首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Different legumin protein domains act as vacuolar targeting signals.   总被引:21,自引:7,他引:14       下载免费PDF全文
Legumin subunits are synthesized as precursor polypeptides and are transported into protein storage vacuoles in field bean cotyledons. We expressed a legumin subunit in yeast and found that in these cells it is also transported into the vacuoles. To elucidate vacuolar targeting information, we constructed gene fusions of different legumin propolypeptide segments with either yeast invertase or chloramphenicol acetyltransferase as reporters for analysis in yeast or plant cells, respectively. In yeast, increasing the length of the amino-terminal segment increased the portion of invertase directed to the vacuole. Only the complete legumin alpha chain (281 amino acids) directed over 90% to the vacuole. A short carboxy-terminal legumin segment (76 amino acids) fused to the carboxy terminus of invertase also efficiently targeted this fusion product to yeast vacuoles. With amino-terminal legumin-chloramphenicol acetyltransferase fusions expressed in tobacco seeds, efficient vacuolar targeting was obtained only with the complete alpha chain. We conclude that legumin contains multiple targeting information, probably formed by higher structures of relatively long peptide sequences.  相似文献   

2.
Three different classes of signals for plant vacuolar targeting have been defined. Previous work has demonstrated that the carboxyl-terminal propeptide (CTPP) of barley lectin (BL) is a vacuolar targeting signal in tobacco plants. When a mutant BL protein lacking the CTPP is expressed in tobacco, the protein is secreted. In an effort to determine the universality of this signal, the CTPP was tested for its ability to target proteins to the vacuole of Saccharomyces cerevisiae. Genes encoding fusion proteins between the yeast secreted protein invertase and BL domains were synthesized and transformed into an invertase deletion mutant of yeast. Invertase assays on intact and detergent-solubilized cells demonstrated that invertase+CTPP was secreted, while nearly 90% of the invertase::BL+CTPP (fusion protein between invertase and BL containing the CTPP) and invertase::BL-CTPP proteins (fusion between invertase and BL lacking the CTPP) were retained intracellularly. These fusions were secreted in a mutant of yeast that normally secretes proteins targeted to the vacuole. With this and previous work, proteins representing all three classes of plant vacuolar targeting signals have now been tested in yeast, and in all cases, the experiments indicate that the plant proteins are directed to the yeast vacuole using signals other than those recognized by plants.  相似文献   

3.
Phytohemagglutinin (PHA), the major seed lectin of the common bean, Phaseolus vulgaris, accumulates in the parenchyma cells of the cotyledons. It has been previously shown that PHA is cotranslationally inserted into the endoplasmic reticulum with cleavage of the NH2-terminal signal peptide. Two N-linked oligosaccharide side chains are added, one of which is modified to a complex type in the Golgi apparatus. PHA is then deposited in membrane-bound protein storage vacuoles which are biochemically and functionally equivalent to the vacuoles of yeast cells and the lysosomes of animal cells. We wished to determine whether yeast cells would recognize the vacuolar sorting determinant of PHA and target the protein to the yeast vacuole. We have expressed the gene for leukoagglutinating PHA (PHA-L) in yeast under control of the yeast acid phosphatase (PHO5) promoter. Under control of this promoter, PHA-L accumulates to 0.1% of the total yeast protein. PHA-L produced in yeast is glycosylated as expected for a yeast vacuolar glycoprotein. Cell fractionation studies show that PHA-L is efficiently transported to the yeast vacuole. This is the first demonstration that vacuolar targeting information is recognized between two highly divergent species. A small proportion of yeast PHA-L is secreted which may be due to inefficient recognition of the vacuolar sorting signal because of the presence of an uncleaved signal peptide on a subset of the PHA-L polypeptides. This system can now be used to identify the vacuolar sorting determinant of a plant vacuolar protein.  相似文献   

4.
P K Herman  J H Stack    S D Emr 《The EMBO journal》1991,10(13):4049-4060
The yeast VPS15 gene encodes a novel protein kinase homolog that is required for the sorting of soluble hydrolases to the yeast vacuole. In this study, we extend our previous mutational analysis of the VPS15 gene and show that alterations of specific Gps15p residues, that are highly conserved among all protein kinase molecules, result in the biological inactivation of Vps15p. Furthermore, we demonstrate here that short C-terminal deletions of Vps15p result in a temperature-conditional defect in vacuolar protein sorting. Immediately following the temperature shift, soluble vacuolar hydrolases, such as carboxypeptidase Y and proteinase A, accumulate as Golgi-modified precursors within a saturable intracellular compartment distinct from the vacuole. This vacuolar protein sorting block is efficiently reversed when mutant cells are shifted back to the permissive temperature; the accumulated precursors are rapidly processed to their mature forms indicating that they have been delivered to the vacuole. This rapid and efficient reversal suggests that the accumulated vacuolar protein precursors were present within a normal transport intermediate in the vacuolar protein sorting pathway. In addition, this protein delivery block shows specificity for soluble vacuolar enzymes as the membrane protein, alkaline phosphatase, is efficiently delivered to the vacuole at the non-permissive temperature. Interestingly, the C-terminal Vps15p truncations are not phosphorylated in vivo suggesting that the phosphorylation of Vps15p may be critical for its biological activity at elevated temperatures. The rapid onset and high degree of specificity of the vacuolar protein delivery block in these mutants suggests that the primary role of Vps15p is to regulate the sorting of soluble hydrolases to the yeast vacuolar compartment.  相似文献   

5.
We have evaluated the fate of misfolded protein domains in the Saccharomyces cerevisiae secretory pathway by fusing mutant forms of the NH2-terminal domain of lambda repressor protein to the secreted protein invertase. The hybrid protein carrying the wild-type repressor domain is mostly secreted to the cell surface, whereas hybrid proteins with amino acid substitutions that cause the repressor domain to be thermodynamically unstable are retained intracellularly. Surprisingly, the retained hybrids are found in the vacuole, where the repressor moiety is degraded by vacuolar proteases. The following observations indicate that receptor-mediated recognition of the mutant repressor domain in the Golgi lumen targets these hybrid fusions to the vacuole. (a) The invertase-repressor fusions, like wild-type invertase, behave as soluble proteins in the ER lumen. (b) Targeting to the vacuole is saturable since overexpression of the hybrids carrying mutant repressor increases the fraction of fusion protein that appears at the cell surface. (c) Finally, deletion of the VPS10 gene, which encodes the transmembrane Golgi receptor responsible for targeting carboxypeptidase Y to the vacuole, causes the mutant hybrids to be diverted to the cell surface. Together these findings suggest that yeast have a salvage pathway for degradation of nonnative luminal proteins by receptor- mediated transport to the vacuole.  相似文献   

6.
L M Johnson  V A Bankaitis  S D Emr 《Cell》1987,48(5):875-885
We have mapped a sequence determinant in the vacuolar glycoprotein carboxypeptidase Y (CPY) that directs intracellular sorting of this enzyme. Through the study of hybrid proteins, consisting of amino-terminal segments of CPY fused to the secretory enzyme invertase, we have found that the N-terminal 50 amino acids of CPY are sufficient to direct delivery of a CPY-Inv hybrid protein to the yeast vacuole. Our data suggest that this 50 amino acid segment of CPY contains two distinct functional domains; an N-terminal signal peptide followed by a segment of 30 amino acids that contains the vacuolar sorting signal. Deletion of this putative vacuole sorting signal from an otherwise wild-type CPY protein leads to missorting of CPY. Furthermore, examination of the Asn-linked oligosaccharides present on CPY and CPY-Inv hybrid proteins suggests that an additional determinant in CPY specifies the extent to which these proteins are glycosylated in the Golgi complex.  相似文献   

7.
An inactive precursor form of proteinase A (PrA) transits through the early secretory pathway before final vacuolar delivery. We used gene fusions between the gene coding for PrA (PEP4) and the gene coding for the secretory enzyme invertase (SUC2) to identify vacuolar protein-sorting information in the PrA precursor. We found that the 76-amino-acid preprosegment of PrA contains at least two sorting signals: an amino-terminal signal peptide that is cleaved from the protein at the level of the endoplasmic reticulum followed by the prosegment which functions as a vacuolar protein-sorting signal. PrA-invertase hybrid proteins that carried this sequence information were accurately sorted to the yeast vacuole as determined by cell fractionation and immunolocalization studies. Hybrid proteins lacking all or a portion of the PrA prosegment were secreted from the cell. Our gene fusion data together with an analysis of the wild-type PrA protein indicated that N-linked carbohydrate modifications are not required for vacuolar sorting of this protein. Furthermore, results obtained with a set of deletion mutations constructed in the PrA prosegment indicated that this sequence also contributes to proper folding of this polypeptide into a stable transit-competent molecule.  相似文献   

8.
P K Herman  J H Stack  J A DeModena  S D Emr 《Cell》1991,64(2):425-437
The VPS15 gene encodes a novel protein kinase homolog that is essential for the efficient delivery of soluble hydrolases to the yeast vacuole. Point mutations altering highly conserved residues within the Vps15p kinase domain result in the secretion of multiple vacuolar proteases. In addition, the in vivo phosphorylation of Vps15p is defective in these kinase domain mutants, suggesting that Vps15p may regulate specific protein phosphorylation reactions required for protein sorting to the yeast vacuole. Subcellular fractionation studies further demonstrate that the 1455 amino acid Vps15p is peripherally associated with the cytoplasmic face of a late Golgi or vesicle compartment. This association may be mediated by myristate as Vps15p contains a consensus signal for N-terminal myristoylation. We propose that protein phosphorylation may act as a molecular "switch" within intracellular protein sorting pathways by actively diverting proteins from a default transit pathway (e.g., secretion) to an alternative pathway (e.g., to the vacuole).  相似文献   

9.
PCR was used to isolate a carboxypeptidase Y (CPY) homolog gene from the fission yeast Schizosaccharomyces pombe. The cloned S. pombe cpy1+ gene has a single open reading frame, which encodes 950 amino acids with one potential N-glycosylation site. It appears to be synthesized as an inactive pre-pro protein that likely undergoes processing following translocation into appropriate intracellular organelles. The C-terminal mature region is highly conserved in other serine carboxypeptidases. In contrast, the N-terminal pro region containing the vacuolar sorting signal in CPY from Saccharomyces cerevisiae shows fewer identical residues. The pro region contains two unusual repeating sequences; repeating sequence I consists of seven contiguous repeating segments of 13 amino acids each, and repeating sequence II consists of seven contiguous repeating segments of 9 amino acids each. Pulse-chase radiolabeling analysis revealed that Cpy1p was initially synthesized in a 110-kDa pro-precursor form and via the 51-kDa single-polypeptide-chain intermediate form which has had its pro segment removed is finally converted to a heterodimer, the mature form, which is detected as a 32-kDa protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. Like S. cerevisiae CPY, S. pombe Cpy1p does not require the N-linked oligosaccharide moiety for vacuolar delivery. To investigate the vacuolar sorting signal of S. pombe Cpy1p, we have constructed cpy1+-SUC2 gene fusions that direct the synthesis of hybrid proteins consisting of N-terminal segments of various lengths of S. pombe Cpy1p fused to the secreted enzyme S. cerevisiae invertase. The N-terminal 478 amino acids of Cpy1 are sufficient to direct delivery of a Cpy1-Inv hybrid protein to the vacuole. These results showed that the pro peptide of Cpy1 contains the putative vacuolar sorting signal.  相似文献   

10.
J H Rothman  T H Stevens 《Cell》1986,47(6):1041-1051
We have devised a genetic selection for mutant yeast cells that fail to properly deliver the vacuolar glycoprotein CPY to the lysosome-like vacuole. This has allowed us to identify mutations in eight VPL complementation groups that result in aberrant secretion of up to approximately 90% of the immunoreactive CPY. Other soluble vacuolar proteins are also affected by each vpl mutation, demonstrating that a sorting system for multiple vacuolar proteins exists in yeast. Mislocalized CPY apparently traverses late stages of the secretory pathway, since a vesicle-accumulating sec1 mutation prevents secretion of this protein. Despite the presence of abnormal membrane-enclosed organelles in some of the vpl mutants, maturation and secretion of invertase are not substantially perturbed. Thus vpl mutations define a new class of genes that encode products required for sorting of newly synthesized vacuolar proteins from secretory proteins during their transit through the yeast secretory pathway.  相似文献   

11.
Transport of yeast alkaline phosphatase (ALP) to the vacuole depends on the clathrin adaptor-like complex AP-3, but does not depend on proteins necessary for transport through pre-vacuolar endosomes. We have identified ALP sequences that direct sorting into the AP-3-dependent pathway using chimeric proteins containing residues from the ALP cytoplasmic domain fused to sequences from a Golgi-localized membrane protein, guanosine diphosphatase (GDPase). The full-length ALP cytoplasmic domain, or ALP amino acids 1-16 separated from the transmembrane domain by a spacer, directed GDPase chimeric proteins from the Golgi complex to the vacuole via the AP-3 pathway. Mutation of residues Leu13 and Val14 within the ALP cytoplasmic domain prevented AP-3-dependent vacuolar transport of both chimeric proteins and full-length ALP. This Leucine-Valine (LV)-based sorting signal targeted chimeric proteins and native ALP to the vacuole in cells lacking clathrin function. These results identify an LV-based sorting signal in the ALP cytoplasmic domain that directs transport into a clathrin-independent, AP-3-dependent pathway to the vacuole. The similarity of the ALP sorting signal to mammalian dileucine sorting motifs, and the evolutionary conservation of AP-3 subunits, suggests that dileucine-like signals constitute a core element for AP-3-dependent transport to lysosomal compartments in all eukaryotic cells.  相似文献   

12.
We have isolated cis-acting mutations in the gene encoding the yeast vacuolar protein carboxypeptidase Y (CPY) that result in missorting and aberrant secretion of up to 95% of newly synthesized CPY. The CPY polypeptides synthesized by these mutants use the late secretory pathway to exit the cell, since the late-acting sec1 mutation prevents their secretion. The mutant versions of CPY are secreted as the proCPY zymogen and are enzymatically activatable in vivo and in vitro. All the mutations, including small deletions and an amino acid substitution, map to the amino-terminal propeptide region and define a discrete yeast vacuolar localization domain whose integrity is required for efficient sorting of the CPY zymogen. Thus, the N-terminal propeptide of CPY carries out at least three functions: it mediates translocation across the endoplasmic reticulum, renders the enzyme inactive during transit, and targets the molecule to the vacuole.  相似文献   

13.
The amino-terminal propeptide of carboxypeptidase Y (CPY) is necessary and sufficient for targeting this glycoprotein to the vacuole of Saccharomyces cerevisiae. A 16 amino acid stretch of the propeptide was subjected to region-directed mutagenesis using randomized oligonucleotides. Mutations altering any of four contiguous amino acids, Gln-Arg-Pro-Leu, resulted in secretion of the encoded CPY precursor (proCPY), demonstrating that these residues form the core of the vacuolar targeting signal. Cells that simultaneously synthesize both wild-type and sorting-defective forms of proCPY efficiently sort and deliver only the wild-type molecule to the vacuole. These results indicate that the PRC1 missorting mutations are cis-dominant, implying that the mutant forms of proCPY are secreted as a consequence of failing to interact with the sorting apparatus, rather than a general poisoning of the vacuolar protein targeting system.  相似文献   

14.
We have previously demonstrated that the carboxyl-terminal propeptide of barley lectin is both necessary and sufficient for protein sorting to the plant vacuole. Specific mutations were constructed to determine which amino acid residues or secondary structural determinants of the carboxyl-terminal propeptide affect proper protein sorting. We have found that no consensus sequence or common structural determinants are required for proper sorting of barley lectin to the vacuole. However, our analysis demonstrated the importance of hydrophobic residues in vacuolar targeting. In addition, at least three exposed amino acid residues are necessary for efficient sorting. Sorting was disrupted by the addition of two glycine residues at the carboxyl-terminal end of the targeting signal or by the translocation of the glycan to the carboxy terminus of the propeptide. These results suggest that some components of the sorting apparatus interact with the carboxy terminus of the propeptide.  相似文献   

15.
The Saccharomyces cerevisiae PHO8 gene product, repressible alkaline phosphatase (ALP), is a glycoprotein enzyme that is localized to the yeast vacuole (lysosome). Using antibodies raised against synthetic peptides corresponding to two distinct hydrophilic sequences in ALP, we have been able to examine the biosynthesis, sorting and processing of this protein. ALP is synthesized as an inactive precursor containing a C-terminal propeptide that is cleaved from the protein in a PEP4-dependent manner. The precursor and mature protein are anchored in the membrane by an N-terminal hydrophobic domain that also appears to function as an uncleaved internal signal sequence. ALP has the topology of a type-II integral membrane protein containing a short basic N-terminal cytoplasmic tail that is accessible to exogenous protease when associated both with the endoplasmic reticulum and the vacuole. Similar to the soluble vacuolar hydrolases carboxypeptidase Y (CPY) and proteinase A (PrA), ALP transits through the early stages of the secretory pathway prior to vacuolar delivery. Two observations indicate, however, that ALP is localized to the vacuole by a mechanism which is in part different from that used by CPY and PrA: (i) maturation of proALP, which is indicative of vacuolar delivery, is less sensitive than CPY and PrA to the defects exhibited by certain of the vacuolar protein sorting (vps) mutants; and (ii) maturation of proALP proceeds normally in the presence of a potent vacuolar ATPase inhibitor, bafilomycin A1, which is known to block vacuole acidification and leads to the mis-sorting and secretion of precursor forms of CPY and PrA. These results indicate that ALP will be a useful model protein for studies of membrane protein sorting in yeast.  相似文献   

16.
Summary The vacuole is often termed the lytic compartment of the plant cell. The yeast cell also possesses a vacuole containing acid hydrolases. In animal cells these enzymes are localized in the lysosome. Recent research suggests that there is good reason to regard these organelles as homologous in terms of protein transport. Although sorting motifs for the recognition of vacuolar proteins within the endomembrane system differ between the three organelles, there is an underlying similarity in targeting determinants in the cytoplasmic tails of Golgi-based receptors. In all three cases these determinants appear to interact with adaptins of clathrin-coated vesicles which ferry their cargo first of all to an endosomal compartment. The situation in sorting and targeting of plant vacuolar proteins is complicated by the fact that storage and lytic vacuoles may exist together in the same cell. The origin of these two types of vacuole is also a matter of some uncertanity.Abbrevations AP assembly protein - ALP alkaline phosphatase - ARF adenosine diphosphate ribosylation factor - BiP immunoglobulin binding protein - CCV clathrin coated vesicle - CPY carboxypeptidase-Y - DPAP dipeptidyl aminopeptidase - ER endoplasmic reticulum - GApp Golgi apparatus - LAMPs lysosomal associated membrane protein(s) - LAP lysosomal acid phosphatase - LIMPs lysosomal integral membrane protein(s) - MPRs mannosyl 6-phosphate receptors - MVB multivesicular bodies - NSF N-ethylmaleimide sensitive fusion (protein) - PAT phosphinotricine acetyltransferase - PB protein body - PHA phytohemagglutinin - PM plasma membrane - PSV protein storage vacuole - SNAPs soluble NSF attachment protein(s) - SNAREs SNAP receptor(s) - TGN trans Golgi network - TIP tonoplast integral protein - VPS vacuolar protein sorting - ZIO zinc iodide/osmium  相似文献   

17.
M Seeger  G S Payne 《The EMBO journal》1992,11(8):2811-2818
We have investigated the role of clathrin in vacuolar protein sorting using yeast strains harboring a temperature-sensitive allele of clathrin heavy chain (chc1-ts). After a 5 min incubation at the non-permissive temperature (37 degrees C), the chc1-ts strains displayed a severe defect in the sorting of lumenal vacuolar proteins. Sorting of a vacuolar membrane protein, alkaline phosphatase, and transport to the surface of a cell wall protein, was not affected at 37 degrees C. In chc1-ts cells incubated at 37 degrees C, secretion of the missorted lumenal vacuolar protein carboxypeptidase Y (CPY) was blocked by the sec1 mutation which prevents fusion of secretory vesicles to the plasma membrane. Unexpectedly, chc1-ts cells incubated for extended periods at 37 degrees C regained the ability to sort CPY. Cells carrying deletions of the CHC1 gene (chc1 delta) also sorted CPY to the vacuole even when subjected to temperature shifts. Vacuolar delivery of CPY in chc1 delta cells was not blocked by sec1 suggesting that transport does not occur by secretion and endocytosis. These results provide in vivo evidence that clathrin plays a role in the Golgi complex in sorting of vacuolar proteins from the secretory pathway. With time, however, yeast cells lacking functional clathrin heavy chains are able to adapt in a way that allows restoration of vacuolar protein sorting in the Golgi complex. These conclusions clarify previous studies of chc1 delta cells which raised the possibility that clathrin is not involved in vacuolar protein sorting.  相似文献   

18.
BP-80, later renamed VSR(PS-1), is a putative receptor involved in sorting proteins such as proaleurain to the lytic vacuole, with its N-terminal domain recognizing the vacuolar sorting determinant. Although all VSR(PS-1) characteristics and in vitro binding properties described so far favored its receptor function, this function remained to be demonstrated. Here, we used green fluorescent protein (GFP) as a reporter in a yeast mutant strain defective for its own vacuolar receptor, Vps10p. By expressing VSR(PS-1) together with GFP fused to the vacuolar sorting determinant of petunia proaleurain, we were able to efficiently redirect the reporter to the yeast vacuole. VSR(PS-1) is ineffective on GFP either alone or when fused with another type of plant vacuolar sorting determinant from a chitinase. The plant VSR(PS-1) therefore interacts specifically with the proaleurain vacuolar sorting determinant in vivo, and this interaction leads to the transport of the reporter protein through the yeast secretory pathway to the vacuole. This finding demonstrates VSR(PS-1) receptor function but also emphasizes the differences in the spectrum of ligands between Vps10p and its plant equivalent.  相似文献   

19.
C R Cowles  W B Snyder  C G Burd    S D Emr 《The EMBO journal》1997,16(10):2769-2782
More than 40 vacuolar protein sorting (vps) mutants have been identified which secrete proenzyme forms of soluble vacuolar hydrolases to the cell surface. A subset of these mutants has been found to show selective defects in the sorting of two vacuolar membrane proteins. Under non-permissive conditions, vps45tsf (SEC1 homolog) and pep12/vps6tsf (endosomal t-SNARE) mutants efficiently sort alkaline phosphatase (ALP) to the vacuole while multiple soluble vacuolar proteins and the membrane protein carboxypeptidase yscS (CPS) are no longer delivered to the vacuole. Vacuolar localization of ALP in these mutants does not require transport to the plasma membrane followed by endocytic uptake, as double mutants of pep12tsf and vps45tsf with sec1 and end3 sort and mature ALP at the non-permissive temperature. Given the demonstrated role of t-SNAREs such as Pep12p in transport vesicle recognition, our results indicate that ALP and CPS are packaged into distinct transport intermediates. Consistent with ALP following an alternative route to the vacuole, isolation of a vps41tsf mutant revealed that at non-permissive temperature ALP is mislocalized while vacuolar delivery of CPS and CPY is maintained. A series of domain-swapping experiments was used to define the sorting signal that directs selective packaging and transport of ALP. Our data demonstrate that the amino-terminal 16 amino acid portion of the ALP cytoplasmic tail domain contains a vacuolar sorting signal which is responsible for the active recognition, packaging and transport of ALP from the Golgi to the vacuole via a novel delivery pathway.  相似文献   

20.
In higher plants sucrose plays a central roles with respect to both short-term storage and distribution of photoassimilates formed in the leaf. Sucrose is synthesized in the cytosol, transiently stored in the vacuole and exported via the apoplast. In order to elucidate the role of the different compartments with respect to sucrose metabolism, a yeast-derived invertase was directed into the cytosol and vacuole of transgenic tobacco plants. This was in addition to the targeting of yeast-derived invertase into the apoplast described previously. Vacuolar targeting was achieved by fusing an N-terminal portion (146 amino acids long) of the vacuolar protein patatin to the coding region of the mature invertase protein. Transgenic tobacco plants expressing the yeast-derived invertase in different subcellular compartments displayed dramatic phenotypic differences when compared to wild-type plants. All transgenic plants showed stunted growth accompanied by reduced root formation. Starch and soluble sugars accumulated in leaves indicating that the distribution of sucrose was impaired in all cases. Expression of cytosolic yeast invertase resulted in the accumulation of starch and soluble sugars in both very young (sink) and older (source) leaves. The leaves were curved, indicating a more rapid cell expansion or cell division at the upper side of the leaf. Light-green sectors with reduced photosynthetic activity were evenly distributed over the leaf surface. With the apoplastic and vacuolar invertase, the phenotypical changes induced only appear in older (source) leaves. The development of bleached and/or necrotic sectors was linked to the source state of a leaf. Bleaching followed the sink to source transition, starting at the rim of the leaf and moving to the base. The bleaching was paralleled by the inhibition of photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号