首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundPeroxidation of PUFAs by a variety of endogenous and xenobiotic electrophiles is a recognized pathophysiological process that can lead to adverse health effects. Although secondary products generated from peroxidized PUFAs have been relatively well studied, the role of primary lipid hydroperoxides in mediating early intracellular oxidative events is not well understood.MethodsLive cell imaging was used to monitor changes in glutathione (GSH) oxidation in HAEC expressing the fluorogenic sensor roGFP during exposure to 9-hydroperoxy-10E,12Z-octadecadienoic acid (9-HpODE), a biologically important long chain lipid hydroperoxide, and its secondary product 9-hydroxy-10E,12Z-octadecadienoic acid (9-HODE). The role of hydrogen peroxide (H2O2) was examined by direct measurement and through catalase interventions. shRNA-mediated knockdown of glutathione peroxidase 4 (GPx4) was utilized to determine its involvement in the relay through which 9-HpODE initiates the oxidation of GSH.ResultsExposure to 9-HpODE caused a dose-dependent increase in GSH oxidation in HAEC that was independent of intracellular or extracellular H2O2 production and was exacerbated by NADPH depletion. GPx4 was involved in the initiation of GSH oxidation in HAEC by 9-HpODE, but not that induced by exposure to H2O2 or the low molecular weight alkyl tert-butyl hydroperoxide (TBH).ConclusionsLong chain lipid hydroperoxides can directly alter cytosolic EGSH independent of secondary lipid oxidation products or H2O2 production. NADPH has a protective role against 9-HpODE induced EGSH changes. GPx4 is involved specifically in the reduction of long-chain lipid hydroperoxides, leading to GSH oxidation.SignificanceThese results reveal a previously unrecognized consequence of lipid peroxidation, which may provide insight into disease states involving lipid peroxidation in their pathogenesis.  相似文献   

2.
The cellular glutathione redox buffer is assumed to be part of signal transduction pathways transmitting environmental signals during biotic and abiotic stress, and thus is essential for regulation of metabolism and development. Ratiometric redox-sensitive GFP (roGFP) expressed in Arabidopsis thaliana reversibly responds to redox changes induced by incubation with H(2)O(2) or DTT. Kinetic analysis of these redox changes, combined with detailed characterization of roGFP2 in vitro, shows that roGFP2 expressed in the cytosol senses the redox potential of the cellular glutathione buffer via glutaredoxin (GRX) as a mediator of reversible electron flow between glutathione and roGFP2. The sensitivity of roGFP2 toward the glutathione redox potential was tested in vivo through manipulating the glutathione (GSH) content of wild-type plants, through expression of roGFP2 in the cytosol of low-GSH mutants and the endoplasmic reticulum (ER) of wild-type plants, as well as through wounding as an example for stress-induced redox changes. Provided the GSH concentration is known, roGFP2 facilitates the determination of the degree of oxidation of the GSH solution. Assuming sufficient glutathione reductase activity and non-limiting NADPH supply, the observed almost full reduction of roGFP2 in vivo suggests that a 2.5 mm cytosolic glutathione buffer would contain only 25 nm oxidized glutathione disulfide (GSSG). The high sensitivity of roGFP2 toward GSSG via GRX enables the use of roGFP2 for monitoring stress-induced redox changes in vivo in real time. The results with roGFP2 as an artificial GRX target further suggest that redox-triggered changes of biologic processes might be linked directly to the glutathione redox potential via GRX as the mediator.  相似文献   

3.
The effect of aging on the glutathione redox system was evaluated in this study. For this purpose, we determined reduced glutathione (GSH) and oxidized glutathione (GSSG) in whole blood, glutathione peroxidase (GPx) and glutathione reductase (GSSGR) in erythrocytes and selenium (Se) in plasma in 176 healthy individuals. We also calculated GSH/GSSG molar ratios. These subjects were divided into five groups: group 1 (n=25; 0.2-1 years old); group 2 (n=28; 2-11 years old); group 3 (n=23; 12-24 years old); group 4 (n=40; 25-40 years old); group 5 (n=60; 41-69 years old). GSH levels in groups 1 and 5 were significantly lower than the other groups (p<0.001). Conversely, GSSG levels were significantly high in these periods (p<0.001). The GSH/GSSG molar ratio was found to be low both in the first year of life and in the oldest group (p<0.001, respectively). GPx activity in group 5 was increased as compared to the other groups (p<0.001). GSSGR activity was significantly lower in the oldest groups than in the other groups (p<0.001). Se levels were found to be low in the oldest group (p<0.001). Selenium levels of women in group 5 were significantly high as compared to the men (p<0.01). We found negative correlations between age and GSH levels (r=0.402; p<0.001), selenium levels (r=0.454; p<0.001), GSH/GSSG molar ratio (r=0.557; p<0.001) and GSSGR activity (r=0.556; p<0.001). There were positive correlations between age and GPx (r=0.538; p<0.001) and GSSG level (r=0.551; p<0.001). In conclusion, our findings show that the glutathione redox system is affected by age. Oxidative stress increases during the aging process. There is no effect of aging on the glutathione redox system according to sex except for the Se level.  相似文献   

4.
5.
Oxidant-mediated modulation of the intracellular redox state affects the apoptotic cascade by altering the balance between cellular signals for survival and suicide. Apolipoprotein A-IV (Apo A-IV) is known to possess antioxidant-like activity. In the present study, we tested 1) whether Apo A-IV could influence redox-dependent apoptosis and, if so, 2) whether such an effect could be mediated by modulation of intracellular redox balance. Mitotic competent, undifferentiated PC-12 cells were incubated with either tert-butyl hydroperoxide (TBH) or diamide with or without preincubation with human Apo A-IV. Apo A-IV significantly decreased apoptosis produced by both TBH and diamide, and washout of A-IV before incubation with TBH and diamide did not eliminate its protective effect. Apo A-I had no such protective effect. The Apo A-IV effect was not blocked by D,L-buthionine-[S,R]-sulfoximine, but it was reversed by both dehydroisoandrosterone and transfection with an antisense oligodeoxynucleotide to glucose-6-phosphate dehydrogenase (G6PD). Apo A-IV abolished the transient, oxidant-induced rise in glutathione disulfide (GSSG) and cellular redox imbalance previously shown to initiate the apoptotic cascade. Apo A-IV had no effect on GSSG reductase activity, but it stimulated G6PD activity 10-fold. These results suggest a novel role for Apo A-IV in the regulation of intracellular glutathione redox balance and the modulation of redox-dependent apoptosis via stimulation of G6PD activity. tert-butyl hydroperoxide; diamide; dehydroisoandrosterone; glucose-6-phosphate dehydrogenase; antisense  相似文献   

6.
7.
Ascorbate and glutathione: the heart of the redox hub   总被引:7,自引:0,他引:7  
  相似文献   

8.
9.
Aerobic organisms generate reactive oxygen species as metabolic side products and must achieve a delicate balance between using them for signaling cellular functions and protecting against collateral damage. Small molecule (e.g. glutathione and cysteine)- and protein (e.g. thioredoxin)-based buffers regulate the ambient redox potentials in the various intracellular compartments, influence the status of redox-sensitive macromolecules, and protect against oxidative stress. Less well appreciated is the fact that the redox potential of the extracellular compartment is also carefully regulated and is dynamic. Changes in intracellular metabolism alter the redox poise in the extracellular compartment, and these are correlated with cellular processes such as proliferation, differentiation, and death. In this minireview, the mechanism of extracellular redox remodeling due to intracellular sulfur metabolism is discussed in the context of various cell-cell communication paradigms.  相似文献   

10.
Blood glutathione redox status in gestational hypertension   总被引:4,自引:0,他引:4  
Gestational hypertension during the third trimester reflects an exaggerated maternal inflammatory response to pregnancy. We hypothesized that oxidative stress present even in normal pregnancy becomes uncompensated in hypertensive patients. A glucose-6-phosphate dehydrogenase (G6PD) activity sufficient to meet the increased reductive equivalent need of the cells is indispensable for defense against oxidative stress. The erythrocyte glutathione redox system was studied, where G6PD is the only NADPH source. The glutathione (GSH) redox status was measured both in vivo and after an in vitro oxidative challenge in pregnant women with gestational hypertension (n = 19) vs. normotensive pregnant subjects (n = 18) and controls (n = 20). An erythrocyte GSH depletion with an increase in the oxidized form (GSSG) resulted in an elevated ratio GSSG/GSH (0.305 +/- 0.057; mean +/- SD) in hypertensive pregnant women vs. normotensive pregnant or control subjects (0.154 +/- 0.025; 0.168 +/- 0.073; p <.001). In hypertensive pregnant patients, a "GSH stability" decrease after an in vitro oxidative challenge suggested a reduced GSH recycling capacity resulting from an insufficient NADPH supply. The erythrocyte GSSG/GSH ratio may serve as an early and sensitive parameter of the oxidative imbalance and a relevant target for future clinical trials to control the effects of antioxidant treatment in women at increased risk of the pre-eclampsia syndrome.  相似文献   

11.
Prooxidant nitroaromatic and quinoidal compounds possess antimalarial activity, which might be attributed either to their formation of reactive oxygen species or to their inhibition of antioxidant enzyme glutathione reductase (GR, EC 1.6.4.2). We have examined the activity in vitro against Plasmodium falciparum of 24 prooxidant compounds of different structure (nitrobenzenes, nitrofurans, quinones, 1,1'-dibenzyl-4,4'-bipyridinium, and methylene blue), which possess a broad range of single-electron reduction potentials (E(1)(7)) and erythrocyte glutathione reductase inhibition constants (K(i(GR))). For a series of homologous derivatives of 2-(5'-nitrofurylvinyl)quinoline-4-carbonic acid, the relationship between compound K(i(GR)) and concentration causing 50% parasite growth inhibition (IC(50)) was absent. For all the compounds examined in this study, the dependence of IC(50) on their K(i(GR)) was insignificant. In contrast, IC(50) decreased with an increase in E(1)(7) and positive electrostatic charge of aromatic part of molecule (Z): log IC(50) (microM) = -(0.9846 +/- 0.3525) - (7.2850 +/- 1.2340) E(1)(7) (V) - (1.1034 +/- 0.1832) Z (r(2) = 0.8015). The redox cycling activity of nitroaromatic and quinoidal compounds in ferredoxin:NADP(+) reductase-catalyzed reaction and the rate of oxyhemoglobin oxidation in lysed erythrocytes increased with an increase in their E(1)(7) value. Our findings imply that the antiplasmodial activity of nitroaromatic and quinoidal compounds is mainly influenced by their ability to form reactive oxygen species, and much less significantly by the GR inhibition.  相似文献   

12.
The integration of glutathione homeostasis and redox signaling   总被引:2,自引:0,他引:2  
Formation of reactive oxygen species (ROS) is a common feature of abiotic and biotic stress reactions. ROS need to be detoxified to avoid deleterious reactions, but at the same time, the increased formation of ROS can also be exploited for redox signaling. Glutathione, as the most abundant low-molecular weight thiol in the cellular redox system, is used for both detoxification of ROS and transmission of redox signals. Detoxification of H(2)O(2) through the glutathione-ascorbate cycle leads to a transient change in the degree of oxidation of the cellular glutathione pool, and thus a change in the glutathione redox potential. The shift in the glutathione redox potential can be sensed by glutaredoxins (GRXs), small ubiquitous oxidoreductases, which reversibly transfer electrons between the glutathione redox buffer and thiol groups of target proteins. While very little is known about native GRX target proteins and their behavior in vivo, it is shown here that reduction-oxidation-sensitive GFP (roGFP), when expressed in plants, is an artificial target protein of GRXs. The specific interaction of roGFP with GRX results in continuous formation and release of the roGFP disulfide bridge depending on the actual redox potential of the cellular glutathione buffer. Ratiometric analysis of redox-dependent fluorescence allows dynamic imaging of the glutathione redox potential. It was hypothesized that a similar equilibration occurs between the glutathione buffer and native target proteins of GRXs. As a consequence, even minor deviations in the glutathione redox potential due to either depletion of reduced glutathione (GSH) or increasing oxidation can be exploited for fine tuning the activity of target proteins. The integration of the glutathione buffer with redox-active target proteins is a local reaction in specific subcellular compartments. This observation emphasizes the importance of subcellular compartmentalization in understanding the biology of the cellular redox system in plants.  相似文献   

13.
Reduction of intracellular glutathione content and radiosensitivity   总被引:1,自引:0,他引:1  
The intracellular glutathione (GSH) content of HeLa, CHO and V79 cells was reduced by incubating the cells in growth medium containing buthionine sulphoximine or diethyl maleate (DEM). Clonogenicity, single-strand DNA breaks (ssb) and double-strand DNA breaks (dsb) were used as criteria for radiation-induced damage after X- or gamma-irradiation. In survival experiments, DEM gave a slightly larger sensitization although it gave a smaller reduction of the intracellular GSH. In general, sensitization was larger for dsb than for ssb, also the reduction of the o.e.r. was generally larger for dsb than for ssb. This may be due to the higher dose rate in case of dsb experiments resulting in a higher rate of radiochemical oxygen consumption. In general, no effect was found on post-irradiation repair of ssb and dsb.  相似文献   

14.
Redox state is a term used widely in the research field of free radicals and oxidative stress. Unfortunately, it is used as a general term referring to relative changes that are not well defined or quantitated. In this review we provide a definition for the redox environment of biological fluids, cell organelles, cells, or tissue. We illustrate how the reduction potential of various redox couples can be estimated with the Nernst equation and show how pH and the concentrations of the species comprising different redox couples influence the reduction potential. We discuss how the redox state of the glutathione disulfide-glutathione couple (GSSG/2GSH) can serve as an important indicator of redox environment. There are many redox couples in a cell that work together to maintain the redox environment; the GSSG/2GSH couple is the most abundant redox couple in a cell. Changes of the half-cell reduction potential (E(hc)) of the GSSG/2GSH couple appear to correlate with the biological status of the cell: proliferation E(hc) approximately -240 mV; differentiation E(hc) approximately -200 mV; or apoptosis E(hc) approximately -170 mV. These estimates can be used to more fully understand the redox biochemistry that results from oxidative stress. These are the first steps toward a new quantitative biology, which hopefully will provide a rationale and understanding of the cellular mechanisms associated with cell growth and development, signaling, and reductive or oxidative stress.  相似文献   

15.
ATP- and ubiquitin-independent proteolysis by the 20S proteasome is responsible for the selective degradation of oxidized proteins. In vitro, the 20S proteasome shows an increased proteolytic activity toward oxidized polypeptides and the suc-LLVY-MCA peptide specific for its chymotrypsin-like activity. We have analyzed the effect of the intracellular redox status on the chymotrypsin-like activity of the 20S proteasome in human T47D cells overexpressing the detoxifiant enzyme seleno-glutathione peroxidase-1 (GPx-1). We report a 30% decreased activity of the chymotrypsin-like activity in cells overexpressing GPx-1. This phenomenon correlated with a 2-fold increase in IkappaB alpha half-life, a protein whose basal turnover is 20S proteasome-dependent. Following exposure to H2O2, these cells showed a seleno-dependently decreased accumulation of intracellular reactive oxygen species and 20S proteasome chymotrypsin-like activity. Similar results were obtained in HeLa cells transiently overexpressing human GPx-1. Moreover, exposure of HeLa cells to antioxidant compounds reduced the proteasome 20S chymotrypsin-like activity. In contrast, no effects were observed when HeLa cell extracts used to determine proteasome activity were incubated with either reduced or oxidized glutathione. These results suggest that GPx-1 activity or pro-reducing conditions can downregulate basal 20S proteasome activity. Hence, the intracellular redox status, probably through the level of oxidized proteins, is an important element that can either activate or down-regulate the 20S proteasome chymotrypsin-like activity in living cells.  相似文献   

16.
The activity of prolyl endopeptidase was markedly decreased during incubation of intact murine erythroleukemia cells at 45 degrees C, but not during incubation of sonicated cells or during incubation at 42 degrees C. The thermal inactivation of prolyl endopeptidase in situ required neither the synthesis of proteins and polynucleotides nor the synergistic activation of inhibitors. Moreover, inhibition of lysosomal proteinases and calpains or depletion of ATP did not affect the thermal inactivation of prolyl endopeptidase. This specific inactivation of prolyl endopeptidase was also observed following the addition to the culture medium of menadione or diamide, compounds known to increase intracellular oxidized glutathione levels. The activity of prolyl endopeptidase in the cell lysate was also dose-dependently decreased by the addition of glutathione disulfide and the decrease of the activity was prevented by coexistence of reduced glutathione. Furthermore, the level of intracellular oxidized glutathione was increased during incubation at 45 degrees C for 15 min, but not at 42 degrees C for 30 min. These results strongly suggest that the activity of prolyl endopeptidase is regulated by changes in the intracellular redox potential.  相似文献   

17.
-Tocopherol is a lipophilic vitamin that exhibits an antioxidative activity. The purpose of this study was to clarify the roles of -tocopherol in the regulation of intracellular glutathione (GSH) levels in HaCaT keratinocytes. When HaCaT keratinocytes were cultivated with -tocopherol for 24 h, the intracellular GSH was increased at every concentration of -tocopherol tested. Furthermore, the HaCaT keratinocytes cultured with -tocopherol at 50 μM for 24 h exhibited resistance against H 2 O 2 . However, a short exposure of HaCaT keratinocytes to -tocopherol for 1 h did not influence either the GSH level or the resistance to H 2 O 2 . These findings suggest that GSH, which is inductively synthesized by -tocopherol, effectively reduces exogenous oxidative stress. To evaluate the effect of -tocopherol on the GSH level, BSO, which is a typical inhibitor of γ-glutamylcysteine synthetase ( γ-GCS), was used. When BSO was added to HaCaT keratinocytes, no action of -tocopherol on the GSH level was observed. On the other hand, -tocopherol resulted in the up-regulation of γ-GCS-HS (heavy subunit) mRNA. In addition, water soluble -tocopherol derivatives ( -tocopherol phosphate and trolox) caused no changes in GSH level. From these results, it was concluded that -tocopherol increases the intracellular GSH level of HaCaT keratinocytes through the up-regulation of γ-GCS-HS mRNA.  相似文献   

18.
Co-ordination of zinc to the thiol group of cysteine allows mobilization of zinc through oxidation of its ligand. This molecular property links the binding and release of zinc in metallothionein (MT) to the cellular redox state [Maret W. & Vallee B.L. (1998) Proc. Natl Acad. Sci. USA 95, 3483-3488]. Biological disulfides such as glutathione disulfide (GSSG) oxidize MT with concomitant release of zinc, while glutathione (GSH) reduces the oxidized protein to thionein, which then binds to available zinc. Neither of these two redox processes is very efficient, even at high concentrations of GSSG or GSH. However, the GSH/GSSG redox pair can efficiently couple with the MT/thionein system in the presence of a selenium compound that has the capacity to form a catalytic selenol(ate). This coupling provides a very effective means of modulating oxidation and reduction. Remarkably, selenium compounds catalyze the oxidation of MT even under overall reducing conditions such as those prevailing in the cytosol. In this manner, the binding and release of zinc from zinc-thiolate co-ordination sites is linked to redox catalysis by selenium compounds, changes in the glutathione redox state, and the availability of either a zinc donor or a zinc acceptor. The results also suggest that the pharmacological actions of selenium compounds in cancer prevention and other antiviral and anti-inflammatory therapeutic applications, as well as unknown functions of selenium-containing proteins, may relate to coupling between the thiol redox state and the zinc state.  相似文献   

19.
The changes undergone by pure yeast glutathione reductase during redox interconversion have been studied. Both the active and inactive forms of the enzyme had similar molecular masses, suggesting that the inactivation is probably due to intramolecular modification(s). The glutathione reductase and transhydrogenase activities were similarly inactivated by NADPH and reactivated by GSH, while the diaphorase activity remained unaltered during redox interconversion of glutathione reductase. These results suggest that the inactivation site could be located far from the NADPH-binding site, although interfering with transhydrogenase activity, perhaps by conformational changes. The inactivation of glutathione reductase by 0.2 mM NADPH at pH 8 was paralleled by a gradual decrease in the absorbance at 530 nm and a simultaneous increase in the absorbance at 445 nm, while the reactivation promoted by GSH was initially associated with reversal of these spectral changes. The inactive enzyme spectrum retained some absorbance between 500 nm and 700 nm, showing a shoulder at 580-600 nm. Upon treatment of the enzyme with NADPH at pH 6.5 the spectrum remained unchanged, while no redox inactivation was observed under these conditions. It is suggested that the redox inactivation could be associated with the disappearance of the charge-transfer complex between the proximal thiolate and oxidized FAD in the two-electron-reduced enzyme. The inactive enzyme was reactivated by low GSSG concentrations, moderate dithiol concentrations, and high monothiol concentrations. These results and the spectral changes described above support the hypothesis attributing the redox interconversion to formation/disappearance of an erroneous disulfide between one of the half-cystines located at the GSSG-binding site and another cysteine nearby.  相似文献   

20.
Neurons, as non-dividing cells, encounter a myriad of stressful conditions throughout their lifespan. In particular, there is increasing evidence that iron progressively accumulates in the brain with age and that iron induced oxidative stress is the cause of several forms of neurodegeneration. Here, we review recent evidence that gives support to the following notions: 1) neuronal iron accumulation leads to oxidative stress and cell death; 2) neuronal survival to iron accumulation associates with decreased expression of the iron import transporter DMT1 and increased expression of the efflux transporter IREG1; and 3) the adaptive process of neurons towards iron-induced oxidative stress includes a marked increase in both the expression of the catalytic subunit of gamma glutamate-cysteine ligase and glutathione. These findings may help to understand aging-related neurodegeneration hallmarks: oxidative damage, functional impairment and cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号