首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
2.
A mutant of Escherichia coli is described that grew on lactose only in the presence of isopropylthiogalactoside. This cell contained a defect in the lacY gene that resulted in the formation of a transport system with a poor affinity for lactose. The inability to grow on lactose alone was due to the failure of induction by this disaccharide. This failure of inducation was presumably due to a defect in lactose accumulation which resulted in significant reduction in the formation of allo-lactose, the true inducer of lac operon. These results are consistent with the view that the capacity to accumulate lactose plays an important physiological role in the induction of the enzymes necessary for its utilization.  相似文献   

3.
4.
Imidazole, histidine, histamine, histidinol phosphate, urocanic acid, or imidazolepropionic acid were shown to induce the L-arabinose operon in the absence of cyclic adenosine 3',5'-monophosphate. Induction was quantitated by measuring the increased differential rate of synthesis of L-arabinose isomerase in Escherichia coli strains which carried a deletion of the adenyl cyclase gene. The crp gene product (cyclic adenosine 3',5'-monophosphate receptor protein) and the araC gene product (P2) were essential for induction of the L-arabinose operon by imidazole and its derivatives. These compounds were unable to circumvent the cyclic adenosine 3',5'-monophosphate in the induction of the lactose or the maltose operons. The L-arabinose regulon was catabolite repressed upon the addition of glucose to a strain carrying an adenyl cyclase deletion growing in the presence of L-arabinose with imidazole. These results demonstrated that several imidazole derivatives may be involved in metabolite gene regulation (23).  相似文献   

5.
《Biophysical journal》2022,121(5):808-819
The expression of the lac operon of E. coli is subject to positive feedback during growth in the presence of gratuitous inducers, but its existence in the presence of lactose remains controversial. The key question in this debate is: Do the lactose enzymes, Lac permease and β-galactosidase, promote accumulation of allolactose? If so, positive feedback exists since allolactose does stimulate synthesis of the lactose enzymes. Here, we addressed the above question by developing methods for determining the intracellular allolactose concentration as well as the kinetics of enzyme induction and dilution. We show that, during lac induction in the presence of lactose, the intracellular allolactose concentration increases with the lactose enzyme level, which implies that lactose enzymes promote allolactose accumulation, and positive feedback exists. We also show that, during lac repression in the presence of lactose + glucose, the intracellular allolactose concentration decreases with the lactose enzyme levels, which suggests that, under these conditions, the positive feedback loop turns in the reverse direction. The induction and dilution rates derived from the transient data show that the positive feedback loop is reversed due to a radical shift of the steady-state induction level. This is formally identical to the mechanism driving catabolite repression in the presence of TMG + glucose.  相似文献   

6.
Kinetic studies on repression of the enzymes for histidine biosynthesis in Salmonella typhimurium showed that, upon addition of histidine to a derepressed culture, the enzymes became repressed in a temporal sequence which corresponds with the positional sequence of the genes in the histidine operon. This serial pattern of repression occurred under conditions in which the feedback site of the first enzyme for histidine biosynthesis is intact. When this site was rendered nonfunctional the pattern of repression was changed so that all of the enzymes became repressed concomitantly. These results suggest that the first enzyme for histidine biosynthesis plays a hitherto unrecognized role in control of the histidine system.  相似文献   

7.
An effort to find growth conditions leading to conditional regulation of the histidine operon of Salmonella typhimurium by the allosteric first enzyme of the pathway, adenosine triphosphate phosphoribosyltransferase (EC 2.4.2.17), is reported. A strain deleting the enzyme, TR3343, behaved simply and predictably under all growth conditions, whereas histidine auxotrophs containing active enzyme behaved in complicated ways dependent upon the location of the histidine pathway lesion. hisE strains derepressed the operon only one-half as much as TR3343 when grown on limiting histidine and a poor carbon source, but they also grew more slowly, probably as a result of high N1-(5-phospho-beta-D-ribosyl)-adenosine triphosphate levels in the cell. hisC strains exhibited oscillatory growth behavior and oscillatory histidine operon expression when grown on intermediate concentrations of the histidine precursor histidinol. This behavior probably was caused by synergistic in-phase variations in the histidine, purine nucleotide, and ppGpp pools of the cell. All of the growth and histidine operon expression effects associated with the presence of adenosine triphosphate phosphoribosyltransferase could be assigned to metabolic perturbation of the cell caused by unregulated enzymatic activity.  相似文献   

8.
Summary The isolation and properties of a hybrid plasmid carrying the Y gene of the lac operon of Escherichia coli are described. The lactose carrier protein, coded for by the Y gene, is readily identified upon lac operon induction in strains carrying the plasmid. The protein comprises about 15% of the cytoplasmic membrane protein synthesized in the first generation after induction, compared with a wild type strain induced under the same conditions where lactose carrier protein comprises 1.4% of the cytoplasmic membrane protein.  相似文献   

9.
10.
Antizyme, long known to be a non-competitive inhibitor of ornithine decarboxylase, is encoded by the atoC gene in Escherichia coli. The present study reveals another role for AtoC, that of a response regulator of the AtoS-AtoC two component system regulating the expression of the atoDAEB operon upon acetoacetate induction. This operon encodes enzymes involved in short-chain fatty acid catabolism in E. coli. Evidence is presented to show that AtoS is a sensor kinase that together with AtoC constitutes a two-component signal transduction system. AtoS is a membrane protein which can autophosphorylate and then transfer that phosphoryl group to AtoC. This process can also be reproduced in vitro. AtoC contains in its amino acid sequence a conserved aspartic acid (D55), which is the putative phosphorylation site, as well as an unexpected "H box" consensus sequence (SHETRTPV), common to histidine kinases, with the histidine contained therein (H73) being a second potential target for phosphorylation. Substitution of either D55 or H73 in His10-AtoC diminished but did not abrogate AtoC phosphorylation suggesting that either both residues can be phosphorylated independently or that the phosphate group can be transferred between them. However, the D55 mutation in comparison to H73 had a more pronounced effect in vivo, on the activation of atoDAEB promoter after acetoacetate induction, although it was the presence of both mutations that rendered AtoC totally unresponsive to induction. These data provide evidence that the gene products of atoS and atoC constitute a two-component signal transduction system, with some unusual properties, involved in the regulation of the atoDAEB operon.  相似文献   

11.
1. The induction of the enzymes for the degradation of l-histidine, imidazolylpropionate and imidazolyl-l-lactate in Pseudomonas testosteroni was investigated. 2. The activities of histidine ammonia-lyase, histidine-2-oxoglutarate aminotransferase and urocanase are consistent with these enzymes being subject to co-ordinate control under most growth conditions. However, a further regulatory mechanism may be superimposed for histidase alone under conditions where degradation of histidine must take place for growth to occur. 3. Experiments with a urocanase(-) mutant show that urocanate is an inducer for the enzymes given above and also for N-formiminoglutamate hydrolyase and N-formylglutamate hydrolase. 4. N-Formiminoglutamate hydrolase and N-formylglutamate hydrolase are also induced by their substrates, and it is suggested that these two enzymes may be different gene products from those expressed in the presence of urocanate. 5. Induction of the enzyme system for the oxidation of imidazolylpropionate is dependent on exposure of cells to this compound.  相似文献   

12.
13.
F Kepes 《Biochimie》1985,67(1):69-73
At the steady-state of accumulation of intracellular lactose by the beta-galactoside permease of Escherichia coli, the rate of efflux of the substrate is equal to its rate of influx. An original experimental method and a mathematical processing of the experimental data are proposed to evaluate the relative involvements of the permease-mediated pathway and of the diffusion component in this efflux. The method consists of inducing the lac operon of the bacteria, and then of removing the inducer and allowing the cells to grow further. The permease content and the membrane surface of diffusion are thus varying independently in such a "de-induction" experiment, along which lactose uptake has been monitored at different times. The analysis of the experimental data show that, under conditions of maximal induction, over 95% of the efflux passes through the energized permease. The relevant parameters of the efflux of lactose have been computed and their values allow the prediction of most classical observations, as well as the prediction, never checked, that under physiological conditions, the higher the external substrate concentration, the higher the permease-mediated efflux, according to a saturation kinetics.  相似文献   

14.
Galactose appears to be the physiological inducer of the chromosomal lac operon in Klebsiella aerogenes. Both lactose and galactose are poor inducers in strains having a functional galactose catabolism (gal) operon, but both are excellent inducers in gal mutants. Thus the slow growth of K. aerogenes on lactose reflects the rapid degradation of the inducer. Several pts mutations were characterized and shown to affect both inducer exclusion and permanent catabolite repression. The beta-galactosidase of pts mutants cannot be induced at all by lactose, and pts mutants appear to have a permanent and constitutive inducer exclusion phenotype. In addition, pts mutants show a reduced rate of glucose metabolism, leading to slower growth on glucose and a reduced degree of glucose-mediated permanent catabolite repression. The crr-type pseudorevertants of pts mutations relieve the constitutive inducer exclusion for lac but do not restore the full level of glucose-mediated permanent catabolite repression and only slightly weaken the glucose-mediated inducer exclusion. Except for weakening the glucose-mediated permanent catabolite repression, pts and crr mutations have no effect on expression of the histidine utilization (hut) operons.  相似文献   

15.
Glucose-lactose diauxie in Escherichia coli   总被引:10,自引:3,他引:7  
Growth of Escherichia coli in medium containing glucose, at a concentration insufficient to support full growth, and containing lactose, is diauxic. A mutation in the gene, CR, which determines catabolite repression specific to the lac operon, was found to relieve glucose-lactose but not glucose-maltose diauxie. Furthermore, a high concentration of lactose was shown to overcome diauxie in a CR(+) strain. Studies on the induction of beta-galactosidase by lactose suggested that glucose inhibits induction by 10(-2)m lactose. Preinduction of the lac operon was found to overcome this effect. The ability of glucose to prevent expression of the lac operon by reducing the internal concentration of inducer as well as by catabolite repression is discussed.  相似文献   

16.
17.
18.
Expression kinetics of the lactose (lac) operon in Escherichia coli are reviewed for both wild-type and recombinant cell cultures under chemostatic conditions. A unified model which involves regulation of active inducer (lactose) transport, promoter-operator regulated expression of the lac operon, glucose-mediated inducer exclusion, and catabolite repression is summarized and supporting data is shown to verify its accuracy. The synthesis of alpha-amylase with a recombinant form of Bacillus subtilis is also reviewed to point out generic features in transport regulation, the lac operon model providing a point of departure. While there are many similarities in the influence of transport on both regulating models, there are also important differences. In a chemostat system, the synthesis of alpha-amylase is nongrowth associated, while beta-galactosidase is a growth-associated enzyme. Nevertheless, transport regulation is an important feature in both instances.  相似文献   

19.
In vivo induction of the Escherichia coli lactose operon as a function of inducer concentration generates a sigmoidal curve, indicating a non-linear response. Suggested explanations for this dependence include a 2:1 inducer–repressor stoichiometry of induction, which is the currently accepted view. It is, however, known for decades that, in vitro, operator binding as a function of inducer concentration is not sigmoidal. This discrepancy between in vivo and in vitro data has so far not been resolved. We demonstrate that the in vivo non-linearity of induction is due to cooperative repression of the wild-type lac operon through DNA loop formation. In the absence of DNA loops, in vivo induction curves are hyperbolic. In the light of this result, we re-address the question of functional molecular inducer–repressor stoichiometry in induction of the lac operon.  相似文献   

20.
The first enzyme for histidine biosynthesis, encoded in the hisG gene, is involved in regulation of expression of the histidine operon in Salmonella typhimurium. The studies reported here concern the question of how expression of the histidine operon is affected by a mutation in the hisG gene that alters the allosteric site of the first enzyme for histidine biosynthesis, rendering the enzyme completely resistant to inhibition by histidine. The intracellular concentrations of the enzymes encoded in the histidine operon in a strain carrying such a mutation on an episome and missing the chromosomal hisG gene are three- to fourfold higher than in a strain carrying a wild-type hisG gene on the episome. The histidine operon on such a strain fails to derepress in response to histidine limitation and fails to repress in response to excess histidine. Furthermore, utilizing other merodiploid strains, we demonstrate that the wild-type hisG gene is trans dominant to the mutant allele with respect to this regulatory phenomenon. Examination of the regulation of the histidine operon in strains carrying the feedback-resistant mutation in an episome and hisT and hisW mutations in the chromosome showed that the hisG regulatory mutation is epistatic to the hisT and hisW mutations. These data provide additional evidence that the first enzyme for histidine biosynthesis is involved in autogenous regulation of expression of the histidine operon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号