首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the mammary gland, both laminin and integrins have been shown to be required for normal ductal morphogenesis during development in vivo, and for functional differentiation in culture models. Major integrin receptors for laminins in the mammary gland are alpha 3 beta 1, alpha 6 beta 1, and alpha 6 beta 4. However, the specific subunits that contribute to laminin-mediated mammary cell function and development have not been identified. In this study, we use a genetic approach to test the hypothesis that laminin-binding integrins are required for the function of the mammary gland in vivo. Rudiments of embryonic mammary gland were shown to develop in the absence of these integrin subunits. Postnatal development of the mammary gland was studied in integrin null tissue that had been transplanted into the mammary fat pads of syngeneic hosts. In mammary epithelium lacking alpha 6 integrin, the beta 4 subunit was not apparent and hemidesmosome formation was only rudimentary. However, despite this deficiency, normal ductal morphogenesis and branching of the mammary gland occurred and myoepithelial cells were distributed normally with respect to luminal cells. Mammary alveoli devoid of alpha 3 or alpha 6 integrin formed in pregnancy and were histologically and functionally identical to those in wild-type mammary gland. The tissue underwent full morphological differentiation, and the epithelial cells retained the ability to synthesize beta-casein. This work demonstrates that mammary tissue genetically lacking major laminin-binding integrin receptors is still able to develop and function.  相似文献   

2.
Integrin-mediated adhesion regulates the development and function of a range of tissues; however, little is known about its role in glandular epithelium. To assess the contribution of beta1 integrin, we conditionally deleted its gene in luminal epithelia during different stages of mouse mammary gland development and in cultured primary mammary epithelia. Loss of beta1 integrin in vivo resulted in impaired alveologenesis and lactation. Cultured beta1 integrin-null cells displayed abnormal focal adhesion function and signal transduction and could not form or maintain polarized acini. In vivo, epithelial cells became detached from the extracellular matrix but remained associated with each other and did not undergo overt apoptosis. beta1 integrin-null mammary epithelial cells did not differentiate in response to prolactin stimulation because of defective Stat5 activation. In mice where beta1 integrin was deleted after the initiation of differentiation, fewer defects in alveolar morphology occurred, yet major deficiencies were also observed in milk protein and milk fat production and Stat5 activation, indicating a permissive role for beta1 integrins in prolactin signaling. This study demonstrates that beta1 integrin is critical for the alveolar morphogenesis of a glandular epithelium and for maintenance of its differentiated function. Moreover, it provides genetic evidence for the cooperation between integrin and cytokine signaling pathways.  相似文献   

3.
The development of the mammary gland is spatially regulated by the interaction of the mammary epithelium with the extracellular matrix (ECM). Cells receive cues from the ECM through a family of adhesion receptors called integrins, consisting of alpha- and beta-chain dimers. Integrins assist cells in sensing their appropriate developmental context in response to both hormones and growth factors. Here we argue that cell adhesion to the ECM plays a key role in specific developmental checkpoints, particularly in alveolar survival, morphogenesis and function. Specific ablation of alphabeta1-integrins in the luminal epithelium of the mammary gland shows that this sub-type of receptors is required for proliferation, accurate morphological organisation, as well as milk secretion. Downstream, small Rho GTPases mediate cellular polarisation and differentiation. Current challenges in studying the integration of signals in checkpoints of mammary gland development are discussed.  相似文献   

4.
We have examined the role of integrin-extracellular matrix interactions in the morphogenesis of ductal structures in vivo using the developing mouse mammary gland as a model. At puberty, ductal growth from terminal end buds results in an arborescent network that eventually fills the gland, whereupon the buds shrink in size and become mitotically inactive. End buds are surrounded by a basement membrane, which we show contains laminin-1 and collagen IV. To address the role of cell-matrix interactions in gland development, pellets containing function-perturbing anti-beta1 integrin, anti-alpha6 integrin, and anti-laminin antibodies respectively were implanted into mammary glands at puberty. Blocking beta1 integrins dramatically reduced both the number of end buds per gland and the extent of the mammary ductal network, compared with controls. These effects were specific to the end buds since the rest of the gland architecture remained intact. Reduced development was still apparent after 6 days, but end buds subsequently reappeared, indicating that the inhibition of beta1 integrins was reversible. Similar results were obtained with anti-laminin antibodies. In contrast, no effect on morphogenesis in vivo was seen with anti-alpha6 integrin antibody, suggesting that alpha6 is not the important partner for beta1 in this system. The studies with beta1 integrin were confirmed in a culture model of ductal morphogenesis, where we show that hepatocyte growth factor (HGF)-induced tubulogenesis is dependent on functional beta1 integrins. Thus integrins and HGF cooperate to regulate ductal morphogenesis. We propose that both laminin and beta1 integrins are required to permit cellular traction through the stromal matrix and are therefore essential for maintaining end bud structure and function in normal pubertal mammary gland development.  相似文献   

5.
Integrin-extracellular matrix interactions play important roles in the coordinated integration of external and internal cues that are essential for proper development. To study the role of beta1 integrin in the mammary gland, Itgbeta1(flox/flox) mice were crossed with WAPiCre transgenic mice, which led to specific ablation of beta1 integrin in luminal alveolar epithelial cells. In the beta1 integrin mutant mammary gland, individual alveoli were disorganized resulting from alterations in cell-basement membrane associations. Activity of focal adhesion kinase (FAK) was also decreased in mutant mammary glands. Luminal cell proliferation was strongly inhibited in beta1 integrin mutant glands, which correlated with a specific increase of p21 Cip1 expression. In a p21 Cip1 null background, there was a partial rescue of BrdU incorporation, providing in vivo evidence linking p21 Cip1 to the proliferative defect observed in beta1 integrin mutant glands. A connection between p21 Cip1 and beta1 integrin as well as FAK was also established in primary mammary cells. These results point to the essential role of beta1 integrin signaling in mammary epithelial cell proliferation.  相似文献   

6.
The postnatal mammary morphogenesis comprises two steps, first, formation of a system of branching ducts at puberty and second, alveologenesis during pregnancy. The mammary epithelium is organized as a bilayer, composed of two cellular types, basal myoepithelial and luminal epithelial. The remarkable regenerative properties revealed in serial transplantation experiments suggest that the adult mammary epithelium harbors stem cells. Various strategies including analysis of DNA label-retaining cells, transgenic approach, and in vivo transplantation assay, have been used to isolate and characterize murine mammary stem and progenitor cells. Their molecular characteristics remain to be defined precisely but notable progress have been already made in the enrichment and identification of these cells. Current studies favor the hypothesis of a basal-type mammary stem cells expressing high levels of alpha 6, beta1 and beta 3 integrin chains, the major receptors of extracellular matrix proteins. Luminal-type progenitors may participate in the establishment of the bilayered alveolar epithelium during pregnancy.  相似文献   

7.
Mammary epithelium is organized as a bilayer with a layer of luminal secretory cells and a layer of basal myoepithelial cells. To dissect the specific functions of these two major compartments of the mammary epithelium in mammary morphogenesis we have used genetically modified mice carrying transgenes or conditional alleles whose expression or ablation were cell-type specific. Basal cells are located in close proximity to mammary stroma and directly interact with the extracellular matrix (basement membrane) during all their lifespan. On the contrary, luminal secretory cells during early stages of the postnatal mammary development have only limited contacts with basement membrane and become exposed to the extracellular matrix only during late developmental stages at the end of pregnancy and in lactation. Consistently perturbation of beta1-integrin function specifically in the luminal layer of the mammary epithelium, did not interfere with mammary morphogenesis until the second part of pregnancy but led to impaired secretory differentiation and lactation. On the contrary, ablation of beta1-integrin gene in the basal mammary epithelial cells resulted in a more precocious phenotype: disorganized branching in young virgin animals and a complete arrest of lobuloalveolar development. Further, a constitutive activation of beta-catenin signaling due to expression of N-terminally truncated (stabilized) beta-catenin specifically in basal myoepithelial cells resulted in accelerated differentiation of luminal secretory cells in pregnancy, precocious postlactational involution, increased angiogenesis and development of mammary tumors. Altogether these data suggest that basal mammary epithelial cells can affect growth and differentiation of luminal secretory cells, have an impact on the epithelium-stroma relationships and, thereby, play an important role in the process of mammary morphogenesis and differentiation.  相似文献   

8.
9.
The expression of tissue-specific genes during mammary gland differentiation relies on the coincidence of two distinct signaling events: the continued engagement of beta1 integrins with the extracellular matrix (ECM) and a hormonal stimulus from prolactin (Prl). How the integrin and Prl receptor (PrlR) systems integrate to regulate milk protein gene synthesis is unknown. In this study, we identify Rac1 as a key link. Dominant-negative Rac1 prevents Prl-induced synthesis of the milk protein beta-casein in primary mammary epithelial cells cultured as three-dimensional acini on basement membrane. Conversely, activated Rac1 rescues the defective beta-casein synthesis that occurs under conditions not normally permissive for mammary differentiation, either in beta1 integrin-null cells or in wild-type cells cultured on collagen. Rac1 is required downstream of integrins for activation of the PrlR/Stat5 signaling cascade. Cdc42 is also necessary for milk protein synthesis but functions via a distinct mechanism to Rac1. This study identifies the integration of signals provided by ECM and hormones as a novel role for Rho family guanosine triphosphatases.  相似文献   

10.
Integrins have been shown to exert regulatory influences on mammary differentiation and morphogenesis in rodent experimental systems. We have, therefore, examined the expression patterns of integrin subunits on human breast tissues obtained at the 12th, 15th and 18th weeks of pregnancy. Myoepithelial cells were positive for all the integrin subunits examined. alpha2, alpha6 and beta4 showed increased and more defined labelling during pregnancy, indicating that myoepithelial cells and extracellular matrix strengthen their support for the expanding alveoli during pregnancy. Sub-populations of stromal cells were positive for alpha1, alpha3, alpha6, beta1 and beta4. On luminal epithelial cells, alpha1, alpha2, alpha3, alpha6 and beta1 were detectable. alpha2 showed a focal decrease, but the expression patterns of other integrins in luminal cells did not change during pregnancy. Therefore, the expression patterns of most integrins existing prior to pregnancy seem sufficient in this cell type to support the morphological and functional development during early pregnancy.  相似文献   

11.
In the functionally differentiated mammary gland, basal myoepithelial cells contract to eject the milk produced by luminal epithelial cells from the body. We report that conditional deletion of a laminin receptor, α3β1 integrin, from myoepithelial cells leads to low rates of milk ejection due to a contractility defect but does not interfere with the integrity or functional differentiation of the mammary epithelium. In lactating mammary gland, in the absence of α3β1, focal adhesion kinase phosphorylation is impaired, the Rho/Rac balance is altered and myosin light-chain (MLC) phosphorylation is sustained. Cultured mammary myoepithelial cells depleted of α3β1 contract in response to oxytocin, but are unable to maintain the state of post-contractile relaxation. The expression of constitutively active Rac or its effector p21-activated kinase (PAK), or treatment with MLC kinase (MLCK) inhibitor, rescues the relaxation capacity of mutant cells, strongly suggesting that α3β1-mediated stimulation of the Rac/PAK pathway is required for the inhibition of MLCK activity, permitting completion of the myoepithelial cell contraction/relaxation cycle and successful lactation. This is the first study highlighting the impact of α3β1 integrin signalling on mammary gland function.  相似文献   

12.
The cytokine-transforming growth factor beta1 (TGFB1) is implicated in development of the mammary gland through regulation of epithelial cell proliferation and differentiation during puberty and pregnancy. We compared mammary gland morphogenesis in virgin Tgfb1(+/+), Tgfb1(+/-), and Tgfb1(-/-) mice and transplanted Tgfb1(+/+) and Tgfb1(-/-) epithelium to determine the impact of TGFB1 deficiency on development. When mammary gland tissue was evaluated relative to the timing of puberty, invasion through the mammary fat pad of the ductal epithelium progressed similarly, irrespective of genotype, albeit fewer terminal end buds were observed in mammary glands from Tgfb1(-/-) mice. The terminal end buds appeared to be normal morphologically, and a comparable amount of epithelial proliferation was evident. When transplanted into wild-type recipients, however, Tgfb1(-/-) epithelium showed accelerated invasion compared with Tgfb1(+/+) epithelium. This suggests that the normal rate of ductal extension in Tgfb1(-/-) null mutant mice is the net result of impaired endocrine or paracrine support acting to limit the consequences of unrestrained epithelial growth. By adulthood, mammary glands in cycling virgin Tgfb1(-/-) mice were morphologically similar to those in Tgfb1(+/+) and Tgfb1(+/-) animals, with a normal branching pattern, and the tissue differentiated into early alveolar structures in the diestrous phase of the ovarian cycle. Transplanted mammary gland epithelium showed a similar extent of ductal branching and evidence of secretory differentiation of luminal cells in pregnancy. These results reveal two opposing actions of TGFB1 during pubertal mammary gland morphogenesis: autocrine inhibition of epithelial ductal growth, and endocrine or paracrine stimulation of epithelial ductal growth.  相似文献   

13.
14.
A mouse mammary epithelial cell line with morphogenetic properties in vivo, Comma-Dbeta, was used to isolate and to characterize mammary progenitor cells. We found that a homogeneous cell population expressing high surface levels of stem cell antigen 1 (Sca-1) was able to give rise in vivo to ductal and alveolar structures comprising luminal secretory and basal myoepithelial cells. Unlike the Sca-1(high), the Sca-1(neg/low) cell population displayed a reduced morphogenetic potential. The Sca-1(high) cells presented moderate CD24, high CD44 and alpha6 integrin surface levels, expressed basal cell markers p63, keratins 5 and 14, but no luminal and myoepithelial lineage markers. In culture, the Sca-1(high) cells generated identical daughter cells that retained their in vivo developmental potential, indicating that these cells were maintained by self-renewal. Plated at clonogenic density in Matrigel, Sca-1(high) cells formed spheroids that included luminal and myoepithelial cells. Thus, the isolated Sca-1(high) basal cells possess several features of stem/progenitor cells, including specific markers, self-renewal capacity, and the ability to generate the two major mammary lineages, luminal and myoepithelial. These data provide evidence for the existence of basal-type mouse mammary progenitors able to participate in the morphogenetic processes characteristic of mammary gland development.  相似文献   

15.
Using multiple immunofluorescence labelling on human breast tissues obtained and freshly frozen at the 12th, 15th, and 18th weeks of pregnancy, we have shown that markers of mammary functional differentiation, milk proteins (beta-casein and kappa-casein), are synthesised by actively cycling (Ki67 positive) as well as non-cycling (Ki67 negative) cells. These results demonstrate that functional differentiation/maturation does not coincide with loss of proliferative potential in human mammary luminal epithelial cells. In addition, we have examined expression patterns of integrin subunits (alpha1, alpha2, alpha3, alpha6, beta1, and beta4) and extracellular matrix components (laminin, fibronectin, collagen I, and collagen IV), since they have been shown to exert influences on mammary differentiation and morphogenesis in vitro. Compared to human breast tissues obtained from non-pregnant women, a decrease in alpha2 labelling on luminal epithelial cells was observed, particularly in expanding acini that showed abundant Ki67 positivity. The expression patterns of other integrin subunits, however, did not change, indicating that the expression patterns of most integrins existing prior to pregnancy are sufficient to support the morphological and functional development associated with milk protein synthesis.  相似文献   

16.
Over the last few years, the discovery of basal-type mammary carcinomas and the association of the regenerative potential of the mammary epithelium with the basal myoepithelial cell population have attracted considerable attention to this second major mammary lineage. However, many questions concerning the role of basal myoepithelial cells in mammary morphogenesis, functional differentiation and disease remain unanswered. Here, we discuss the mechanisms that control the myoepithelial cell differentiation essential for their contractile function, summarize new data concerning the roles played by cell-extracellular matrix (ECM), intercellular and paracrine interactions in the regulation of various aspects of the mammary basal myoepithelial cell functional activity. Finally, we analyze the contribution of the basal myoepithelial cells to the regenerative potential of the mammary epithelium and tumorigenesis.  相似文献   

17.
Cell-cell and cell-matrix interactions play a critical role in tissue morphogenesis and in homeostasis of adult tissues. The integrin family of adhesion receptors regulates cellular interactions with the extracellular matrix, which provides three-dimensional information for tissue organization. It is currently thought that pancreatic islet cells develop from undifferentiated progenitors residing within the ductal epithelium of the fetal pancreas. This process involves cell budding from the duct, migration into the surrounding mesenchyme, differentiation, and clustering into the highly organized islet of Langerhans. Here we report that alpha(v)beta(3) and alpha(v)beta(5), two integrins known to coordinate epithelial cell adhesion and movement, are expressed in pancreatic ductal cells and clusters of undifferentiated cells emerging from the ductal epithelium. We show that expression and function of alpha(v)beta(3) and alpha(v)beta(5) integrins are developmentally regulated during pancreatic islet ontogeny, and mediate adhesion and migration of putative endocrine progenitor cells both in vitro and in vivo in a model of pancreatic islet development. Moreover, we demonstrate the expression of fibronectin and collagen IV in the basal membrane of pancreatic ducts and of cell clusters budding from the ductal epithelium. Conversely, expression of vitronectin marks a population of epithelial cells adjacent to, or emerging from, pancreatic ducts. Thus, these data provide the first evidence for the contribution of integrins alpha(v)beta(3) and alpha(v)beta(5) and their ligands to morphogenetic events in the human endocrine pancreas.  相似文献   

18.
19.
In order to study the role of cell-matrix interactions in mammary gland function, temporal changes in alpha2beta1 integrin, the major receptor for collagen and the influence of beta-oestradiol on its level and distribution in rat mammary gland at different stages of development were studied. The level of alpha2beta1 integrin determined by ELISA, was found to be high during different days of pregnancy, while in the lactating stage, it was significantly reduced. By immunocytochemical analysis, alpha2beta1 integrin was found to be localized towards the luminal side of acinar cells, both in the virgin and midpregnant stage, while it was not detected in the lactating stage. The possible role of hormones in modulating the level of integrin was examined in both in vitro and in vivo experiments using beta-oestradiol. Supplementing beta-oestradiol to isolated mammary epithelial cells from both virgin and lactating glands caused a concentration dependent increase in the incorporation of [35S]methionine into alpha2beta1 integrin associated with the cells. Administration of beta-oestradiol to virgin and lactating glands caused about 1.4-4-fold increase in the level of alpha2 integrin, indicating that upregulation of integrin during pregnancy may be due to oestrogen and as the oestrogen level falls during lactating phase, downregulation of alpha2beta1 integrin occurs. Treatment with beta-oestradiol also resulted in the appearance of alpha2beta1 integrin in the acinar region of the lactating tissue, while in the untreated controls no staining for integrin was seen. These results indicate that oestrogen, apart from directly affecting the cellular activity, can influence mammary tissue function by affecting cell-ECM interactions through the modulation of integrin receptors for matrix proteins.  相似文献   

20.
The BRG1 catalytic subunit of SWI/SNF-related complexes is required for mammalian development as exemplified by the early embryonic lethality of Brg1 null homozygous mice. BRG1 is also a tumor suppressor and, in mice, 10% of heterozygous (Brg1(null/+)) females develop mammary tumors. We now demonstrate that BRG1 mRNA and protein are expressed in both the luminal and basal cells of the mammary gland, raising the question of which lineage requires BRG1 to promote mammary homeostasis and prevent oncogenic transformation. To investigate this question, we utilized Wap-Cre to mutate both Brg1 floxed alleles in the luminal cells of the mammary epithelium of pregnant mice where WAP is exclusively expressed within the mammary gland. Interestingly, we found that Brg1(Wap-Cre) conditional homozygotes lactated normally and did not develop mammary tumors even when they were maintained on a Brm-deficient background. However, Brg1(Wap-Cre) mutants did develop ovarian cysts and uterine tumors. Analysis of these latter tissues showed that both, like the mammary gland, contain cells that normally express Brg1 and Wap. Thus, tumor formation in Brg1 mutant mice appears to be confined to particular cell types that require BRG1 and also express Wap. Our results now show that such cells exist both in the ovary and the uterus but not in either the luminal or the basal compartments of the mammary gland. Taken together, these findings indicate that SWI/SNF-related complexes are dispensable in the luminal cells of the mammary gland and therefore argue against the notion that SWI/SNF-related complexes are essential for cell survival. These findings also suggest that the tumor-suppressor activity of BRG1 is restricted to the basal cells of the mammary gland and demonstrate that this function extends to other female reproductive organs, consistent with recent observations of recurrent ARID1A/BAF250a mutations in human ovarian and endometrial tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号