首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycoconjugates containing polysialic acid have many biological activities and represent target molecules for therapeutic interventions. Enzymatic synthesis of these glycoconjugates should give access to these important molecules to evaluate their potential. The polysialyltransferases from both Neisseria meningitidis and Escherichia coli were cloned and expressed as recombinant proteins in E. coli. We have used synthetic acceptors to probe the acceptor requirement of these enzymes and to examine the basic enzymology. The minimum number of sialic acid residues (Neu5Ac) on the acceptor for activity in vitro was shown to be 2 for both enzymes, but a large increase in activity was seen if the acceptor had three Neu5Ac residues. The polysialyltransferase from N. meningitidis generated longer reaction products than the enzyme from E. coli on FCHASE acceptors. Examination of the products showed them to be a heterogeneous mixture, but products with >50 Neu5Ac residues could be seen using capillary zone electrophoresis analyses. In addition we made fusion proteins of these polysialyltransferase enzymes with the bifunctional alpha-2,3/alpha-2,8-sialyltransferase from Campylobacter jejuni to create self priming polysialyltransferases. These bifunctional sialyltransferases utilized various synthetic disaccharide acceptors with a terminal galactose, and we demonstrate here that the PST enzyme from N. meningitidis and its fusion protein with the C. jejuni sialyltransferase can be used to create polysialic acid on O-linked glycopeptides.  相似文献   

2.
Vionnet J  Vann WF 《Glycobiology》2007,17(7):735-743
Escherichia coli K92 produces a capsular polysialic acid with alternating alpha2,8 alpha2,9 NeuNAc linkages. This polysaccharide is cross-reactive with the neuroinvasive pathogen Neisseria meningitidis Group C. The K92 polysialyltransferase (PST) catalyzes the synthesis of the polysialic acid with alternating linkages by the transfer of NeuNAc from CMP-NeuNAc to the nonreducing end of the growing polymer. We used a fluorescent-based high-performance liquid chromatography assay to characterize the process of chain extension. The PST elongates the acceptor GT3-FCHASE in a biphasic fashion. The initial phase polymers are characterized by accumulation of product containing 1-8 additional sialic acid residues. This phase is followed by a very rapid formation of high-molecular weight (MW) polymer as the accumulated oligosaccharides containing 8-10 sialic acids are consumed. The high-MW polymer contains 90-100 sialic acids and is sensitive to degradation by periodate and K1-5 endoneuraminidase, suggesting that the polymer contains the alternating structure. The polymerization reaction does not appear to be strictly processive, since oligosaccharides of each intermediate size were detected before accumulation of high-molecular weight polymer. Synthesis can be blocked by CMP-9-azido-NeuNAc. These results suggest that the K92 PST forms both alpha2,8 and alpha2,9 linkages in a successive and nonprocessive fashion.  相似文献   

3.
We have chosen E. coli K92, which produces the alternating structure alpha(2-8)neuNAc alpha(2-9)neuNAc as a model system for studying bacterial polysaccharide biosynthesis. We have shown that the polysialyltransferase encoded by the K92 neuS gene can synthesize both alpha(2-8) and alpha(2-9) neuNAc linkages in vivo by 13C-nuclear magnetic resonance analysis of polysaccharide isolated from a heterologous strain containing the K92 neuS gene. The K92 polysialyltransferase is associated with the membrane in lysates of cells harboring the neuS gene in expression vectors. Although the enzyme can transfer sialic acid to the nonreducing end of oligosaccharides with either linkage, it is unable to initiate chain synthesis without exogenously added polysialic acid. Thus, the polysialyltransferase encoded by neuS is not sufficient for de novo synthesis of polysaccharide but requires another membrane component for initiation. The acceptor specificity of this polysialyltransferase was studied using sialic acid oligosaccharides of various structures as exogenous acceptors. The enzyme can transfer to the nonreducing end of all bacteria polysialic acids, but has a definite preference for alpha(2-8) acceptors. Gangliosides containing neuNAc alpha(2-8)neuNAc are elongated, whereas monsialylated gangliosides are not. Disialylgangliosides are better acceptors than short oligosaccharides, suggesting a lipid-linked oligosaccharide may be preferred in the elongation reaction. These studies show that the K92 polysialyltransferase catalyzes an elongation reaction that involves transfer of sialic acid from CMP-sialic acid to the nonreducing end of two different acceptor substrates.  相似文献   

4.
Polysialoglycoproteins (PSGP), a class of glycoproteins containing oligo(poly)sialylglycan chains, are the major glycoprotein components in cortical alveoli of a number of Salmonidae fish eggs. Lake trout, Salvelinus namaycush, egg PSGP (PSGP(Sn)) differs from rainbow trout, Salmo gairdneri, egg PSGP (PSGP(Sg)) in its sialic acid composition; the former contains both N-acetyl- and N-glycolyl-D-neuraminic acid residues, designated Neu5Ac and Neu5Gc, while the latter contains only Neu5Gc residues. Fragmentation analysis of oligo(poly)sialyl chains in lake trout PSGP(Sn) has established that there are two distinct types of oligo(poly)sialyl structures in this PSGP molecule, namely alpha-2,8-linked oligo/poly(Neu5Ac) and alpha-2,8-linked oligo/poly(Neu5Gc). No hybrid structure having both Neu5Ac and Neu5Gc residues in the fragment oligosialic acids was detected. These two distinct PSGP preparations from eggs of lake trout and rainbow trout have been used to compare their immunoreactivity with anti-polysialyl antibodies (H.46) and sensitivity to a bacteriophage-derived (Escherichia coli K1F) endo-N-acetylneuraminidase (Endo-N). H.46 was found to cross-react only with lake trout PSGP(Sn) in immunodiffusion assays but not with rainbow trout PSGP(Sg), indicating that H.46 is a specific probe for alpha-2,8-linked poly(Neu5Ac) but not for poly(Neu5Gc). In contrast, Endo-N was found to catalyze the hydrolysis of both alpha-2,8-linked poly (Neu5Ac) and poly(Neu5Gc), so that this enzyme can be used as a diagnostic reagent for detecting both types of polysialic acids. H.46 was used in indirect immunofluorescence experiments to localize PSGP(Sn) in cortical alveoli isolated from lake trout eggs.  相似文献   

5.
Naturally occurring polysialic acid (polySia) structures have a large diversity, primarily arising from the diversity in the sialic acid components as well as in the intersialyl linkages. In 2004, we demonstrated the presence of a new type of polySia, 8-O-sulfated N-acetylneuraminic acid (Neu5Ac) capped α2,9-linked polyNeu5Ac, on the O-glycans of a major 40-80 kDa sialoglycoprotein, flagellasialin, in sea urchin sperm. In this study, we demonstrated that another type of polySia, the α2,8-linked polyNeu5Ac, exclusively occurs on O-glycans of a 190 kDa glycoprotein (190 kDa-gp), whereas the α2,9-linked polyNeu5Ac is exclusively present on flagellasialin. The 190 kDa-gp is localized in both flagellum and head of sperm. We also demonstrated that polysialogangliosides containing the α2,8-linked polyNeu5Ac are present in sperm head. Thus, this study shows two novel features of the occurrence of polySia in nature, the co-localization of polySia with different intersialyl linkages, the α2,8- and α2,9-linkages, in a single cell and the occurrence of α2,8-linked polyNeu5Ac in glycolipids. Anti-α2,8-linked polyNeu5Ac antibody had no effect on fertilization, which contrasted with the previous results that anti-α2,9-linked polyNeu5Ac antibody inhibited sperm motility and fertilization. Based on these properties, distinct functions of α2,8- and α2,9-polySia structures are implicated in fertilization.  相似文献   

6.
Polysialic acid (PSA) capsules are cell-associated homopolymers of alpha2,8-, alpha2,9-, or alternating alpha2,8/2,9-linked sialic acid residues that function as essential virulence factors in neuroinvasive diseases caused by certain strains of Escherichia coli and Neisseria meningitidis. PSA chains structurally identical to the bacterial alpha2,8-linked capsular polysaccharides are also synthesized by the mammalian central nervous system, where they regulate neuronal function in association with the neural cell adhesion molecule (NCAM). Despite the structural identity between bacterial and NCAM PSAs, the respective polysialyltransferases (polySTs) responsible for polymerizing sialyl residues from donor CMP-sialic acid are not homologous glycosyltransferases. To better define the mechanism of capsule biosynthesis, we established the functional interchangeability of bacterial polySTs by complementation of a polymerase-deficient E. coli K1 mutant with the polyST genes from groups B or C N. meningitidis and the control E. coli K92 polymerase gene. The biochemical and immunochemical results demonstrated that linkage specificity is dictated solely by the source of the polymerase structural gene. To determine the molecular basis for linkage specificity, we created chimeras of the K1 and K92 polySTs by overlap extension PCR. Exchanging the first 52 N-terminal amino acids of the K1 NeuS with the C terminus of the K92 homologue did not alter specificity of the resulting chimera, whereas exchanging the first 85 or reciprocally exchanging the first 100 residues did. These results demonstrated that linkage specificity is dependent on residues located between positions 53 and 85 from the N terminus. Site-directed mutagenesis of the K92 polyST N terminus indicated that no single residue alteration was sufficient to affect specificity, consistent with the proposed function of this domain in orienting the acceptor. The combined results provide the first evidence for residues critical to acceptor binding and elongation in polysialyltransferase.  相似文献   

7.
Vaccines against Neisseria meningitidis group C are based on its α-2,9-linked polysialic acid capsular polysaccharide. This polysialic acid expressed on the surface of N. meningitidis and in the absence of specific antibody serves to evade host defense mechanisms. The polysialyltransferase (PST) that forms the group C polysialic acid (NmC PST) is located in the cytoplasmic membrane. Until recently, detailed characterization of bacterial polysialyltransferases has been hampered by a lack of availability of soluble enzyme preparations. We have constructed chimeras of the group C polysialyltransferase that catalyzes the formation α-2,9-polysialic acid as a soluble enzyme. We used site-directed mutagenesis to determine the region of the enzyme necessary for synthesis of the α-2,9 linkage. A chimera of NmB and NmC PSTs containing only amino acids 1 to 107 of the NmB polysialyltransferase catalyzed the synthesis of α-2,8-polysialic acid. The NmC polysialyltransferase requires an exogenous acceptor for catalytic activity. While it requires a minimum of a disialylated oligosaccharide to catalyze transfer, it can form high-molecular-weight α-2,9-polysialic acid in a nonprocessive fashion when initiated with an α-2,8-polysialic acid acceptor. De novo synthesis in vivo requires an endogenous acceptor. We attempted to reconstitute de novo activity of the soluble group C polysialyltransferase with membrane components. We found that an acapsular mutant with a defect in the polysialyltransferase produces outer membrane vesicles containing an acceptor for the α-2,9-polysialyltransferase. This acceptor is an amphipathic molecule and can be elongated to produce polysialic acid that is reactive with group C-specific antibody.  相似文献   

8.
A polysaccharide, antigenically related to group C meningococcus, has been isolated from Escherichia coli strain Bos-12 (016; K92; NM). Like groups B and C meningococcal polysaccharide, the Bos-12 antigen is a pure polymer of sialic acid. 13C NMR studies on the meningococcal group B and C polysaccharides have indicated that the former consists of sialic acid units linked 2 leads to 8- alpha, whereas the latter contains the sialic acid residues linked 2 leads to 9-alpha (Bhattacharjee, A.K., Jennings, H.J., Kenny, C.P., Martin, A., and Smith, I.C.P. (1975), J. Biol. Chem. 250, 1926). Comparison of natural abundance 13C NMR spectra of the Bos-12 polysaccharide with group B and C meningococcal polysaccharides established that Bos-12 was either (a) an equimolar mixture of 2 leads to 8-alpha linked sialic acid homopolymers or (b) a 2 leads to 8-alpha/2 leads to 9-alpha heteropolymer. These possibilities were distinguished in the following manner. The fact that Bos-12 polysaccharide precipitated with anti-group C serum but not with anti-group B serum would seem to exclude a. Further, chemical studies (periodate oxidation followed by tritiated NaBH4 reduction) gave saccharides with a radioactive-labeling pattern expected for alternating 2 leads to 8-alpha/2 leads to 9-alpha sialic acid linkages. Bos-12 is thus an 2 leads to 8/2 lead to 9-alpha heteropolymer.  相似文献   

9.
Zeng Y  Ning J  Kong F 《Carbohydrate research》2003,338(4):307-311
In (1-->3)-glucosylation the glycosyl bond originally present in either donor or acceptor is shown to control the stereoselectivity of the forthcoming bond, i.e., the newly formed glycosidic linkage has the opposite anomeric configuration of that of either the donor or acceptor. Therefore, with alpha-(1-->3)-linked disaccharides with nonreducing ends that have the 3-OH free as the acceptor and an acetylated glucosyl trichloroacetimidate as the donor, or with an alpha-(1-->3)-linked acetylated disaccharide trichloroacetimidate as the donor and a glucoside with 3-OH free as the acceptor, beta-linked trisaccharides were obtained. Meanwhile, with beta-(1-->3)-linked disaccharides that have nonreducing ends with the 3-OH free as the acceptor and an acetylated glucosyl trichloroacetimidate as the donor, or with a beta-(1-->3)-linked acetylated disaccharide trichloroacetimidate as the donor and a glucoside with the 3-OH free as the acceptor, alpha-linked trisaccharides were obtained in spite of the C-2 neighboring group participation.  相似文献   

10.
A new polysialoglycoprotein, designated PSGP(On), was isolated from the unfertilized eggs of the kokanee salmon, Oncorhynchus nerka adonis. 400-MHz 1H NMR analyses showed the O. nerka adonis PSGP contained alpha -2,8-linked oligo- and polysialic acid (polySia) chains that were made up of 4-O-Ac-, 7-O-Ac-, and 9-O-Ac esters of N-glycolylneuraminic acid (Neu5Gc) residues. The presence of a new sialic acid derivative, identified by 1H NMR as 9-O-acetyl-2-keto-3-deoxy-D-glycero-D-galacto-nononic acid (trivial name, 9-O-acetyldeaminated neuraminic acid; 9-O-Ac-KDN), was also shown to be present as a minor component. The O-acetylated KDN residues appear to cap the nonreducing termini of the O-acetylated poly(Neu5Gc) chains. The O-acetylated polySia chains were resistant to depolymerization by bacterial exosialidases and a bacteriophage-derived endo-N-acylneuraminidase that is specific for catalyzing the hydrolysis of alpha -2,8-linkages in polySia containing either N-acetylneuraminic acid or Neu5Gc residues. After de-O-acetylation by mild alkali, the polySia chains were sensitive to digestion by endo-N-acylneuraminidase, yet partially resistant to exosialidase. These data confirm the alpha -2,8-ketosidic linkage in these chains and the nonreducing terminal location of the KDN residues. These results extend further the range of structural diversity in polySia-containing glycoconjugates, and in the family of naturally occurring sialic acids. They also suggest that the O-acetylated Neu5Gc and 9-O-Ac-KDN residues may have an important role during oogenesis.  相似文献   

11.
Many glycan-binding proteins in animals and pathogens recognize sialic acid or its modified forms, but their molecular recognition is poorly understood. Here we describe studies on sialic acid recognition using a novel sialylated glycan microarray containing modified sialic acids presented on different glycan backbones. Glycans terminating in β-linked galactose at the non-reducing end and with an alkylamine-containing fluorophore at the reducing end were sialylated by a one-pot three-enzyme system to generate α2-3- and α2-6-linked sialyl glycans with 16 modified sialic acids. The resulting 77 sialyl glycans were purified and quantified, characterized by mass spectrometry, covalently printed on activated slides, and interrogated with a number of key sialic acid-binding proteins and viruses. Sialic acid recognition by the sialic acid-binding lectins Sambucus nigra agglutinin and Maackia amurensis lectin-I, which are routinely used for detecting α2-6- and α2-3-linked sialic acids, are affected by sialic acid modifications, and both lectins bind glycans terminating with 2-keto-3-deoxy-D-glycero-D-galactonononic acid (Kdn) and Kdn derivatives stronger than the derivatives of more common N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc). Three human parainfluenza viruses bind to glycans terminating with Neu5Ac or Neu5Gc and some of their derivatives but not to Kdn and its derivatives. Influenza A virus also does not bind glycans terminating in Kdn or Kdn derivatives. An especially novel aspect of human influenza A virus binding is its ability to equivalently recognize glycans terminated with either α2-6-linked Neu5Ac9Lt or α2-6-linked Neu5Ac. Our results demonstrate the utility of this sialylated glycan microarray to investigate the biological importance of modified sialic acids in protein-glycan interactions.  相似文献   

12.
Sperm binding activity has been detected in zona pellucida (ZP) glycoproteins and it is generally accepted that this activity resides in the carbohydrate moieties. In the present study we aim to identify some of the specific carbohydrate molecules involved in the bovine sperm-ZP interaction. We performed sperm binding competition assays, in vitro fecundation (IVF) in combination with different lectins, antibodies and neuraminidase digestion, and chemical and cytochemical analysis of the bovine ZP. Both MAA lectin recognising alpha-2,3-linked sialic acid and neuraminidase from Salmonella typhimurium with catalytic activity for alpha-2,3-linked sialic acid, demonstrated a high inhibitory effect on the sperm-ZP binding and oocyte penetration. These results suggest that bovine sperm-ZP binding is mediated by alpha-2,3-linked sialic acid. Experiments with trisaccharides (sialyllactose, 3'-sialyllactosamine and 6'-sialyllactosamine) and glycoproteins (fetuin and asialofetuin) corroborated this and suggest that at least the sequence Neu5Ac(alpha2-3)Gal(beta1-4)GlcNAc is involved in the sperm-ZP interaction. Moreover, these results indicate the presence of a sperm plasma membrane specific protein for the sialic acid. Chemical analysis revealed that bovine ZP glycoproteins contain mainly Neu5Ac (84.5%) and Neu5GC (15.5%). These two types of sialic acid residues are probably linked to Galbeta1,4GlcNAc and GalNAc by alpha-2,3- and alpha-2,6-linkages, respectively, as demonstrated by lectin cytochemical analysis. The use of a neuraminidase inhibitor resulted in an increased number of spermatozoa bound to the ZP and penetrating the oocyte. From this last result we hypothesize that a neuraminidase from cortical granules would probably participate in the block to polyspermy by removing sialic acid from the ZP.  相似文献   

13.
Cheng J  Yu H  Lau K  Huang S  Chokhawala HA  Li Y  Tiwari VK  Chen X 《Glycobiology》2008,18(9):686-697
CstII from bacterium Campylobacter jejuni strain OH4384 has been previously characterized as a bifunctional sialyltransferase having both alpha2,3-sialyltransferase (GM3 oligosaccharide synthase) and alpha2,8-sialyltransferase (GD3 oligosaccharide synthase) activities which catalyze the transfer of N-acetylneuraminic acid (Neu5Ac) from cytidine 5'-monophosphate (CMP)-Neu5Ac to C-3' of the galactose in lactose and to C-8 of the Neu5Ac in 3'-sialyllactose, respectively (Gilbert M, Karwaski MF, Bernatchez S, Young NM, Taboada E, Michniewicz J, Cunningham AM, Wakarchuk WW. 2002. The genetic bases for the variation in the lipo-oligosaccharide of the mucosal pathogen, Campylobacter jejuni. Biosynthesis of sialylated ganglioside mimics in the core oligosaccharide. J Biol Chem. 277:327-337). We report here the characterization of a truncated CstII mutant (CstIIDelta32(I53S)) cloned from a synthetic gene whose codons are optimized for an Escherichia coli expression system. In addition to the alpha2,3- and alpha2,8-sialyltransferase activities reported before for the synthesis of GM3- and GD3-type oligosaccharides, respectively, the CstIIDelta32(I53S) has alpha2,8-sialyltransferase (GT3 oligosaccharide synthase) activity for the synthesis of GT3 oligosaccharide. It also has alpha2,8-sialidase (GD3 oligosaccharide sialidase) activity that catalyzes the specific cleavage of the alpha2,8-sialyl linkage of GD3-type oligosaccharides and alpha2,8-trans-sialidase (GD3 oligosaccharide trans-sialidase) activity that catalyzes the transfer of a sialic acid from a GD3 oligosaccharide to a different GM3 oligosaccharide (3'-sialyllactoside). The donor substrate specificity study of the CstIIDelta32(I53S) GD3 oligosaccharide synthase activity indicates that the enzyme is flexible in using different CMP-activated sialic acids and their analogs for the synthesis of GD3 oligosaccharides containing natural and nonnatural modifications at the terminal sialic acid.  相似文献   

14.
We have previously described a microbiological process for the conversion of lactose into 3'sialyllactose and other ganglioside sugars by living Escherichia coli cells expressing the appropriate recombinant glycosyltransferase genes. In this system the activated sialic acid donor (CMP-Neu5Ac) was generated from exogenous sialic acid, which was transported into the cells by the permease NanT. Since sialic acid is an expensive compound, a more economical process has now been developed by genetically engineering E. coli K12 to be capable of generating CMP-Neu5Ac using its own internal metabolism. Mutant strains devoid of Neu5Ac aldolase and of ManNAc kinase were shown to efficiently produce 3'sialyllactose by coexpressing the alpha-2,3-sialyltransferase gene from Neisseria meningitidis with the neuC, neuB and neuACampylobacter jejuni genes encoding N-acetylglucosamine-6-phosphate-epimerase, sialic acid synthase and CMP-Neu5Ac synthetase, respectively. A sialyllactose concentration of 25 g l(-1) was obtained in long-term high cell density culture with a continuous lactose feed. This high concentration and low cost of fermentation medium should make possible to use sialylated oligosaccharides in new fields such as the food industry.  相似文献   

15.
The sialic acid (Sia) N-acetylneuraminic acid (Neu5Ac) and its hydroxylated derivative N-glycolylneuraminic acid (Neu5Gc) differ by one oxygen atom. CMP-Neu5Gc is synthesized from CMP-Neu5Ac, with Neu5Gc representing a highly variable fraction of total Sias in various tissues and among different species. The exception may be the brain, where Neu5Ac is abundant and Neu5Gc is reported to be rare. Here, we confirm this unusual pattern and its evolutionary conservation in additional samples from various species, concluding that brain Neu5Gc expression has been maintained at extremely low levels over hundreds of millions of years of vertebrate evolution. Most explanations for this pattern do not require maintaining neural Neu5Gc at such low levels. We hypothesized that resistance of α2-8-linked Neu5Gc to vertebrate sialidases is the detrimental effect requiring the relative absence of Neu5Gc from brain. This linkage is prominent in polysialic acid (polySia), a molecule with critical roles in vertebrate neural development. We show that Neu5Gc is incorporated into neural polySia and does not cause in vitro toxicity. Synthetic polymers of Neu5Ac and Neu5Gc showed that mammalian and bacterial sialidases are much less able to hydrolyze α2-8-linked Neu5Gc at the nonreducing terminus. Notably, this difference was not seen with acid-catalyzed hydrolysis of polySias. Molecular dynamics modeling indicates that differences in the three-dimensional conformation of terminal saccharides may partly explain reduced enzymatic activity. In keeping with this, polymers of N-propionylneuraminic acid are sensitive to sialidases. Resistance of Neu5Gc-containing polySia to sialidases provides a potential explanation for the rarity of Neu5Gc in the vertebrate brain.  相似文献   

16.
The capsular polysaccharide of Escherichia coli K92 contains alternating -8-NeuAcalpha2- and -9-NeuAcalpha2- linkages. The enzyme catalyzing this polymerizing reaction has been cloned from the genomic DNA of E. coli K92. The 1.2-kilobase polymerase chain reaction fragment was subcloned in pRSET vector and the protein was expressed in the BL21(DE3) strain of E. coli with a hexameric histidine at its N-terminal end. The enzyme was isolated in the supernatant after lysis of the cells and fractionated by ultracentrifugation. Western blotting using anti-histidine antibody showed the presence of a band that migrated at about 47.5 kDa on both reducing and nonreducing SDS-polyacrylamide gel electrophoresis, indicating a monomeric enzyme. Among the carbohydrate acceptors tested, N-acetylneuraminic acid and the gangliosides G(D3) and G(Q1b) were preferred substrates. The cell-free enzyme reaction products obtained were characterized by NMR and mass spectrometry, which indicated the presence of both alpha2,9- and alpha2,8-linked polysialyl structure. The K92 neuS gene was used to transform the K1 strain of E. coli, the capsule of which contains only -8-NeuAcalpha2- linkages. Analysis of the polysaccharides isolated from these transformed cells is consistent with the presence of both -8-NeuAcalpha2- and -9-NeuAcalpha2- linkages. Our results suggest that the neuS gene product of E. coli K92 catalyzes the synthesis of polysialic acid with alpha2,9- and alpha2,8-linkages in vitro and in vivo.  相似文献   

17.
We have evaluated methods for separation, preparation, and characterization of alpha-2----8-linked oligomers of sialic acids (Neu5Ac and Neu5Gc) and deaminated neuraminic acid (KDN; 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid) recently found as a naturally occurring novel type of sialic acid analogue. (A) We examined preparative anion-exchange chromatography for fractionation and preparation of oligo(Neu5Ac), oligo(Neu5Gc), and oligo(KDN). (B) We also examined the TLC method for separation and differentiation of the partial acid hydrolysates of colominic acid, as well as polysialoglycoproteins (PSGP) and poly(KDN)-glycoproteins (KDN-gp) isolated from rainbow trout eggs, and for discrimination of lower oligomers of Neu5Ac, Neu5Gc, and KDN. (C) We developed the high-performance adsorption-partition chromatographic method for (a) separation of monomers and oligomers of three nonulosonates according to the difference in substituents at C-5 and the presence or absence of 9-O-acetyl groups in oligo(KDN) and (b) separation of three homologous series of lower oligomers according to the degree of polymerization. (D) We examined and compared high-performance anion-exchange chromatographic separation of 3H-labeled oligo(Neu5Ac), oligo(Neu5Gc), and oligo(KDN) alditols by using Mono-Q HR 5/5 resin. (E) We examined a method of selective and quantitative microprecipitation for separation and purification of oligomers and polymers of Neu5Ac by treating them with cetylpyridinium chloride. We also used PSGP and KDN-gp to test both the sensitivity and the selectivity of this method.  相似文献   

18.
KDN is an abbreviation for 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid, and its natural occurrence was revealed in 1986 by a research group including the present authors. Since sialic acid was used as a synonym for N-acylneuraminic acid at that time, there was an argument if this deaminated neuraminic acid belongs to the family of sialic acids. In this review, we describe the 20 years history of studies on KDN (KDNology), through which KDN has established its position as a distinct member of the sialic acid family. These studies have clarified that: (1) KDN occurs widely among vertebrates and bacteria similar to the occurrence of the more common sialic acid, N-acetylneuraminic acid (Neu5Ac), but its abundant occurrence in animals is limited to lower vertebrates. (2) KDN is found in almost all types of glycoconjugates, including glycolipids, glycoproteins and capsular polysaccharides. (3) KDN residues are linked to almost all glycan structures in place of Neu5Ac. All linkage types known for Neu5Ac; α2,3-, α2,4-, α2,6-, and α2,8- are also found for KDN. (4) KDN is biosynthesized de novo using mannose as a precursor sugar, which is activated to CMP-KDN and transferred to acceptor sugar residues. These reactions are catalyzed by enzymes, some of which preferably recognize KDN, but many others prefer Neu5Ac to KDN. In addition to these basic findings, elevated expression of KDN was found in fetal human red blood cells compared with adult red blood cells, and ovarian tumor tissues compared with normal controls. KDNase, an enzyme which specifically cleaves KDN-linkages, was discovered in a bacterium and monoclonal antibodies that specifically recognize KDN residues in KDNα2,3-Gal- and KDNα2,8-KDN-linkages have been developed. These have been used for identification of KDN-containing molecules. Based on past basic studies and variety of findings, future perspective of KDNology is presented.  相似文献   

19.
Vibrio cholerae neuraminidase (VCNA) plays a significant role in the pathogenesis of cholera by removing sialic acid from higher order gangliosides to unmask GM1, the receptor for cholera toxin. We previously showed that the structure of VCNA is composed of a central beta-propeller catalytic domain flanked by two lectin-like domains; however the nature of the carbohydrates recognized by these lectin domains has remained unknown. We present here structures of the enzyme in complex with two substrates, alpha-2,3-sialyllactose and alpha-2,6-sialyllactose. Both substrate complexes reveal the alpha-anomer of N-acetylneuraminic acid (Neu5Ac) bound to the N-terminal lectin domain, thereby revealing the role of this domain. The large number of interactions suggest a relatively high binding affinity for sialic acid, which was confirmed by calorimetry, which gave a Kd approximately 30 microm. Saturation transfer difference NMR using a non-hydrolyzable substrate, Neu5,9Ac2-2-S-(alpha-2,6)-GlcNAcbeta1Me, was also used to map the ligand interactions at the VCNA lectin binding site. It is well known that VCNA can hydrolyze both alpha-2,3- and alpha-2,6-linked sialic acid substrates. In this study using alpha-2,3-sialyllactose co-crystallized with VCNA it was revealed that the inhibitor 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (Neu5Ac2en) was bound at the catalytic site. This observation supports the notion that VCNA can produce its own inhibitor and has been further confirmed by 1H NMR analysis. The discovery of the sialic acid binding site in the N-lectin-like domain suggests that this might help target VCNA to sialic acid-rich environments, thereby enhancing the catalytic efficiency of the enzyme.  相似文献   

20.
The glycosidic linkage of sialic acids is much more sensitive to acid hydrolysis than those of other monosaccharides in vertebrates. The commonest sialic acids in nature are neuraminic acid (Neu)-based and are typically N-acylated at the C5 position. Unsubstituted Neu is thought to occur on native gangliosides of certain tumors and cell lines, and synthetic de-N-acetyl-gangliosides have potent biological properties in vitro. However, claims for their natural existence are based upon monoclonal antibodies and pulse-chase experiments, and there have been no reports of their chemical detection. Here we report that one of these antibodies shows nonspecific cross-reactivity with a polypeptide epitope, further emphasizing the need for definitive chemical proof of unsubstituted Neu on naturally occurring gangliosides. While pursuing this, we found that alpha2-3-linked Neu on chemically de-N-acetylated G(M3) ganglioside resists acid hydrolysis under conditions where the N-acetylated form is completely labile. To ascertain the generality of this finding, we investigated the stability of glycosidically linked alpha- and beta-methyl glycosides of Neu. Using NMR spectroscopy to monitor glycosidic linkage hydrolysis, we find that only 47% of Neualpha2Me is hydrolyzed after 3 h in 10 mm HCl at 80 degrees C, whereas Neu5Acalpha2Me is 95% hydrolyzed after 20 min under the same conditions. Notably, Neubeta2Me is hydrolyzed even slower than Neualpha2Me, indicating that acid resistance is a general property of glycosidically linked Neu. Taking advantage of this, we modified classical purification techniques for de-N-acetyl-ganglioside isolation using acid to first eliminate conventional gangliosides. We also introduce a phospholipase-based approach to remove contaminating phospholipids that previously hindered efforts to study de-N-acetyl-gangliosides. The partially purified sample can then be N-propionylated, allowing acid release and mass spectrometric detection of any originally existing Neu as Neu5Pr. These advances allowed us to detect covalently bound Neu in lipid extracts of a human melanoma tumor, providing the first chemical proof for naturally occurring de-N-acetyl-gangliosides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号