposed to mild heat shock. Hsp72 blocked both the homo-oligomerization of ASK1 and ASK1-dependent apoptosis. Hsp72 antisense oligonucleotides prevented the inhibitory effects of mild heat shock on H(2)O(2)-induced ASK1 activation and apoptosis. These observations suggest that Hsp72 functions as an endogenous inhibitor of ASK1.  相似文献   

2.
3.
4.
Apoptosis signal-regulating kinase 1 (ASK1) is a mitogen-activated protein kinase kinase kinase family member that plays a central role in cytokine- and stress-induced apoptosis by activating c-Jun N-terminal kinase and p38 signaling cascades. ASK1-induced apoptotic activity is up-regulated by two cellular factors, Daxx and TRAF2, through direct protein-protein interactions. Daxx and TRAF2 are death receptor-associated proteins in Fas and tumor necrosis factor-alpha pathways, respectively. Recent studies suggest that calcium signaling may regulate ASK1 pathway. Here we report that human D53L1, a member of the tumor protein D52 family involved in cell proliferation and calcium signaling, up-regulates the ASK1-induced apoptosis. The human D53L1 physically interacts with the C-terminal regulatory domain of ASK1 and promotes ASK1-induced apoptotic activity by activating caspase signaling in mammalian cells. In luciferase reporter assays, hD53L1 activates c-Jun N-terminal kinase-mediated transactivation in the presence of ASK1. Expression of hD53L1 enhances autophosphorylation and kinase activity of ASK1 but has no effect on ASK1 oligomerization that is necessary for kinase activity and on binding of ASK1 to MKK6, a downstream factor of ASK1. Taken together, these results suggest that activation of ASK1 by hD53L1 may provide a novel mechanism for ASK1 regulation.  相似文献   

5.
Apoptosis signal-regulating kinase (ASK) 1 is a mitogen-activated protein kinase kinase kinase (MAP3K) in the c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase pathways that play multiple important roles in cytokine and stress responses. Here we show that ASK2, a highly related serine/threonine kinase to ASK1, also functions as a MAP3K only in a heteromeric complex with ASK1. We found that endogenous ASK2 was constitutively degraded in ASK1-deficient cells, suggesting that ASK1 is required for the stability of ASK2. ASK2 in a heteromeric complex with a kinase-negative mutant of ASK1 (ASK1-KN) effectively activated MAP2K and was more competent to respond to oxidative stress than ASK2 alone. Knockdown of ASK2 revealed that ASK2 was required for oxidative stress-induced JNK activation. These results suggest that ASK2 forms a functional MAP3K complex with ASK1, in which ASK1 supports the stability and the active configuration of ASK2. Moreover, ASK2 was found to activate ASK1 by direct phosphorylation, suggesting that ASK1 and ASK2 in a heteromeric complex facilitate their activities to each other by distinct mechanisms. Such a formation of functional heteromeric complex between different MAP3Ks may be advantageous for cells to cope with a wide variety of stimuli by fine regulation of cellular responses.  相似文献   

6.
7.
8.
Double-stranded RNA-activated protein kinase (PKR), a serine/threonine kinase, is activated in virus-infected cells and acts as an antiviral machinery of type I interferons. PKR controls several stress response pathways induced by double-stranded RNA, tumor necrosis factor-alpha or lipopolysaccharide, which result in the activation of stress-activated protein kinase/c-Jun NH2-terminal kinase and p38 of the mitogen-activated protein kinase family. Here we showed a novel interaction between PKR and apoptosis signal-regulating kinase 1 (ASK1), one of the members of the mitogen-activated protein kinase kinase kinase family, which is activated in response to a variety of apoptosis-inducing stimuli. PKR and ASK1 showed predominant cytoplasmic localization in COS-1 cells transfected with both cDNAs, and coimmunoprecipitated from the cell extracts. A dominant negative mutant of PKR (PKR-KR) inhibited both the apoptosis and p38 activation induced by ASK1 in vivo. Consistently, PKR-KR inhibited the autophosphorylation of ASK1 in vitro, and exposure to poly(I)-poly(C) increased the phosphorylation of ASK1 in vivo. These results indicate the existence of a link between PKR and ASK1, which modifies downstream MAPK.  相似文献   

9.
Murine protein serine/threonine kinase 38 (MPK38) is a member of the AMP-activated protein kinase-related serine/threonine kinase family that plays an important role in various cellular processes, including cell cycle, signaling pathways, and self-renewal of stem cells. Here we demonstrate a functional association between MPK38 and apoptosis signal-regulating kinase 1 (ASK1). The physical association between MPK38 and ASK1 was mediated through their carboxyl-terminal regulatory domains and was increased by H(2)O(2) or tumor necrosis factor alpha treatment. The use of kinase-dead MPK38 and ASK1 mutants revealed that MPK38-ASK1 complex formation was dependent on the activities of both kinases. Ectopic expression of wild-type MPK38, but not kinase-dead MPK38, stimulated ASK1 activity by Thr(838) phosphorylation and enhanced ASK1-mediated signaling to both JNK and p38 kinases. However, the phosphorylation of MKK6 and p38 by MPK38 was not detectable. In addition, MPK38-mediated ASK1 activation was induced through the increased interaction between ASK1 and its substrate MKK3. MPK38 also stimulated H(2)O(2)-mediated apoptosis by enhancing the ASK1 activity through Thr(838) phosphorylation. These results suggest that MPK38 physically interacts with ASK1 in vivo and acts as a positive upstream regulator of ASK1.  相似文献   

10.
The type 1 insulin-like growth factor receptor (IGF-IR) is a receptor-tyrosine kinase that plays a critical role in signaling cell survival and proliferation. IGF-IR binding to its ligand, insulin-like growth factor (IGF-I) activates phosphoinositide 3-kinase (PI3K), promotes cell proliferation by activating the mitogen-activated protein kinase (MAPK) cascade, and blocks apoptosis by inducing the phosphorylation and inhibition of proapoptotic proteins such as BAD. Apoptosis signal-regulating kinase 1 (ASK1) is a MAP kinase kinase kinase (MAPKKK) that is required for c-Jun N-terminal kinase (JNK) and p38 activation in response to Fas and tumor necrosis factor (TNF) receptor stimulation, and for oxidative stress- and TNFalpha-induced apoptosis. The results presented here indicate that ASK1 forms a complex with the IGF-IR and becomes phosphorylated on tyrosine residue(s) in a manner dependent on IGF-IR activity. IGF-IR signaling inhibited ASK1 irrespective of TNFalpha-induced ASK1 activation and resulted in decreased ASK1-dependent JNK1 stimulation. Signaling through IGF-IR rescued cells from ASK1-induced apoptotic cell death in a manner independent of PI3K activity. These results indicate that IGF-IR signaling suppresses the ASK-1-mediated stimulation of JNK/p38 and the induction of programmed cell death. The simultaneous activation of MAP kinases and the inhibition of the stress-activated arm of the cascade by IGF-IR may constitute a potent proliferative signaling system and is possibly a mechanism by which IGF-I can stimulate growth and inhibit cell death in a wide variety of cell types and biological settings.  相似文献   

11.
Apoptosis signal-regulating kinase (ASK) 1 was recently identified as a mitogen-activated protein (MAP) kinase kinase kinase which activates the c-Jun N-terminal kinase (JNK) and p38 MAP kinase pathways and is required for tumor necrosis factor (TNF)-alpha-induced apoptosis; however, the mechanism regulating ASK1 activity is unknown. Through genetic screening for ASK1-binding proteins, thioredoxin (Trx), a reduction/oxidation (redox)-regulatory protein thought to have anti-apoptotic effects, was identified as an interacting partner of ASK1. Trx associated with the N-terminal portion of ASK1 in vitro and in vivo. Expression of Trx inhibited ASK1 kinase activity and the subsequent ASK1-dependent apoptosis. Treatment of cells with N-acetyl-L-cysteine also inhibited serum withdrawal-, TNF-alpha- and hydrogen peroxide-induced activation of ASK1 as well as apoptosis. The interaction between Trx and ASK1 was found to be highly dependent on the redox status of Trx. Moreover, inhibition of Trx resulted in activation of endogenous ASK1 activity, suggesting that Trx is a physiological inhibitor of ASK1. The evidence that Trx is a negative regulator of ASK1 suggests possible mechanisms for redox regulation of the apoptosis signal transduction pathway as well as the effects of antioxidants against cytokine- and stress-induced apoptosis.  相似文献   

12.
Under serum-free conditions, rapamycin, an inhibitor of mammalian target of rapamycin (mTOR), induces a cellular stress response characterized by rapid and sustained activation of the apoptosis signal-regulating kinase 1 (ASK1) signaling pathway and selective apoptosis of cells lacking functional p53. Here we have investigated how mTOR regulates ASK1 signaling using p53-mutant rhabdomyosarcoma cells. In Rh30 cells, ASK1 was found to physically interact with protein phosphatase 5 (PP5), previously identified as a negative regulator of ASK1. Rapamycin did not affect either protein level of PP5 or association of PP5 with ASK1. Instead, rapamycin caused rapid dissociation of the PP2A-B" regulatory subunit (PR72) from the PP5-ASK1 complex, which was associated with reduced phosphatase activity of PP5. This effect was dependent on expression of eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). Down-regulation of PP5 activity by rapamycin coordinately activated ASK1, leading to elevated phosphorylation of c-Jun. Amino acid deprivation, which like rapamycin inhibits mTOR signaling, also inhibited PP5 activity, caused rapid dissociation of PR72, and activated ASK1 signaling. Overexpression of PP5, but not the PP2A catalytic subunit, blocked rapamycin-induced phosphorylation of c-Jun, and protected cells from rapamycin-induced apoptosis. The results suggest that PP5 is downstream of mTOR, and positively regulated by the mTOR pathway. The findings suggest that in the absence of serum factors, mTOR signaling suppresses apoptosis through positive regulation of PP5 activity and suppression of cellular stress.  相似文献   

13.
14.
Multiple signal transduction pathways are capable of modifying BCL-2 family members to reset susceptibility to apoptosis. We used two-dimensional peptide mapping and sequencing to identify three residues (Ser70, Ser87, and Thr69) within the unstructured loop of BCL-2 that were phosphorylated in response to microtubule-damaging agents, which also arrest cells at G(2)/M. Changing these sites to alanine conferred more antiapoptotic activity on BCL-2 following physiologic death signals as well as paclitaxel, indicating that phosphorylation is inactivating. An examination of cycling cells enriched by elutriation for distinct phases of the cell cycle revealed that BCL-2 was phosphorylated at the G(2)/M phase of the cell cycle. G(2)/M-phase cells proved more susceptible to death signals, and phosphorylation of BCL-2 appeared to be responsible, as a Ser70Ala substitution restored resistance to apoptosis. We noted that ASK1 and JNK1 were normally activated at G(2)/M phase, and JNK was capable of phosphorylating BCL-2. Expression of a series of wild-type and dominant-negative kinases indicated an ASK1/Jun N-terminal protein kinase 1 (JNK1) pathway phosphorylated BCL-2 in vivo. Moreover, the combination of dominant negative ASK1, (dnASK1), dnMKK7, and dnJNK1 inhibited paclitaxel-induced BCL-2 phosphorylation. Thus, stress response kinases phosphorylate BCL-2 during cell cycle progression as a normal physiologic process to inactivate BCL-2 at G(2)/M.  相似文献   

15.
ASK1 (apoptosis signal-regulating kinase 1), a MKKK (mitogen-activated protein kinase kinase kinase), is activated in response to cytotoxic stresses, such as H2O2 and TNFalpha (tumour necrosis factor alpha). ASK1 induction initiates a signalling cascade leading to apoptosis. After exposure of cells to H2O2, ASK1 is transiently activated by autophosphorylation at Thr845. The protein then associates with PP5 (protein serine/threonine phosphatase 5), which inactivates ASK1 by dephosphorylation of Thr845. Although this feedback regulation mechanism has been elucidated, it remains unclear how ASK1 is maintained in the dephosphorylated state under non-stressed conditions. In the present study, we have examined the possible role of PP2Cepsilon (protein phosphatase 2Cepsilon), a member of PP2C family, in the regulation of ASK1 signalling. Following expression in HEK-293 cells (human embryonic kidney cells), wild-type PP2Cepsilon inhibited ASK1-induced activation of an AP-1 (activator protein 1) reporter gene. Conversely, a dominant-negative PP2Cepsilon mutant enhanced AP-1 activity. Exogenous PP2Cepsilon associated with exogenous ASK1 in HEK-293 cells under non-stressed conditions, inactivating ASK1 by decreasing Thr845 phosphorylation. The association of endogenous PP2Cepsilon and ASK1 was also observed in mouse brain extracts. PP2Cepsilon directly dephosphorylated ASK1 at Thr845 in vitro. In contrast with PP5, PP2Cepsilon transiently dissociated from ASK1 within cells upon H2O2 treatment. These results suggest that PP2Cepsilon maintains ASK1 in an inactive state by dephosphorylation in quiescent cells, supporting the possibility that PP2Cepsilon and PP5 play different roles in H2O2-induced regulation of ASK1 activity.  相似文献   

16.
Apoptosis signal-regulating kinase 1 (ASK1) is a MAPKKK family member which activates c-Jun N-terminal kinase (JNK) and p38. In non-stressed cells, ASK1 exists as an inactive complex with the reduced form of thioredoxin. Oxidative stress such as hydrogen peroxide (H2O2) disrupts the ASK1-thioredoxin complex by oxidization of thioredoxin and thereby activates ASK1. The precise mechanism by which ASK1 is activated after its release from thioredoxin is unknown. Here we show that phosphorylation of Thr845 at the activation loop is essential for ASK1 to be activated by H2O2. ASK1 appears to form a silent homo-oligomer through its C-terminal coiled-coil region in non-stressed cells. Following H2O2 treatment, pre-existing ASK1 oligomer undergoes conformational change and creates a new interface within an oligomer, which ultimately leads to trans-autophosphorylation of Thr845. Thus, direct interaction via the coiled-coil region is required for self-scaffolding but not sufficient for activation of ASK1. Importantly, Thr845 of ASK1 can also be trans-phosphorylated by an unidentified Thr845 kinase in response to H2O2 treatment. We propose that this potential Thr845 kinase may be an ignition kinase that triggers Thr845 phosphorylation in oligomerized and activation-competent forms of ASK1.  相似文献   

17.
Kumar Y  Tatu U 《Proteomics》2003,3(4):513-526
Multiple stress proteins are recruited in response to stress in living cells. There are limited reports in the literature analyzing multiple stress protein shifts and their functional consequences on stress response. Using two-dimensional electrophoresis we have analyzed shifts in stress protein profiles in response to energy deprivation as a model of ischemic injury to kidneys. A group of chaperones and stress-induced mitogen activated protein (MAP) kinases were analyzed. In addition to examining stress protein induction and phosphorylation we have also examined the mechanism of cytoprotection by heat shock protein 70 (Hsp70). Our results show that, of the different stress proteins examined, only binding protein (BiP) and Hsp70 were significantly induced upon energy deprivation. Other stress proteins, including Hsp27, calnexin, Hsp90 and ERp57 showed alterations in their phosphorylation profiles. Three different MAP kinases, namely p38, extracellular signal regulated kisase and c-jun N-terminal kinase (JNK) were activated in response to energy deprivation. While JNK activation was linked to apoptosis, activated-p38 was involved in phosphorylation of Hsp27. Study of inhibitors of Hsp70 induction or pre-induction of Hsp70 indicated that induced Hsp70 was involved in the suppression of JNK activation thereby inhibiting apoptotic cell death. Our results provide important insights into the flux in stress protein profiles in response to simulated ischemia and highlight the antiapoptotic, cytoprotective mechanism of Hsp70 action.  相似文献   

18.
19.
Ghrelin is an endogenous ligand of the growth hormone secretagogue receptor (GHS-R), which has been originally isolated from rat stomach. It has been reported that ghrelin inhibited apoptosis in several cells, such as cardiomyocytes, endothelial cells, adipocyte, adrenal zona glomerulosa cells, pancreatic beta-cells, osteoblastic MC3T3-E1 cells, intestinal epithelial cells and hypothalamic neurons. However, it is unknown whether heat-shock protein 70 (HSP70) or apoptosis signal-regulating kinase 1 (ASK1) is the important target molecule which mediates the anti-apoptotic effects of ghrelin. We show that ghrelin inhibited ASK1 activity induced by sodium nitroprusside (SNP), inhibited ASK1-mediated caspase 3 activation and apoptosis in PC12 cells. Ghrelin promoted expression of HSP70. Quercetin, an inhibitor of HSP70, blocked the effects of ghrelin on ASK1 activity. Thus, ghrelin inhibits ASK1-mediated apoptosis and ASK1 activation by a mechanism involving induction of HSP70 expression. The results of the present study suggest the therapeutic potential of ghrelin for some pathological processes or disorders.  相似文献   

20.
The apoptosis signal-regulating kinase 1 (ASK1)-JNK/p38 signaling pathway is pivotal component in cell apoptosis and can be activated by a variety of death stimuli including tumor necrosis factor (TNF) alpha and oxidative stress (reactive oxygen species). However, the mechanism for ASK1 activation is not fully understood. We have recently identified ASK1-interacting protein (AIP1) as novel signal transducer in TNFalpha-induced ASK1 activation by facilitating dissociation of ASK1 from its inhibitor 14-3-3. In the present study, we employed yeast two-hybrid system using the N-terminal domain of AIP1 as bait and identified homeodomain-interacting protein kinase 1 (HIPK1) as an AIP1-associated protein. Interestingly, we showed that TNFalpha induced HIPK1 desumoylation concomitant with a translocation from nucleus to cytoplasm at 15 min followed by a return to nucleus by 60 min. The kinetics of HIPK1 translocation correlates with those of stress-induced ASK1-JNK/P38 activation. A specific JNK inhibitor blocked the reverse but not the initial translocation of HIPK1, suggesting that the initial translocation is an upstream event of ASK1-JNK/p38 signaling and JNK activation regulates the reverse translocation as a feedback mechanism. Consistently, expression of HIPK1 increased, whereas expression of a kinase-inactive form (HIPK1-D315N) or small interference RNA of HIPK1 decreased stress-induced ASK1-JNK/P38 activation without effects on IKK-NF-kappaB signaling. Moreover, a sumoylation-defective mutant of HIPK1 (KR5) localizes to the cytoplasm and is constitutively active in ASK1-JNK/P38 activation. Furthermore, HIPK1-KR5 induces dissociation of ASK1 from its inhibitors 14-3-3 and thioredoxin and synergizes with AIP1 to induce ASK1 activation. Our study suggests that TNFalpha-induced desumoylation and cytoplasmic translocation of HIPK1 are critical in TNFalpha-induced ASK1-JNK/p38 activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号