首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of satiation on feeding and swimming behaviour of planktivores   总被引:1,自引:1,他引:0  
Asaeda  Takashi  Priyadarshana  Tilak  Manatunge  Jagath 《Hydrobiologia》2001,443(1-3):147-157
Hunger affects the feeding and swimming behaviour in fish. After 36 h of food deprivation, the feeding and swimming behaviour of Pseudorasbora parva (Cyprinidae) was studied under different prey densities (0.5, 1, 2, 5, 10 and 25 of Daphnia pulex per liter). The initial feeding rates showed marked variations in relation to prey availability. Under high prey densities, the initial feeding rate of fish was higher and subsequently decreased faster, when compared to those feeding under low prey densities. At higher prey densities, two factors were involved: that of higher prey encounter rates and also the attainment of food satiation at a faster rate. Across all prey densities, the feeding rates of fish reached a plateau after satiation. The swimming speed of fish was found to be negatively related to the prey density and a significant change in swimming speed was noted as being directly related to the level of satiation. It was found that the increasing satiation level greatly influenced the handling time and reactive volume of predator, which finally caused reduced feeding rates.  相似文献   

2.
The predation impact of the larvae of pond smelt Hypomesus transpacificus nipponensis on a zooplankton community was studied using mesocosms. The fish significantly depressed the abundances of copepod nauplii and rotifers, especially Hexarthra mira. The vulnerabilities of these prey might be determined by their swimming behavior and population density, suggesting that larval fish selectively prey on zooplankton that have a high encounter rate with the predator. The larvae did not have a negative effect on the densities of cladocerans, but fish predation altered the cladoceran community structure from the dominance of B. longirostris to that of B. fatalis. This result suggests that larval fish predation is an important factor that shifts the species composition of Bosmina in some lakes, the shift occurring in the season when fish larvae are abundant. Our results have shown that predation by the larval fish would control not only the abundance, but also the community structure of the small-sized zooplankton prey.  相似文献   

3.
Juvenile Platax orbicularis switches foraging tactics from diurnal herbivory to nocturnal zooplanktivory within a day. To examine how juvenile fish actively feed on zooplankton prey during nighttime, a field-recorded video analysis was conducted in the reefs off Kuchierabu-jima Island, southern Japan. Juveniles consistently showed fast and sudden attacks that were accurately directed at individual zooplankton prey, and changed feeding frequencies with different prey densities. A negative relationship was observed between feeding frequency and prey density, with higher feeding frequencies occurring at lower prey concentrations, implying a disturbance effect of clouded zooplankton prey on the juvenile fish. A clear transition from a ram-based to a suction-based feeding mode was observed with fish size, suggesting that changes in the feeding behaviors occur even in juveniles fishes, without drastic morphological changes.  相似文献   

4.
Göran Englund  Sabine Harms 《Oikos》2001,94(1):175-181
In a laboratory study, we determined the functional response of the carnivorous aquatic plant Utricularia vulgaris feeding on Polyphemus pediculus, a cladoceran zooplankton that forms swarms. The number of prey eaten increased linearly with prey density up to a density of 35 prey per 125 ml and decreased slightly above this density. Independent estimates of handling time showed that the number eaten was not limited by handling. Thus, we hypothesized that the functional response levelled off because attack rate decreased with increasing density. Direct observations of the predation act at high and low prey densities showed that prey per capita mortality rate was markedly lower at high densities. An analysis of the components of the predation cycle showed that encounter rate and attack probability but not capture success decreased with increasing prey density. We, then, studied the degree of aggregation and the movement behaviour of Polyphemus . The tendency to form swarms increased with density and this was associated with reduced swimming speed and swimming along a more tortuous path. Presence of Utricularia leaves did not influence the spatial distribution and swimming behaviour of Polyphemus . We concluded that the unusual shape of the functional response was due to density dependent prey mortality rates that resulted from a density dependent tendency to form swarms. We, therefore, suggested a modification of Holling's type II functional response model that included density dependent attack rate and this model fitted data significantly better than the original model.  相似文献   

5.
The feeding and swimming behaviors of Pseudorasbora parva and Rasbora daniconius (Cyprinidae) with two different prey types (Daphnia pulex and Artemia salina) at different densities (0.5, 1, 2, 5, 10, or 25 per l) were studied after 36 h of food deprivation. Full satiation was defined as the cumulative number of attacks performed until fish attain a constant attack rate which for P. parva was 425 and R. daniconius was 390 attacks. Initial feeding rates showed marked variation with prey availability. Feeding rates of fish in high prey concentrations were higher at the beginning of the experiment and decreased faster than in low prey densities. Decreases in the feeding rate at high prey densities were due to faster attainment of satiation. Feeding rates of fish across high prey densities reached a steady level after satiation. Swimming speeds of fish were inversely proportional to prey density. Moreover, the change in swimming speeds was directly related to the level of satiation. The ratios of the attack rate and the encounter rate against prey density of both fish reveal that the search for prey triggered swimming and thereby feeding during the transition from hungry to satiation. The findings of this study demonstrate that satiation plays an important role in fish foraging that should be considered a significant factor in foraging analysis.  相似文献   

6.
Synopsis Acará, Geophagus brasiliensis, and red-breasted bream, Tilapia rendalli, are important planktivorous cichlids in southern Brazilian lakes and reservoirs. In laboratory experiments, I quantified behavior and selectivity of different sizes of these two fish feeding on lake zooplankton. Feeding behavior depended on fish size. Fish < 30 mm were visual feeders. Fish 30–50 mm either visually fed or pump-filter fed depending on zooplankton size. Fish > 70 mm were pump-filter feeders. Replicate 1 h feeding trials revealed that, as the relative proportions of prey changed during an experiment, acará (30–42 mm, standard length) and tilapia (29–42 mm) shifted from visual feeding on large evasive copepods to filter feeding on small cladocerans and rotifers. Electivity and feeding rate increased with prey length, but were distinct for similar-sized cladocerans and copepods. Visual/filter-feeding fish had lowest electivities for small and poorly evasive rotifers and cyclopoid nauplii. They fed non-selectively on cyclopoid copepodites, had intermediate electivities for calanoid nauplii and small cladocerans, and had highest electivities for large cladocerans, cyclopoid adults, and calanoid copepodites and adults. Although belonging to different cichlid genera and native to South America and Africa, respectively, acará and red-breasted bream (= congo tilapia) exhibited similar selectivity for zooplankton. Apparently, few stereotyped feeding behaviors have evolved during the acquisition of microphagy in fish. Shift in feeding modes allows these two species to optimally exploit the variable and dynamic patchy distribution of planktonic resources.  相似文献   

7.
Bream (Abramis brama) undergo ontogenetic diet shift from zooplankton to benthic macroinvertebrates, but the switching size may be highly variable. To unravel under what conditions bream are pelagic versus benthic foragers, we experimentally determined size‐dependent foraging capacities on three prey types from the planktivory and benthivory niche; zooplankton, visible and buried macroinvertebrates. From these data we derived predictions of size‐dependent diet preferences from estimates of prey value and competitive ability, and tested these predictions on diet data from the field. Planktivorous foraging capacity described a hump‐shaped relationship with bream length that peaked for small bream of 67 mm total length. Benthivory capacity increased with increasing bream size, irrespective if benthic prey were visible on the sediment surface or buried in the sediment. From the experimental data and relationships of metabolic demand we calculated minimum resource requirement for maintenance (MRR) for each of the prey categories used in experiments. MRR increased with bream size for both zooplankton and visible chironomids, but decreased with bream size for buried chironomids, suggesting that intermediate sized bream (120–300 mm) may be competitively sandwiched between small and large bream that are more competitive planktivores and benthivores, respectively. Prey value estimates and competitive abilities qualitatively predicted diet shift in a bream population being released from competition. Competitive release did not change the diet of the largest size‐class feeding on an optimal diet of benthic invertebrates both before and after competitive release. However, profound diet shifts towards benthic macroinvertebrates were recorded for intermediate size‐classes that fed on a suboptimal diet prior to competitive release. Thus, laboratory estimates of size‐dependent foraging capacity of bream in planktivorous and benthivorous feeding niches provided useful information on size‐specific competitive ability, and successfully predicted diet preference in the field.  相似文献   

8.
Aquatic macrophytes produce considerable structural variation within the littoral zone and as a result the vegetation provides refuge to prey communities by hindering predator foraging activities. The behavior of planktivorous fish Pseudorasbora parva (Cyprinidae) and their zooplankton prey Daphnia pulex were quantified in a series of laboratory experiments with artificial vegetation at densities of 0, 350, 700, 1400, 2100 and 2800 stemsm–2. Swimming speeds and foraging rates of the fish were recorded at different prey densities for all stem densities. The foraging efficiency of P. parva decreased significantly with increasing habitat complexity. This decline in feeding efficiency was related to two factors: submerged vegetation impeded swimming behavior and obstructed sight while foraging. This study separated the effects of swimming speed variation and of visual impairment, both due to stems, that led to reduced prey–predator encounters and examined how the reduction of the visual field volume may be predicted using a random encounter model.  相似文献   

9.

Small‐scale zooplankton swimming behaviors can affect aquatic predator‐prey interactions. Difficulties in controlling prey swimming behavior however, have restricted the ability to test hypotheses relating differences in small‐scale swimming behavior to frequency of predation by fish. We report here a Virtual Plankton (VP) system that circumvents this problem by allowing the observation of fish “preying"on computer‐generated prey images whose size, shape, color and swimming behavior can be precisely controlled. Two experiments were performed in which bluegill sunfish (Lepomis macrochirus) were given a choice of either two VP images, one of which moved twice as fast as the other, or six VP, one of which moved either faster (1.25 x, 1.5 x or 2 x ) or slower (0.5 x) than the other five. Current predator‐prey models based on encounter probabilities and prey visibility predict that moving faster increases predation risk and conversely, moving slower decreases predation risk. In agreement with existing predator‐prey models, in both experiments, fish chose faster moving VP significantly more often than their slower moving neighbors. Contrary to the predictions of existing models, in the second experiment with six VP, the rate at which fish chose a prey image moving half as fast as the five surrounding images did not differ significantly from the rate predicted by chance(l/6). These results suggest that current fish‐zooplankton predation models would benefit by the incorporation of small‐scale swimming behavior and assessments of its influence on overall prey visibility.  相似文献   

10.
Synopsis Adult blue tilapia, Tilapia aurea, employ filter-feeding as their primary feeding method, but feed as visual, particulate-feeding zooplanktivores as juveniles. We used measurements of oxygen utilization in enclosed chambers to assess filter-feeding energy costs, and videotaped observations of particulate-feeding to compute energy costs for this behavior. Weight-specific costs of filter-feeding are highest for smaller individuals, and decrease exponentially with fish size. Particulate-feeding costs increase with fish size and with distance travelled during attacks on zooplankton prey. These data were used in combination with published information to examine the energetics of the switch in feeding behavior in relation to the profitability of each feeding method. We develop a model which can be used to predict feeding behavior in relation to fish size and plankton array.  相似文献   

11.
In laboratory feeding trials, we analyzed the feeding behavior and selectivity of the cichlid, Sarotherodon galilaeum, for zooplankton prey from Lake Kinneret, Israel. The feeding behavior was dependent on fish size. Fish less than 20 mm SL fed on zooplankton as obligate particulate feeders. Fish from 20 to 42 mm SL fed either as particulate feeders or as filter feeders. Fish larger than 62 mm SL fed as obligate filter feeders. Particulate-feeding fish were size selective and had highest feeding electivities for large-sized zooplankton species. Filter-feeding fish had highest feeding electivities for zooplankton species with poor escape ability. In general, S. galilaeum predation pressure would be greatest on Ceriodaphnia reticulata, a large-bodied and easily captured species which is selected by both particulate-feeding and filter-feeding fish.  相似文献   

12.
Visually foraging planktivorous fish feed preferentially on larger, energetically more valuable zooplankton. Laboratory studies of bluegill sunfish, Lepomis macrochirus, feeding on different size classes of Daphnia indicate that, at low prey densities, these fish generally select among prey encountered simultaneously by pursuing whichever one appears largest, i.e. projects the largest retinal image. At high prey densities, however, bluegills take fewer small Daphnia than predicted for fish foraging by this apparent size rule. The pattern of prey selection observed suggests that bluegills employ the apparent size rule, not as the sole determinant of prey choice, but only to direct their attention to an individual prey item. In this way, fish may consider prey encountered simultaneously in a sequential manner. The fish can then evaluate the actual size of the apparently largest prey item, and ignore it if it is below a minimum threshold actual size. The less-preferred small prey, however, are never completely excluded from the diets of the fish. This partial preference may be the result of perceptual constraints; fish may be able to evaluate the actual size of zooplankton prey only when they occur within the fish's binocular visual field.  相似文献   

13.
Mechanisms of selectivity in a nocturnal fish: a lack of active prey choice   总被引:1,自引:0,他引:1  
Holzman R  Genin A 《Oecologia》2005,146(2):329-336
Fish that feed on individual zooplankton usually exhibit strong selectivity for large prey. Such selectivity can result from the predator’s active choice of larger prey or from differential encounter rate due to lower detectability of small prey, or both. In diurnal fishes, selectivity is thought to be determined mostly by active choice. In spite of a lack of direct observations, active choice is also considered the prevailing mechanism of prey selectivity in nocturnal fishes. Our objective was to resolve this mechanism in the highly selective, nocturnal zooplanktivorous fish Apogon annularis. Laboratory experiments indicated that the fish’s encounter rate with small prey was lower than that with large prey and that its selectivity became stronger with decreasing light intensity. Feeding efficiency, defined as the ratio between feeding and encounter rates, ranged 41–89% and was positively correlated with prey size. When feeding on a mixture of prey sizes, the fish fed on each size group at a rate similar to that of its feeding on the respective size alone, indicating that selectivity in A. annularis was due to size-dependent encounter rate and differential feeding efficiency. A low visual acuity in A. annularis, as inferred from its inability to detect small prey (<0.9 mm in length), together with the low abundance of large zooplankton in situ, can explain the dominance of differential encounter over active choice in this nocturnal coral-reef fish.  相似文献   

14.
The sinusoidal swimming of fish, previously interpreted as foraging behaviour, was studied with respect to season, density of large zooplankton, fish length, time of the day, weather condition and solar radiation in Římov Reservoir, Czech Republic, using a bottom-mounted, split-beam transducer (7°, nominal angle; frequency 120 kHz). The proportion of sinusoidally swimming fish increased from April to August while this behaviour was absent in October. The occurrence of sinusoidal swimming showed an apparent pattern throughout the day; it increased sharply around sunrise, was highest within 5–6 h around solar noon, and sharply decreased around sunset. Significantly less frequent occurrence of sinusoidal swimming was recorded during cloudy days compared to sunny days. The vast majority of records came from fish of standard length ranging from 100 to 400 mm, which represents the typical size range of common bream Abramis brama and roach Rutilus rutilus of age >1+, the main zooplanktivores in the reservoir. The presence of these larger fish in the open water of the reservoir, as well as the presence of sinusoidal swimming, apparently correlates with the presence of large zooplankton (Daphnia, Leptodora and Cyclops vicinus) in the epilimnion. The increase of sinusoidal swimming between April, June and finally August resulted in an increase of zooplankton component in fish guts. It appears that high values of solar radiation, and stable calm weather during high pressure periods, result in optimal optical conditions for sinusoidal swimming, making this foraging behaviour more efficient and widely used in fishes exploiting the zooplankton production in the reservoir.  相似文献   

15.
Josef Wanzenböck 《Oecologia》1995,104(3):372-378
The interrelationship of fish size, prey size and handling time within a 15-min feeding period was studied in three size groups of 0 + roach, Rutilus rutilus, and bleak, Alburnus alburnus. Four size classes of cladoceran prey were used to measure changes in feeding rate and handling time from initial rapid feeding to sustained feeding. Observed differences in increase of handling time between prey size classes led to a change in the prey profitability ranking of those size classes within the first 2 min of the experiments. A 1-min feeding period is interpreted as reflecting an intermediate motivational status between extreme hunger and satiation. The use of average handling times for this period revealed a substantial change in prey profitability estimates compared to previous studies which used handling times based on short-term (a few seconds up to 1 min) feeding. It is not the largest prey items a fish can handle and swallow that are most profitable, but prey of intermediate size. By this approach a closer fit between expectations derived from optimal foraging theory and empirical data on prey size selection of 0 + zooplanktivorous fish is qualitatively achieved. Optimal prey size was found to be close the mouth gape width in small fish of 15 mm standard length, decreasing to 50% of mouth gape width in fish of 40 mm standard length.  相似文献   

16.
Functional response curves of fourth instar larvae ofChaoborus flavicans preying on two size classes ofDaphnia longispina were examined throughout three summer seasons in a small forest lake. Data for each size class were fitted to Holling's disc equation. The parametersa (attack rate) andTh (handling time) were calculated for each prey size from these curves. Attack rate was greater and handling time was shorter for small (0.77 mm) than for large (1.82 mm)Daphnia. In 1:1 mixture of these prey size classes the predation rates ofChaoborus on smallDaphnia at prey densities above 20 l–1 were greater than predicted from the single size-class experiments. The observed predation rates on largeDaphnia were lower than predicted at all prey densities. Since both single size-class and two size-class experiments were run during the same period of time the difference in observed and predicted predation rates could not be attributed to seasonal changes in prey preference ofChaoborus larvae. In experiments with a concentrated mixture of lake zooplankton (dominated byD. longispina)Chaoborus preference forDaphnia decreased as prey body size increased. There was no obvious correlation between selectivity coefficients and size-frequency distributions ofDaphnia. When medium-sizedDaphnia were omitted from calculations the preference of small over large prey did not differ significantly from the predictions of the single size-class model.  相似文献   

17.
The fish community in the Loosdrecht lakes is dominated by bream, pikeperch and smelt and is characteristic of shallow eutrophic lakes in The Netherlands. The biomasses of the respective fish species amount to ca. 250, 25 and 10 kg ha–1 and correspond to those in Tjeukemeer, another lake in The Netherlands. The average size of bream, however, is much smaller in the Loosdrecht lakes as a consequence of poorer feeding conditions. The zooplankton community in the Loosdrecht lakes is predominantly composed of relatively small species such as Daphnia cucullata, Bosmina coregoni and cyclopoid copepods, whereas in Tjeukemeer, Daphnia hyalina is permanently present in relatively high densities and the other species show a larger mean length. In the Loosdrecht lakes, the absence of D. hyalina and the smaller sizes of the other zooplankton species could be the consequence of a higher predation pressure, in combination with unfavourable feeding conditions for the zooplankton including the low density of green algae and the high density of filamentous cyanobacteria. A biomanipulation experiment in Lake Breukeleveen, one of the Loosdrecht lakes, indicated that feeding conditions were too unfavourable for large zooplankton to develop in spring, when the reduced fish biomass was not yet supplemented by natural recruitment and immigration.  相似文献   

18.
SUMMARY. 1. The abundance of pianktivorous juvenile yellow perch, Perca flavescens , was manipulated in three 750 m3 enclosures in a eutrophic lake.
2. There was a significant negative relationship between fish and zoopiankton biomasses. At high fish densities the zooplankton community was dominated by small filter-feeding cladocera. primarily bosmi- nids. At low fish densities the zooplankton community was dominated by large filter-feeding cladocera, primarily daphnids.
3. There was no significant relationship between zooplankton and phytoplankton biomasses when considered over the whole experiment but there was a trend towards lower phytoplankton biomass in the enclosure dominated by daphnids during mid-summer.
4. We conclude that although planktivorous fish have a strong negative impact on zooplankton community biomass and size structure, the relationship at the next lower trophic level, zooplankton and phytoplankton, is much weaker. Therefore, the biomanipulation of planktivorous fish populations as a management technique to control phytoplankton abundance is largely ineffective.  相似文献   

19.
20.
We test the hypothesis that size distribution of a Daphnia population reflects the vulnerability of each size category (instar) to predation by planktivorous fish. We hypothesize that due to the different reaction distances from which separate prey categories can be seen by a foraging fish, each category is preyed upon until its density is reduced and its size-specific apparent density level (number of prey within a hemisphere of radius equal to the reaction distance) or encounter rate (number of prey encountered per time within a tube with a cross section of radius equal to the reaction distance) become equal to those of other size categories. An experiment was performed with populations of Daphnia hyalina and D. pulicaria grown at two Scenedesmus + Chlamydomonas food levels (0.2 and 0.05 mg C per liter) in outdoor mesocosms (1000 l tanks) with predation by invertebrates (phantom midge) prevented by mosquito netting. Once the populations had become established, roach were added to the tanks at dusk each day and allowed to feed for 3 h, while control tanks were kept fish-free. After 20–60 days, while D. pulicaria was at low density level, the densities of D. hyalina in fish tanks were high enough to see that the age structure and size distribution matched those from simulations with the age-structured population model based on size-specific encounter rate. This match, however, remained only up to the point of first reproduction when—in contrast to the size/age distribution predicted by the model—the percentage share of adult instars in the total population decreased rapidly with age. This deviation from the predicted densities of adult instars suggests that neither encounter rates nor apparent densities derived from instar-specific reaction distances are sufficient to explain the instar-specific impact of a visual predator on planktonic prey. This implies that a foraging fish may temporarily change its feeding mode from the typical low-speed harvesting of small but abundant prey from within its visual field volume, to high-speed hunting for more scarce but larger ovigerous females when their abundance allows higher net energy gain. Shifting from one feeding mode to the other may be responsible for damping population density oscillations in Daphnia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号