首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nucleus tractus solitarius possessed distinct patterns of cholecystokinin immunoreactive fibers and cell bodies within its various subdivisions. The commissural, medial, intermediate, parvocellular, dorsolateral and interstitial subdivisions contained relatively dense amounts of CCK immunolabelled fibers. In contrast, CCK immunoreactivity within the ventrolateral subdivision consisted of a few scattered fibers and small neurons. The commissural, intermediate, medial, dorsolateral and parvocellular subdivisions contained CCK immunoreactive neurons following colchicine treatment. The presence of CCK in the NTS suggest that it may be involved as a neuromodulator and/or neurotransmitter in circuitry that mediate cardiovascular, respiratory, gastrointestinal and taste functions.  相似文献   

2.
O Ohana  H Portner  KA Martin 《PloS one》2012,7(7):e40601
Neurons of the same column in L4 of the cat visual cortex are likely to share the same sensory input from the same region of the visual field. Using visually-guided patch clamp recordings we investigated the biophysical properties of the synapses of neighboring layer 4 neurons. We recorded synaptic connections between all types of excitatory and inhibitory neurons in L4. The E-E, E-I, and I-E connections had moderate CVs and failure rates. However, E-I connections had larger amplitudes, faster rise-times, and shorter latencies. Identification of the sites of putative synaptic contacts together with compartmental simulations on 3D reconstructed cells, suggested that E-I synapses tended to be located on proximal dendritic branches, which would explain their larger EPSP amplitudes and faster kinetics. Excitatory and inhibitory synapses were located at the same distance on distal dendrites of excitatory neurons. We hypothesize that this co-localization and the fast recruitment of local inhibition provides an efficient means of modulating excitation in a precisely timed way.  相似文献   

3.
Extra — and intracellular unit responses in area AII to stimulation of geniculocortical fibers and of area AI were studied in cat immobilized with D-tubocurarine. In response to stimulation of geniculocortical fibers, antidromic mono-, di-, and polysynaptic spikes were generated by neurons in area AII. The number of antidromic responses in area AII was about half that found in area AI under the same conditions of stimulation. Most of the orthodromic responses were di- and polysynaptic. Intracellular responses also were recorded in the form of EPSPs, EPSP-IPSPs, and primary IPSPs. Stimulation of area AI evoked responses in the neurons of area AII with latent periods of 0.75–6.0, 6.1–16.0, 18.0–23.0, and 60–100 msec. Removal of the medial geniculate body led to a marked decrease in the number of responses with latent periods of 6.1–16.0 msec. Some neurons of area AII responded by spikes to stimulation of both the geniculocortical fibers and area AI. Comparison of the latent periods of responses to these two types of stimulation showed that impulses from area AI to area AII are directed both to input neurons for impulses from the medial geniculate body and to neurons at subsequent stages of the intracortical neuronal change. In response to stimulation of cortical area AI, disynaptic IPSPs appeared in many neurons of area AII. Only one IPSP with a latent period of 1.0 msec, regardable as monosynaptic, was recorded.  相似文献   

4.
D T Piekut 《Peptides》1985,6(5):883-890
Dual antigen immunocytochemical staining procedures were used in the same tissue section to determine the distribution of ACTH immunostained fibers and varicosities within the magnocellular and parvocellular divisions in the paraventricular nucleus (PVN) of rat hypothalamus and elucidate its anatomical relationship to vasopressin (VP) and oxytocin (OXY)-containing neurons. Double immunostained preparations using glucose oxidase-antiglucose oxidase complex combined with PAP complex to visualize two antigens with contrasting colors in the same tissue section were employed. ACTH-immunoreactive (ir) fibers were distributed throughout the periventricular stratum and the parvocellular component of the PVN; in the latter area fibers were particularly dense in the ventral medial portion of the medial parvocellular division. Dual immunostained sections revealed a close anatomical association between opiocortin fibers and oxytocin and vasopressin parvocellular neurons. ACTH immunostained fibers were present in the anterior and medial magnocellular component of PVN and in the ventral medial portion of the posterior magnocellular division; these immunoreactive fibers were in intimate proximity to oxytocin-ir perikarya. The very close approximation between the ACTH-ir fibers and oxytocin-containing cell bodies suggests potential cell to cell communication between the two peptidergic systems in PVN. Few ACTH immunostained fibers were seen in the dorsal lateral portion of the posterior magnocellular division in which vasopressinergic neurons predominate. The present anatomical study supports pharmacological and physiological studies which indicate that opioids can influence the activity of magnocellular PV neurons. This study also elucidates an anatomical relationship between opiocortins (ACTH1-39) and parvocellular PV neurons which suggests that the opiocortin system may play a role in the regulation of both the neuroendocrine and autonomic activities of specific PV neurons.  相似文献   

5.
The interhemispheric connections of the temporal cortical area in the cat cerebrum have been investigated after electrolytic coagulation of separate fields with subsequent study of the degenerated fibers course after Nauta--Gygax method. The fields 5 and 7 give origin mainly to homotopic fibers, terminating in symmetrical fields of the contralateral hemisphere. These fields also give origin to a small number of heterotopic commissural fibers, that provide bilateral connection of the fields 5 and 7 and do not get beyond the limits of the temporal cortex. The commissural fibers of the temporal cortex get into the contralateral hemisphere through the corpus callosum. In the latter, the commissural fibers of the field 5 are situated more rostral of the fibers running from the field. 7. This corresponds to topographic arrangement of the fields on the cortical surface.  相似文献   

6.
Substance P binding sites in the nucleus tractus solitarius were visualized with receptor autoradiography using Bolton-Hunter [125I]substance P. Substance P binding sites were found to have distinct patterns within the cat nucleus tractus solitarius. The majority of substance P binding sites were present in the medial, intermediate and the peripheral rim of the parvocellular subdivisions. Lower amounts of substance P binding sites were present in the commissural, ventrolateral, interstitial and dorsolateral subdivisions. No substance P binding sites were present in the central region of the parvocellular subdivision or the solitary tract. The localization of substance P binding sites in the nucleus tractus solitarius is very similar to the patterns of substance P immunoreactive fibers previously described for this region. Results of this study add further support for a functional role of substance P in synaptic circuits of the nucleus tractus solitarius.  相似文献   

7.
Spiral and translation stimuli were used to investigate the response properties of cat AMLS (anteromedial lateral suprasylvian area) neurons to optic flow. The overwhelming majority of cells could be significantly excited by the two modes of stimuli and most responsive cells displayed obvious direction selectivity. It is the first time to find a visual area in mammalian brain preferring rotation stimuli. Two representative hypotheses are discussed here on the neural mechanism of optic flow analysis in visual cortex, and some new viewpoints are proposed to explain the experimental results.  相似文献   

8.
Spiral and translation stimuli were used to investigate the response properties of cat AMLS (anteromedial lateral suprasylvian area) neurons to optic flow. The overwhelming majority of cells could be significantly excited by the two modes of stimuli and most responsive cells displayed obvious direction selectivity. It is the first time to find a visual area in mammalian brain preferring rotation stimuli. Two representative hypotheses are discussed here on the neural mechanism of optic flow analysis in visual cortex, and some new viewpoints are proposed to explain the experimental results.  相似文献   

9.
Layer-by-layer arrangement of the commissural and associative fibers has been studied in the cat parietal cortex. The commissural fibers are distributed in all the layers of the parietal cortex in the contralateral hemisphere, except the superficial part of the I layer. These fibers mainly terminate in the III, IV layers of the contralateral parietal cortex, though their termination in other layers is not excluded. The associative fibers of the parietal cortex are distributed in all the layers of the sensomotor area, except the superficial part of the I layer. They mainly terminate in the III, IV, V layers of the primary somatosensory and in the III, V layers of the motor cortex.  相似文献   

10.
1. Ampullary electroreceptors in elasmobranchs are innervated by fibers of the ALLN, which projects to the dorsal octavolateralis nucleus (DON). The purpose of this study is to examine the response characteristics of ALLN fibers and DON neurons to weak D.C. and sinusoidal electric field stimuli presented as local dipole fields. 2. ALLN fibers respond to presentation of D.C. fields with a phasic burst, followed by a more slowly adapting period of firing. Ascending efferent neurons (AENs) in the DON respond to stimuli with a similar initial burst, which adapts more quickly. 3. Type 1, 2, and 3 neurons are possible local interneurons or commissural DON neurons. Type 1 neurons demonstrate response properties similar to those of AENs. Type 2 cells demonstrated slowly adapting responses to excitatory stimuli, the duration of the response increased with the amplitude of the stimulus. Type 3 neurons demonstrated an increased rate of firing, but the response lacked any specific temporal characteristics. 4. ALLN fibers typically have receptive fields consisting of a single ampulla. The receptive field sizes of DON neurons exhibited varying degrees of convergence for different cell types. 5. Responses of ALLN fibers and DON neurons to weak sinusoidal stimuli demonstrated very similar frequency response characteristics for all cell types. The peak sensitivity of electrosensory neurons was between 5-10 Hz.  相似文献   

11.
Medullary electrosensory processing in the little skate   总被引:1,自引:0,他引:1  
1. Previous studies have demonstrated that the resting activity of electrosensory ALLN fibers is modulated by the animal's own respiratory activity and that all fibers innervating a single ampullary cluster are modulated with the same amplitude and phase relationship to ventilation. We demonstrate that ALLN fibers in the skate are modulated in this common-mode manner bilaterally, regardless of receptor group, orientation, or position of the receptor pore on the body surface (Fig. 2). 2. Ascending efferent neurons (AENs), which project to the electrosensory midbrain from the DON, are modulated through a much smaller portion of their dynamic range. AENs give larger responses to an extrinsic local electric field than to the respiratory driving, indicating that a mechanism exists for suppressing ventilatory electrosensory reafference. 3. In paralyzed animals no modulation of resting activity or of responses of extrinsic electric fields could be observed with respect to the animal's respiratory motor commands in the absence of electrosensory reafference. 4. Cells of the dorsal granular ridge (DGR) project to medullary AENs via the DON molecular layer. A majority of proprioceptive DGR neurons are modulated by ventilatory activity, however, in a given fish the modulation is not in the same phase relationship to ventilation among DGR units. 5. The modulation of AENs during respiration was increased following transection of the contralateral ALLN (Fig. 9). Resting activity and responses to excitatory stimuli were inhibited by simultaneous stimulation of the transected contralateral ALLN indicating that a common-mode rejection mechanism is mediated via the commissural interconnections of the DONs.  相似文献   

12.
An immunohistochemical study of the cat pineal gland was performed using a rabbit polyclonal antibody directed against neuropeptide Y (NPY) and an antibody directed against the C-terminal flanking peptide of neuropeptide Y (CPON). Numerous NPY- and CPON-immunoreactive (IR) nerve fibers were demonstrated throughout the gland and in the pineal capsule. The number of IR nerve fibers in the capsule was high and from this location fibers were observed to penetrate into the gland proper via the pineal connective tissue septa, often following the blood vessels. From the connective tissue septa IR fibers intruded into the parenchyma between the pinealocytes. Many IR nerve fibers were observed in the pineal stalk and in the habenular as well as the posterior commissural areas. The number of NPY/CPON-IR nerve fibers in pineal glands from animals bilaterally ganglionectomized two weeks before sacrifice was low. The source of most of the extrasympathetic NPY/CPONergic nerve fibers is probably the brain from where they enter the pineal via the pineal stalk. However, an origin of some of the fibers from parasympathetic ganglia cannot be excluded due to the presence of a few IR fibers in the pineal capsule of ganglionectomized animals. It is concluded that the cat pineal is richly innervated with NPYergic nerve fibers mostly of sympathetic origin. The posttranslational processing of the NPY promolecule results in the presence of both NPY and CPON in intrapineal nerve fibers.  相似文献   

13.
In decerebrate, vagotomized, paralyzed, and ventilated cats, activities of the phrenic nerve and single hypoglossal nerve fibers were monitored. The great majority of hypoglossal neuronal activities were inspiratory (I), discharging during a period approximating that of phrenic. Many were not active at normocapnia but were recruited in hypercapnia or hypoxia. Once recruited, discharge frequencies, which rose quickly to near maximal levels in early to midinspiration, significantly increased with further augmentations of drive. Also, the onset of activities became progressively earlier, compared with phrenic discharge, in hypercapnia or hypoxia. Smaller numbers of hypoglossal fiber activities, having inspiratory-expiratory (I-E), expiratory (E), expiratory-inspiratory (E-I), or tonic discharge patterns, were also recorded. Activities of E, I-E, and those I fibers that became I-E in high drive may underlie the early burst of expiratory activity of the hypoglossal nerve. It is concluded that the firing and recruitment patterns of hypoglossal neurons differ from those of phrenic motoneurons. However, responses to chemoreceptor stimuli are similar among the two neuronal groups.  相似文献   

14.
Summary The seventh cranial nerve in Rana pipiens is a slender nerve with limited peripheral distribution. We investigated the afferent and efferent components of this nerve by labeling its major branch, the hyomandibular, with horseradish peroxidase. The efferent portion of the seventh nerve originates from a small cell group in the upper medulla which contains two subdivisions. Afferent fibers carried in nerve VII travel in the solitary tract and the dorsolateral funiculus. The solitary component consists of a small number of ascending fibers that reach the level of the trigeminal nucleus and a large descending component that terminates slightly caudal to the obex in the commissural nuclei of the solitary complex. Afferent fibers also descend in the dorsolateral funiculus; many of these fibers cross dorsal to the central canal in the lower medulla. Most of the fibers in the dorsolateral funiculus terminate in the ipsilateral and contralateral dorsal horns and in nuclei of the dorsal column. A few ipsilateral fibers reach lower thoracic levels of the spinal cord.  相似文献   

15.
Auditory brain-stem potentials (ABRs) were studied in cats for up to 45 days after kainic acid had been injected unilaterally or bilaterally into the superior olivary complex (SOC) to produce neuronal destruction while sparing fibers of passage and the terminals of axons of extrinsic origin connecting to SOC neurons. The components of the ABR in cat were labeled by their polarity at the vertex (P, for positive) and their order of appearance (the arabic numerals 1, 2, etc.). Component P1 can be further subdivided into 2 subcomponents labeled P1a and P1b. The correspondences we have assumed between the ABR components in cat and man are indicated by providing a Roman numeral designation for the human component in parentheses following the feline notation, e.g., P4 (V). With bilateral SOC destruction, there was a significant and marked attenuation of waves P2 (III), P3 (IV), P4 (V), P5 (VI), and the sustained potential shift (SPS) amounting to as much as 80% of preoperative values. Following unilateral SOC destruction the attenuation of many of these same ABR components, in response to stimulation of either ear, was up to 50%. No component of the ABR was totally abolished even when the SOC was lesioned 100% bilaterally. In unilaterally lesioned cats with extensive neuronal loss (> 75%) the latencies of the components beginnign at P3 (IV) were delayed to stimulation of the ear ipsilateral to the injection site but not to stimulation of the ear contralateral to the injection. Binaural interaction components of the ABR were affected in proportion to the attenuation of the ABR. These results are compatible with multiple brain regions contributing to the generation of the components of the ABR beginning with P2 (III) and that components P3 (IV), P4 (V), and P5 (VI) and the sustained potential shift depend particularly on the integrity of the neurons of the SOC bilaterally. The neurons of the lateral subdivision (LSO) and the medial nucleus of the trapezoid body (MNTB) of the SOC have a major role in generating waves P3 (IV) and P4 (V).  相似文献   

16.
Pulse-triggered averaging technique was applied to retinotectal connections of the frog. An extracellular single unit was first isolated from the terminals of retinal fibers, and then intracellular responses were recorded from a tectal neuron in the vicinity of the extracellular recording electrode. Intracellular potentials in response to a moving stimulus were averaged by triggering with the isolated presynaptic impulses. The results show that "on-off" retinal fibers monosynaptically excite E-E type (EPSP at "on" and "off" of light) and EI-EI type (EPSP-IPSP at "on" and "off" of light). One of the E-E type neurons was identified as a large ganglionic neuron in layer 8.  相似文献   

17.
The morphology and topographical distribution of neurons and terminals containing calcitonin gene-related peptide (CGRP) immunoreactivity in the cat periaqueductal grey (PAG) were studied using a rabbit antiserum raised against the C-terminal region of rat α-CGRP. In normal cats, numerous fibers, but rarely immunoreactive neurons, were observed in the PAG. CGRP-containing fibers showed bouton-like swellings along their length and expanded in terminal clusters of boutons. In many cases, CGRP-positive fibers were also observed in close association with small blood vessels. Immunoreactive fibers were particularly numerous at caudal PAG levels, mostly in its ventrolateral portion. In colchicine-treated cats, the pattern of CGRP-containing fibers was basically unchanged, despite a reduction of both the number of fibers and the intensity of fiber staining; in addition, numerous CGRP-positive neurons were found, mostly in the ventrolateral portion of the caudal PAG. These neurons were fusiform, spheroidal, and triangular in shape. The selective distribution of CGRP-positive elements in the PAG suggests a functional specialization of these neurons in the activation of pain-modulating mechanisms.  相似文献   

18.
The morphology and topographical distribution of neurons and terminals containing calcitonin gene-related peptide (CGRP) immunoreactivity in the cat periaqueductal grey (PAG) were studied using a rabbit antiserum raised against the C-terminal region of rat alpha-CGRP. In normal cats, numerous fibers, but rarely immunoreactive neurons, were observed in the PAG. CGRP-containing fibers showed bouton-like swellings along their length and expanded in terminal clusters of boutons. In many cases, CGRP-positive fibers were also observed in close association with small blood vessels. Immunoreactive fibers were particularly numerous at caudal PAG levels, mostly in its ventrolateral portion. In colchicine-treated cats, the pattern of CGRP-containing fibers was basically unchanged, despite a reduction of both the number of fibers and the intensity of fiber staining; in addition, numerous CGRP-positive neurons were found, mostly in the ventrolateral portion of the caudal PAG. These neurons were fusiform, spheroidal, and triangular in shape. The selective distribution of CGRP-positive elements in the PAG suggests a functional specialization of these neurons in the activation of pain-modulating mechanisms.  相似文献   

19.
Extra- and intracellular reactions of 280 neurons of the pars principalis of the medial geniculate body (MGB) and of 408 auditory cortical neurons in area AI to stimulation of the inferior brachium of the midbrain and geniculocortical fibers were studied in cats immobilized with D-tubocurarine. Single electrical stimulation of the inferior brachium was shown to evoke a long and complex neuronal response in MGB in the form of excitation of some and inhibition of other neurons. The initial component of this response lasted 13 msec. Excitation of 72% of neurons participating in the response took place during the first 3 msec after the beginning of stimulation. In the same period 84% of IPSP arose. The inferior brachium was shown to contain a certain number of descending fibers. Some of them are axons of MGB neurons. Many fibers of the inferior brachium reach the auditory cortex without synaptic relay in MGB. Of all cells of MGB excited by stimulation of the inferior brachium monosynaptically, 76% are thalamocortical relay neurons; the rest are interneurons. Of the relay neurons of MGB 90% are excited monosynaptically, the rest by impulses passing through two or three synaptic relays in MGB. During stimulation of the inferior brachium, responses consisting of EPSP-IPSP and primary IPSP are recorded in many neurons of MGB. About 20% of primary IPSP arise monosynaptically, evidently in response to stimulation of inhibitory fibers of the inferior brachium. Most IPSP arise disynaptically, with the participation of an inhibitory interneuron located at the entrance to MGB. Inhibition observed in this case is direct afferent in nature.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 11, No. 6, pp. 515–523, November–December, 1979.  相似文献   

20.
Using multibarrel electrodes, recordings were made from single neurons in the insular cortex including the cortical taste area (CTA) of urethane-anesthetized rats. The effects of an iontophoretic application of calcitonin gene-related peptide (CGRP) and substance P (SP) on the spontaneous discharges and taste responses were tested. In a total sample of neurons (mostly non-taste), CGRP affected the spontaneous discharges in 35.6% of the 571 neurons studied and SP in 38.3% of the 775 neurons studied. The effects were mostly (approximately 85-87%) facilitatory. Peptide-sensitive neurons were found at a similar frequency in all three insular areas-granular, dysgranular and agranular (areas GI, DI and AI). This is in contrast to previous reports that CGRP receptors were rich in area DI and CGRP-immunoreactive afferents numerous in area AI, but consistent with previous reports that the distribution of SP receptors and SP fibers was dense in the insular cortex. In approximately 40% of the 76 taste neurons recorded from areas GI and DI, the peptides affected the spontaneous discharges (mostly facilitated). When the taste responses were examined during application of the peptides, significant (mainly depressant) effects were seen in 61% of 18 neurons for CGRP and in 70.5% of 17 for SP. Such effects were not recognized on responses to specific taste stimuli and were not correlated with the effects on the spontaneous discharges. The findings indicate that both peptides modify taste coding in CTA neurons presynaptically and/or postsynaptically, independently of the existence of receptors on the neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号