首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A poly (methacrylic acid-ethylene glycol dimethacrylate, MAA-EGDMA) monolithic capillary was used for the in-tube solid-phase microextraction (in-tube SPME) of several angiotensin II receptor antagonists (ARA-IIs) from human plasma and urine. Under the optimized extraction condition, the protein component of the biological sample was flushed through the monolithic capillary, while the analytes were successfully trapped. Coupled to HPLC with fluorescence detection, this on-line in-tube SPME method was successfully applied for the determination of candesartan, losartan, irbesartan, valsartan, telmisartan, and their detection limits were found to be 0.1-15.3ng/mL and 0.1-15.2ng/mL in human plasma and urine, respectively. The method was linear over the range of 0.5-200ng/mL for telmisartan, 5-2000ng/mL for candesartan and irbesartan, 10-2000ng/mL for valsartan, and 50-5000ng/mL for losartan with correlation coefficients being above 0.9985 in plasma sample and above 0.9994 in urine sample. The method reproducibility was evaluated at three concentration levels, resulting in the R.S.D. <7%. The poly (MAA-EGDMA) monolithic capillary was demonstrated to be robust and biocompatible by using direct injections of biological samples.  相似文献   

2.
To make analytes amenable for fluorescence (FL) detection, polymer monolith microextraction (PMME) coupled to high-performance liquid chromatography with FL detection was developed for the simultaneous determination of catechols and 5-hydroxyindoleamines (5-HIAs) from urine samples. In this method, a two-step pre-column derivatization method was employed to derivatize the analytes and a poly(methacrylic acid-co-ethylene glycol dimethacrylate) monolithic capillary column was used as the extraction medium for PMME. The conditions for the derivatization and subsequent extraction of 5-HIAs and catechols derivatives were optimized. Using our optimum conditions, the detection limit of the target analytes were 0.11–21 nM. Reproducibility of the method was obtained with intra-day and inter-day relative standard deviations less than 12% and a recovery of higher than 82%. In this study, we show how our proposed method can be used as a rapid sensitive technique for the determination of catechols and 5-HIAs from urine samples.  相似文献   

3.
Roscovitine, a purine analogue that selectively inhibits cyclin-dependent kinases, has been considered as a potential anti-tumor drug. The determination of roscovitine in plasma and urine was performed using microextraction in packed syringe as on-line sample preparation method with liquid chromatography and tandem mass spectrometry. The sampling sorbent utilized was polystyrene polymer. 2H3-lidocaine was used as internal standard. The limit of detection for roscovitine was as low as 0.5 ng/mL and the lower limit of quantification was 1.0 ng/mL. The accuracy and precision values of quality control samples were between +/-15% and < or =11%, respectively. The calibration curve was obtained within the concentration range 0.5-2000 ng/mL in both plasma and urine. The regression correlation coefficients for plasma and urine samples were > or =0.999 for all runs. The present method is miniaturized and fully automated and can be used for pharmacokinetic and pharmacodynamic studies.  相似文献   

4.
A rapid high-performance liquid chromatographic method for the quantitation of pseudoephedrine in human plasma is presented. The sample preparation involved liquid-liquid extraction of pseudoephedrine from alkalised plasma with hexane-isoamylalcohol (9:1, v/v) and back-extraction of the drug to 0.02 M hydrochloric acid. Liquid chromatography was performed on an octadecylsilica column (50 x 4 mm, 5 microm particles); the mobile phase consisted of acetonitrile-phosphate buffer containing 0.1% of triethylamine, pH 2.4 (5:95, v/v). The run time was 4 min. The spectrophotometric detector was operated at 195 nm. Codeine was used as the internal standard. The limit of quantitation was 5.8 ng/ml using 0.5 ml of plasma. Within-day and between-day precision expressed by relative standard deviation was less than 7% and inaccuracy did not exceed 8%. The assay was applied to the analysis of samples from a pharmacokinetic study.  相似文献   

5.
A simple and sensitive high-performance liquid chromatography (HPLC) method utilizing ultraviolet (UV) detection was developed for the determination of inosine and hypoxanthine in human plasma. For component separation, a monolithic C(18) column at a flow rate of 1.0 mL/min with an aqueous mobile phase of trifluoroacetic acid (0.1% TFA in deionized water pH 2.2, v/v) and methanol gradient was used. The method employed a one-step sample preparation utilizing centrifugal filtration with high component recoveries (approximately 98%) from plasma, which eliminated the need of an internal standard. The method demonstrated excellent linearity (0.25-5 microg/mL, R>0.9990) for both inosine and hypoxanthine with detection limits of 100 ng/mL. This simple and cost effective method was utilized to evaluate potential endogenous plasma biomarker(s), which may aid hospital emergency personnel in the early detection of acute cardiac ischemia in patients presenting with non-traumatic chest pain.  相似文献   

6.
Risperidone is currently one of the most frequently prescribed atypical antipsychotic drugs; its main active metabolite 9-hydroxyrisperidone contributes significantly to the therapeutic effects observed. An original analytical method is presented for the simultaneous analysis of risperidone and the metabolite in plasma, urine and saliva by high-performance liquid chromatography coupled to an original sample pre-treatment procedure based on micro-extraction by packed sorbent (MEPS). The assays were carried out using a C8 reversed-phase column and a mobile phase composed of 73% (v/v) acidic phosphate buffer (30 mM, pH 3.0) containing 0.23% triethylamine and 27% (v/v) acetonitrile. The UV detector was set at 238 nm and diphenhydramine was used as the internal standard. The sample pre-treatment by MEPS was carried out on a C8 sorbent. The extraction yields values were higher than 92% for risperidone and 90% for 9-hydroxyrisperidone, with RSD for precision always lower than 7.9% for both analytes. Limit of quantification values in the different matrices were 4 ng/mL or lower for risperidone and 6 ng/mL or lower for the metabolite. The method was successfully applied to plasma, urine and saliva samples from psychotic patients undergoing therapy with risperidone, with satisfactory accuracy results (recovery>89%) and no interference from other drugs. Thus, the method seems to be suitable for the therapeutic drug monitoring of schizophrenic patients using the three different biological matrices plasma, urine and saliva.  相似文献   

7.
A highly sensitive and specific LC-MS method was developed and validated for the quantification of digoxin in human plasma and urine using d5-dihydrodigoxin as internal standard (IS). The assay procedure involved extraction of digoxin and IS from human plasma with chloroform-isopropanol (95:5, v/v). Chromatogrphic separation was achieved on a Spherisorb ODS2 column using a gradient mobile phase with 5 mmol/L ammonium acetate in water with 1% acetic acid and acetonitrile. The mass spectrometer was operated in the selected ion monitoring mode using the respective [M+K](+) ions, m/z 819.4 for digoxin and m/z 826.4 for IS. The method was proved to be accurate and precise at linearity range of 0.12-19.60 ng/mL in plasma with a correlation coefficient (r(2)) of >or=0.9968 and 1.2-196.0 ng/mL in urine. The limit of quantification achieved with this method was 0.12 ng/mL in plasma and 1.2 ng/mL in urine. The intra- and inter-assay precision and accuracy values were found to be within the assay variability limits as per the FDA guidelines. The developed assay method was successfully applied to a pharmacokinetic study in human volunteers following intravenous administration of digoxin.  相似文献   

8.
Higenamine is an active ingredient of Aconite root in Chinese herbal medicine and might be used as a new agent for a pharmaceutical stress test and was approved to undergo clinical pharmacokinetic study. Therefore, there exists a need to establish a sensitive and rapid method for the determination of higenamine in human plasma and urine. This paper described a sensitive and rapid method based on liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) for the determination of higenamine in human plasma and urine. Solid-phase extraction (SPE) was used to isolate the compounds from biological matrices followed by injection of the extracts onto an Atlantis dC18 column with isocratic elution. The mobile phase was 0.05% formic acid in water-methanol (40:60, v/v). The mass spectrometry was carried out using positive electrospray ionization (ESI) and data acquisition was carried out in the multiple reaction monitoring (MRM) mode. The method was fully validated over the concentration range of 0.100-50.0 ng/mL and 1.00-500 ng/mL in plasma and urine, respectively. The lower limits of quantification (LLOQs) were 0.100 and 1.00 ng/mL in plasma and urine, respectively. Inter- and intra-batch precision was less than 15% and the accuracy was within 85-115% for both plasma and urine. Extraction recovery was 82.1% and 56.6% in plasma and urine, respectively. Selectivity, matrix effects and stability were also validated in human plasma and urine. The method was applied to the pharmacokinetic study of higenamine hydrochloride in Chinese healthy subjects.  相似文献   

9.
A new drug, quick-acting anti-motion capsule (QAAMC) composed of d-amphetamine sulfate, dimenhydrinate and ginger extraction has been studied for anti-motion-sickness use. We have developed a sensitive, specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the quantitative determination of d-amphetamine and diphenhydramine, the main effective components of the QAAMC, using pseudoephedrine as the internal standard. The analytes and internal standard were isolated from 200 microL plasma samples by a simple liquid-liquid extraction (LLE). Reverse-phase HPLC separation was accomplished on a Zorbax SB-C18 column (100 mm x 3.0 mm, 3.5 microm) with a mobile phase composed of methanol-water-formic acid (65:35:0.5, v/v/v) at a flow rate of 0.2 mL/min. The method had a chromatographic total run time of 5 min. A Varian 1200 L electrospray tandem mass spectrometer equipped with an electrospray ionization source was operated in selected reaction monitoring (SRM) mode with the precursor-to-product ion transitions m/z 136.0-->91.0 (D-amphetamine), 256.0-->167.0 (diphenhydramine) and 166.1-->148.0 (IS) used for quantitation. The method was sensitive with a lower limit of quantitation (LLOQ) of 0.5 ng/mL for d-amphetamine and 1 ng/mL for diphenhydramine, with good linearity in the range 0.5-200 ng/mL for D-amphetamine and 1-500 ng/mL for diphenhydramine (r(2)> or =0.9990). All the validation data, such as accuracy, precision, and inter-day repeatability, were within the required limits. The method was successfully applied to pharmacokinetic study of the QAAMC in beagle dogs.  相似文献   

10.
A simple and sensitive high-performance liquid chromatographic (HPLC) method utilizing fluorescence detection was developed for the determination of the phosphodiesterase type 5 inhibitor tadalafil in mouse plasma. This method utilizes a simple sample preparation (protein precipitation) with high recovery of tadalafil (∼98%), which eliminates the need for an internal standard. For constituent separation, the method utilized a monolithic C18 column and a flow rate of 1.0 mL/min with a mobile phase gradient consisting of aqueous trifluoroacetic acid (0.1% TFA in deionized water pH 2.2, v/v) and acetonitrile. The method calibration was linear for tadalafil in mouse plasma from 100 to 2000 ng/mL (r > 0.999) with a detection limit of approximately 40 ng/mL. Component fluorescence detection was achieved using an excitation wavelength of 275 nm with monitoring of the emission wavelength at 335 nm. The intra-day and inter-day precision (relative standard deviation, RSD) values for tadalafil in mouse plasma were less than 14%, and the accuracy (percent error) was within −14% of the nominal concentration. The method was utilized on mouse plasma samples from research evaluating the potential cardioprotective effects of tadalafil on mouse heart tissue exposed to doxorubicin, a chemotherapeutic drug with reported cardiotoxic effects.  相似文献   

11.
A rugged, sensitive and efficient liquid chromatography-tandem mass spectrometry method was developed and validated for the quantitative analysis of firocoxib in urine from 5 to 3000 ng/mL and in plasma from 1 to 3000 ng/mL. The method requires 200 microL of either plasma or urine and includes sample preparation in 96-well solid phase extraction (SPE) plates using a BIOMEK 2000 Laboratory Automated Workstation. Chromatographic separation of firocoxib from matrix interferences was achieved using isocratic reversed phase chromatography on a PHENOMENEX LUNA Phenyl-Hexyl column. The mobile phase was 45% acetonitrile and 55% of a 2 mM ammonium formate buffer. The method was accurate (88-107%) and precise (CV<12.2%) within and between sets. Extraction efficiencies (recovery)>93% were achieved and ionization efficiencies (due to matrix effects) were >72%. Extensive stability and ruggedness testing was also performed; therefore, the method can be used for pharmacokinetic studies as well as drug monitoring and screening. The data presented here is the first LC-MS/MS method for the quantitation of firocoxib in plasma (LLOQ of 1 ng/mL), a 25-fold improvement in sensitivity over the HPLC-UV method and the first quantitative method for firocoxib in urine (LLOQ of 5 ng/mL). Additionally the sample preparation process has been automated to improve efficiency.  相似文献   

12.
Nitric oxide (NO) is a bioactive molecule that has recently emerged as a cellular messenger in numerous physiological processes in plants. A novel high-performance liquid chromatography (HPLC) method combined with poly(methacrylic acid-ethylene glycol dimethacrylate) (MAA-EGDMA) monolith microextraction (PMME) is developed for sensitive determination of NO in hydrophytes. NO is derivatized using a fluorescent probe, 1,3,5,7-tetramethyl-8-(3',4'-diaminophenyl)-difluoroboradiaza-s-indacene (DAMBO), and then the derivatives are extracted with PMME and analyzed by high-performance liquid chromatography (HPLC) with fluorescence detection. The conditions for the derivatization and the subsequent extraction of NO derivatives are optimized in detail. The detection limit (S/N=3) of NO is determined to be 2x10(-12)mol L(-1). Close correlation coefficient and excellent method reproducibility are obtained for the analyte over a linear range of 9x10(-11)-4.5x10(-8)mol L(-1). The inter- and intraday relative standard deviations (R.S.D.s) are less than 5%. The proposed method is successfully applied to the determination of NO levels in hydrophytes samples.  相似文献   

13.
Glyburide (glibenclamide, INN), a second generation sulfonylurea is widely used in the treatment of gestational diabetes mellitus (GDM). None of the previously reported analytical methods provide adequate sensitivity for the expected sub-nanogram/mL maternal and umbilical cord plasma concentrations of glyburide during pregnancy. We developed and validated a sensitive and low sample volume liquid chromatographic-mass spectrometric (LC-MS) method for simultaneous determination of glyburide (GLY) and its metabolite, 4-transhydroxy glyburide (M1) in human plasma (0.5 mL) or urine (0.1 mL). The limits of quantitation (LOQ) for GLY and M1 in plasma were 0.25 and 0.40 ng/mL, respectively whereas it was 1.06 ng/mL for M1 in urine. As measured by quality control samples, precision (% coefficient of variation) of the assay was <15% whereas the accuracy (% deviation from expected) ranged from -10.1 to 14.3%. We found that the GLY metabolite, M1 is excreted in the urine as the glucuronide-conjugate.  相似文献   

14.
A method based on liquid-liquid-liquid microextraction combined with corona discharge ion mobility spectrometry was developed for the analysis of amantadine in human urine and plasma samples. Amantadine was extracted from alkaline aqueous sample as donor phase through a thin phase of organic solvent (n-dodecane) filling the pores of the hollow fiber wall and then back extracted into the organic acceptor phase (methanol) located in the lumen of the hollow fiber. All variables affecting the extraction of analyte including acceptor organic solvent type, concentration of NaOH in donor phase, ionic strength of the sample and extraction time were studied. The linear range was 20-1000 and 5-250 ng/mL for plasma and urine, respectively (r(2)≥0.990). The limits of detection were calculated to be 7.2 and 1.6 ng/mL for plasma and urine, respectively. The relative standard deviation was lower than 8.2% for both urine and plasma samples. The enrichment factors were between 45 and 54. The method was successfully applied for the analysis of amantadine in urine and plasma samples.  相似文献   

15.
A sensitive, specific and fast high-performance liquid chromatography/tandem mass spectrometry (HPLC-MS/MS) assay for the determination of vinorelbine in mouse and human plasma is presented. A 200 microL aliquot was extracted with solid-phase extraction (SPE) using Bond-Elut C(2) cartridges. Dried extracts were reconstituted in 100 microL 1 mM ammonium acetate pH 10.5-acetonitrile-methanol (21:9:70, v/v/v) containing the internal standard vintriptol (100 ng/mL) and 10 microL volumes were injected onto the HPLC system. Separation was achieved on a 50 mm x 2.0 mm i.d. Gemini C(18) column using isocratic elution with 1 mM ammonium acetate pH 10.5-acetonitrile-methanol (21:9:70, v/v/v) at a flow rate of 0.4 mL/min. HPLC run time was only 5 min. Detection was performed using positive ion electrospray ionization followed by tandem mass spectrometry (ESI-MS/MS). The assay quantifies vinorelbine from 0.1 to 100 ng/mL using human plasma sample volumes of 200 microL. With this method vinorelbine can be measured in mouse plasma samples when these samples are diluted eight times in control human plasma. Calibration samples prepared in control human plasma can be used for the quantification of the drug. The lower limit of quantification in mouse plasma is 0.8 ng/mL. This assay is used to support preclinical and clinical pharmacologic studies with vinorelbine.  相似文献   

16.
A sensitive and efficient liquid chromatography-mass spectrometry method was developed and validated for the simultaneous determination of two active chromones (prim-O-glucosylcimifugin and 4'-O-D-glucosyl-5-O-methylvisamminol) from Saposhnikovia root in rat plasma and urine. The plasma or urine samples were prepared by protein precipitation. Chromatographic separation of the two active chromones from matrix interferences was achieved on an Angilent TC-C(18) column with a mobile phase consisted of methanol, water and 0.1% formic acid. Puerarin was added as the internal standard. The method was validated with the concentration range 1.0-100 ng/mL in rat plasma and 10-1000 ng/mL in urine for prim-O-glucosylcimifugin, 1.5-150 ng/mL in plasma and 15-1500 ng/mL in urine for 4'-O-D-glucosyl-5-O-methylvisamminol. The lower limit of quantitation (LLOQ) of prim-O-glucosylcimifugin and 4'-O-D-glucosyl-5-O-methylvisamminol was 1.0 and 1.5 ng/mL in plasma, 10 and 15 ng/mL in urine, respectively. The intra- and inter-day precision across three validation days over the entire concentration range was lower than 9.0% as terms of relative standard deviation (R.S.D.). Accuracy determined at three quality control concentrations (2.0, 25 and 75 ng/mL for prim-O-glucosylcimifugin; 3.0, 37.5 and 112.5 ng/mL for 4'-O-D-glucosyl-5-O-methylvisamminol) ranged from -1.9 to 3.9% as terms of relative error (R.E.). The LC-ESI-MS method was further applied to assess pharmacokinetics and urine excretion of the two chromones after oral administration of Fangfeng extract to rats. Practical utility of this new LC-MS method was confirmed in pilot pharmacokinetic studies in rats following oral administration.  相似文献   

17.
A sensitive rapid method for the simultaneous determination of four major active alkaloids (dehydrocavidine, coptisine, dehydroapocavidine, and tetradehydroscoulerine, in abbreviation thereafter called YHL-I, YHL-II, YHL-III, and YHL-IV, respectively) from a Chinese traditional medicine Corydalis saxicola Bunting. (Yanhuanglian) in rat plasma and urine was established and validated. The assay for these substances in plasma and urine was based on HPLC coupled with tandem mass spectrometry (MS/MS) detection using multiple reaction monitoring mode (MRM) with berberine and clenbuterol as internal standards. The plasma and urine sample were deproteinated by adding methanol prior to liquid chromatography where separation was performed on a Luna column (5 microm, 100 x 2.00 mm) and an Agilent Zorbax SB-C18 guard column (5 microm, 20 x 4 mm). The method was validated with the concentration range 1-1000 ng/mL in plasma and 10-1000 ng/mL in urine for the four test compounds, and the calibration curves were linear with correlation coefficients >0.999. The lowest limits of quantitation for all four substances were 1 ng/mL in 0.1 mL rat plasma and 10 ng/mL in 0.1 mL urine. The intra-assay accuracy and precision in plasma ranged from 88.1 to 115.7% and 1.4 to 10.8%, respectively, while inter-assay accuracy and precision for YHL-I, YHL-II, YHL-III, and YHL-IV ranged from 96.2 to 113.2% and 0.4 to 16.9%, respectively. The intra-assay accuracy and precision for YHL-I, YHL-II, YHL-III, and YHL-IV in rat urine ranged from 96.1 to 112.9% and 1.2 to 8.3%, respectively, while inter-assay accuracy and precision ranged from 95.0 to 106.8% and 2.2 to 10.3%, respectively. The method was further applied to assess pharmacokinetics and urine excretion of the four alkaloids after oral and intravenous administration to rats. Practical utility of this new LC-MS-MS method was confirmed in pilot pharmacokinetic studies in rats following both intravenous and oral administration.  相似文献   

18.
A highly efficient, selective and specific method for simultaneous quantitation of triprolidine and pseudoephedrine in human plasma by liquid chromatography–ion trap-tandem mass spectrometry coupled with electro spray ionization (LC–ESI-ion trap-tandem MS) has been validated and successfully applied to a clinical pharmacokinetic study. Both targeted compounds together with the internal standard (gabapentin) were extracted from the plasma by direct protein precipitation. Chromatographic separation was achieved on a C18 ACE® column (50.0 mm × 2.1 mm, 5 μm, Advance Chromatography Technologies, Aberdeen, UK), using an isocratic mobile phase, consisting of water, methanol and formic acid (55:45:0.5, v/v/v), at a flow-rate of 0.3 mL/min. The transition monitored (positive mode) was m/z 279.1  m/z 208.1 for triprolidine, m/z 165.9  m/z 148.0 for pseudoephedrine and m/z 172.0  m/z 154.0 for gabapentin (IS). This method had a chromatographic run time of 5.0 min and a linear calibration curves ranged from 0.2 to 20.0 ng/mL for triprolidine and 5.0–500.0 ng/mL for pseudoephedrine. The within- and between-batch accuracy and precision (expressed as coefficient of variation, %C.V.) evaluated at four quality control levels were within 94.3–106.3% and 1.0–9.6% respectively. The mean recoveries of triprolidine, pseudoephedrine and gabapentin were 93.6, 76.3 and 82.0% respectively. Stability of triprolidine and pseudoephedrine was assessed under different storage conditions. The validated method was successfully employed for the bioequivalence study of triprolidine and pseudoephedrine formulation in twenty six volunteers under fasting conditions.  相似文献   

19.
We have developed and validated a sensitive and selective assay for the quantification of paclitaxel and its metabolites 6α,3′-p-dihydroxypaclitaxel, 3′-p-hydroxypaclitaxel and 6α-hydroxypaclitaxel in plasma, tissue, urine and faeces specimens of mice. Tissue and faeces were homogenized (approximately 0.1–0.2 g/ml) in bovine serum albumin (40 g/I) in water, and urine was diluted (1:5, v/v) in blank human plasma. Sample pretreatment involved liquid-liquid extraction of 200–1000 μl of sample with diethyl ether followed by automated solid-phase extraction using cyano Bond Elut column. 2′-Methylpaclitaxel was used as internal standard. The overall recovery of the sample pretreatment procedure ranged from 76 ot 85%. In plasma, the lower limit of detection (LOD) and the lower limit of quantitation (LLQ) are 15 and 25 ng/ml, respectively, using 200 μl of sample. In tissues, faeces and urine the LLQs are 25–100 ng/g, 125 ng/g and 25 ng/ml, respectively, using 1000 μl (faeces: 200 μl) of homogenized or diluted sample. The concentrations in the various biological matrices, for validation procedures spiked with known amounts of the test compounds, are read from calibration curves constructed in blank human plasma in the range 25–100 000 ng/ml for paclitaxel and 25–500 ng/ml for the metabolites. The accuracy and precision of the assay fall within the generally accepted criteria for bio-analytical assays.  相似文献   

20.
A convenient and sensitive method for the quantitative determination of poly(ethylene glycol) 400 in plasma and urine with capillary gas chromatography-mass spectrometry has been developed. The sample preparation involves solid-phase extraction with subsequent derivatization with heptafluorobutyric anhydride, which proved to give the most stable derivative. The derivatization procedure was optimized using experimental design, and different solid-phase extraction columns were evaluated. The limit of quantitation was 1 μmol/l (0.4 μg/ml) for both plasma and urine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号