首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Locereol (4α-methylcholesta-8,14-dien-3β-ol) and 5α-cholesta-8,14-dien-3β-ol, not previously isolated from plants, 24-methylenelophenol, lathosterol, 5α-campest -7-en-3β-ol and spinasterol are present in senita cactusin addition to the lophenol and schottenol described previously.  相似文献   

2.
The isoprenoid pathway provides several important products for retina function. In this study the sterol and dolichol pathways were investigated in retinas from Rana pipiens in order to assess the contribution of de novo synthesis. Levels of 5.9 +/- 2.0 (n = 13) nmol/retina for squalene, 134 +/- 27 (n = 16) nmol/retina for cholesterol, and 0.14 +/- 0.04 (n = 11) nmol/retina for dolichyl phosphate (Dol-P) were determined by high performance liquid chromatography analysis. When whole retinas were incubated with 3H2O, radioactivity was incorporated into compounds which chromatographed on reversed-phase and silica high performance liquid chromatography at the elution positions of squalene, cholesterol, lathosterol, and methyl sterols. From these results, the upper limit for the absolute rate of the sterol pathway was estimated to be 3.4 pmol/h. When retinas were incubated with [3H]acetate, the major labeled product was squalene. The relatively low level of incorporation into cholesterol was apparently due to a substantial pool of squalene which accumulated de novo incorporated [3H]acetate. Dol-P was also labeled with [3H]acetate, and by comparing the ratio of 3H incorporation into Dol-P/squalene with the absolute rate of the sterol pathway, the absolute rate of Dol-P synthesis was determined to be 0.022 pmol/h. Our calculations indicate that the retina does not synthesize sufficient quantities of cholesterol de novo to account for that which is utilized in the biogenesis of rod outer segment membranes.  相似文献   

3.
The first committed steps of steroid/hopanoid pathways involve squalene synthase (SQS). Here, we report the Escherichia coli production of diaponeurosporene and diapolycopene, yellow C30 carotenoid pigments, by expressing human SQS and Staphylococcus aureus dehydrosqualene (C30 carotenoid) desaturase (CrtN). We suggest that the carotenoid pigments are synthesized mainly via the desaturation of squalene rather than the direct synthesis of dehydrosqualene through the non-reductive condensation of prenyl diphosphate precursors, indicating the possible existence of a “squalene route” and a “lycopersene route” for C30 and C40 carotenoids, respectively. Additionally, this finding yields a new method of colorimetric screening for the cellular activity of squalene synthases, which are major targets for cholesterol-lowering drugs.  相似文献   

4.
With [3H-24,25]-dihydrolanosterol as substrate, large-scale metabolic formation of intermediates of lanosterol demethylation was carried out to identify all compounds in the metabolic process. Utilizing knowledge of electron transport of lanosterol demethylation, we interrupted the demethylation reaction allowing accumulation and confirmation of the structure of the oxygenated intermediates lanost-8-en-3 beta,32-diol and 3 beta-hydroxylanost-8-en-32-al, as well as the demethylation product 4,4-dimethyl-cholesta-8,14-dien-3 beta-ol. Further metabolism of the delta 8.14-diene intermediate to a single product 4,4-dimethyl-cholest-8-en-3 beta-ol occurs under interruption conditions in the presence of 0.5 mM CN-1. With authentic compounds, each intermediate has been rigorously characterized by high performance liquid chromatography and gas-liquid chromatography plus mass spectral analysis of isolated and derivatized sterols. Intermediates that accumulated in greater abundance were further characterized by ultraviolet, 1H-NMR, and infrared spectroscopy of the isolated sterols.  相似文献   

5.
The control of mRNA degradation is an important component of the regulation of gene expression since the steady-state concentration of mRNA is determined both by the rates of synthesis and of decay. Two general pathways of mRNA decay have been described in eukaryotes. Both pathways share the exonucleolytic removal of the poly(A) tail (deadenylation) as the first step. In one pathway, deadenylation is followed by the hydrolysis of the cap and processive degradation of the mRNA body by a 5' exonuclease. In the second pathway, the mRNA body is degraded by a complex of 3' exonucleases before the remaining cap structure is hydrolyzed. This review discusses the proteins involved in the catalysis and control of both decay pathways.  相似文献   

6.
To understand the evolution of premating signals in moths, it is important to know the genetic basis of these signals. We conducted Quantitative Trait Locus (QTL) analysis by hybridizing two noctuid moth species, Heliothis virescens (Hv) and Heliothis subflexa (Hs), and backcrossing the F1 females to males of both parental species. One of these backcrosses (F1 × Hs) was a biological replicate of our previous study (Sheck et al., 2006) and served to test the robustness of our previous findings. The backcross to Hv was designed to reveal QTL with recessive inheritance of the Hv character state. This study confirms previously discovered QTL, but also reports new QTL. Most importantly, we found relatively large QTL affecting Z9-16:Ald, the critical sex pheromone component of Hs. For Z9-14:Ald, the critical sex pheromone component of Hv, as well as for the minor pheromone compound 14:Ald, we found QTL in which the change in pheromone ratio was opposite-to-expected. Linking QTL to the biosynthetic pathways of the pheromone compounds of Hv and Hs implicates several candidate genes in the divergence of these premating signals, the most important of which are acetyl transferase, one or more desaturase(s), and a fatty acyl reductase or alcohol oxidase.  相似文献   

7.
Lathe R 《Steroids》2002,67(12):967-977
B-ring hydroxylation is a major metabolic pathway for cholesterols and some steroids. In liver, 7 alpha-hydroxylation of cholesterols, mediated by CYP7A and CYP39A1, is the rate-limiting step of bile acid synthesis and metabolic elimination. In brain and other tissues, both sterols and some steroids including dehydroepiandrosterone (DHEA) are prominently 7 alpha-hydroxylated by CYP7B. The function of extra-hepatic steroid and sterol 7-hydroxylation is unknown. Nevertheless, 7-oxygenated cholesterols are potent regulators of cell proliferation and apoptosis; 7-oxygenated derivatives of DHEA, pregnenolone, and androstenediol can have major effects in the brain and in the immune system. The receptor targets involved remain obscure. It is argued that B-ring modification predated steroid evolution: non-enzymatic oxidation of membrane sterols primarily results in 7-oxygenation. Such molecules may have provided early growth and stress signals; a relic may be found in hydroxylation at the symmetrical 11-position of glucocorticoids. Early receptor targets probably included intracellular sterol sites, some modern steroids may continue to act at these targets. 7-Hydroxylation of DHEA may reflect conservation of an early signaling pathway.  相似文献   

8.
C Parsot 《The EMBO journal》1986,5(11):3013-3019
The Bacillus subtilis genes encoding threonine synthase (thrC) and homoserine kinase (thrB) have been cloned via complementation of Escherichia coli thr mutants. Determination of their nucleotide sequences indicates that the thrC stop codon overlaps the thrB start codon; this genetic organization suggests that the two genes belong to the same operon, as in E. coli. However, the gene order is thrC-thrB in B. subtilis whereas it is thrB-thrC in the thr operon of E. coli. This inversion of the thrC and thrB genes between E. coli and B. subtilis is indicative of a possible independent construction of the thr operon in these two organisms. In other respects, comparison of the predicted amino acid sequences of the B. subtilis and E. coli threonine synthases with that of Saccharomyces cerevisiae threonine dehydratase and that of E. coli D-serine dehydratase revealed extensive homologies between these pyridoxal phosphate-dependent enzymes. This sequence homology, which correlates with similarities in the catalytic mechanisms of these enzymes, indicates that these proteins, catalyzing different reactions in different metabolic pathways, may have evolved from a common ancestor.  相似文献   

9.
10.
《Epigenetics》2013,8(2):134-140
DNA methylation is one of the most important heritable epigenetic modifications of the genome and is involved in the regulation of many cellular processes. Aberrant DNA methylation has been frequently reported to influence gene expression and subsequently cause various human diseases, including cancer. Recent rapid advances in next-generation sequencing technologies have enabled investigators to profile genome methylation patterns at single-base resolution. Remarkably, more than 20 eukaryotic methylomes have been generated thus far, with a majority published since November 2009. Analysis of this vast amount of data has dramatically enriched our knowledge of biological function, conservation and divergence of DNA methylation in eukaryotes. Even so, many specific functions of DNA methylation and their underlying regulatory systems still remain unknown to us. Here, we briefly introduce current approaches for DNA methylation profiling and then systematically review the features of whole genome DNA methylation patterns in eight animals, six plants and five fungi. Our systematic comparison provides new insights into the conservation and divergence of DNA methylation in eukaryotes and their regulation of gene expression. This work aims to summarize the current state of available methylome data and features informatively.  相似文献   

11.
12.
13.
14.
The presence of sulfur in cofactors has been appreciated for over a century, but the trafficking and delivery of sulfur to cofactors and nucleosides is still not fully understood. In the last decade, great strides have been made toward understanding those processes and the enzymes that conduct them, including cysteine desulfurases and rhodanese homology domain proteins. The persulfide group (R-S-SH) predominantly serves as the sulfur donor, and sulfur incorporation pathways share enzymes to a remarkable degree. Mechanisms for the use of persulfide groups are illustrated with the relatively simple case of 4-thiourdine generation, and further possibilities are illuminated by the 2-thiouridine and cofactor biosynthetic systems. The rationale and ramifications of sharing enzymes between sulfur incorporation pathways are discussed, including implications for interpreting genetic or genomic data that indicate a role for a sulfur transfer protein in a particular biological process.  相似文献   

15.
The free, esterified and glycosylated sterols and the pentacyclic triterpene esters of developing Sorghum bicolor grains were analysed by GLC and GC-MS. All the pentacyclic triterpenes were completely esterified but were not detected until 24 days after anthesis. Lupanol, multiflorenol, α-amyrin and isoarborinol were identified in the mature grains as components of the triterpene fraction but no 4,4-dimethylsterols could be found at any stage of development. A sixfold increase in total sterol per grain occurred during development. At 8 days after anthesis, 28-isofucosterol was found to be the second most abundant steryl ester. Campesterol was the major steryl glycoside and obtusifoliol was the major 4-monomethylsterol.  相似文献   

16.
Data on the content of ecdysteroids in plant sources are given and the ecdysteroid biosynthesis and role in plants are discussed.  相似文献   

17.
Demethylation of lanosterol by cultured HTC cells is impaired in the presence of 7α- and 7β-hydroxycholesterol, 22(R)-hydroxydesmosterol, and miconazole. The toxicity of these hydroxysterols does not correlate with their ability to inhibit lanosterol demethylation or to depress HMG-CoA reductase activity, although parallel changes in the latter two activities suggest that both are modulated by interaction of hydroxysterols with a single cellular target.  相似文献   

18.
19.
The actinomycetes traditionally represent one of the most important sources for the discovery of new metabolites with biological activity; and many of these are described as being produced by polyketide synthases (PKS) and nonribosomal peptide synthetases (NRPS). We present a strain characterization system based on the metabolic potential of microbial strains by targeting these biosynthetic genes. After an initial evaluation of the existing bias derived from the PCR detection in a well defined biosynthetic systems, we developed a new fingerprinting approach based on the restriction analysis of these PKS and NRPS amplified sequences. This method was applied to study the distribution of PKS and NRPS biosynthetic systems in a collection of wild-type actinomycetes isolated from tropical soil samples that were evaluated for the production of antimicrobial activities. We discuss the application of this tool as an alternative characterization approach for actinomycetes and we comment on the relationship observed between the presence of PKS-I, PKS-II and NRPS sequences and the antimicrobial activities observed in some of the microbial groups tested.  相似文献   

20.
Due to their unique physical properties, waxes are high-value materials that are used in a variety of industrial applications. They are generated by chemical synthesis, extracted from fossil sources, or harvested from a small number of plant and animal species. As a result, the diversity of chemical structures in commercial waxes is low and so are their yields. These limitations can be overcome by engineering of wax biosynthetic pathways in the seeds of high-yielding oil crops to produce designer waxes for specific industrial end uses. In this review, we first summarize the current knowledge regarding the genes and enzymes generating the chemical diversity of cuticular waxes that accumulate at the surfaces of primary plant organs. We then consider the potential of cuticle biosynthetic genes for biotechnological wax production, focusing on selected examples of wax ester chain lengths and isomers. Finally, we discuss the genes/enzymes of cuticular alkane biosynthesis and their potential in future metabolic engineering of plants for the production of renewable hydrocarbon fuels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号