首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The bacterium Klebsiella aerogenes (type 25) produced an inducible alginate lyase, whose major activity was located intracellularly during all growth phases. The enzyme was purified from the soluble fraction of sonicated cells by ammonium sulfate precipitation, anion- and cation-exchange chromatography and gel filtration. The apparent molecular weight of purified alginate lyase of 28,000 determined by gel filtration and of 31,600 determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the active enzyme was composed of a single polypeptide. The alginate lyase displayed a pH optimum around 7.0 and a temperature optimum around 37°C. The purified enzyme depolymerized alginate by a lyase reaction in an endo manner releasing products which reacted in the thiobarbituric acid assay and absorbed strongly in the ultraviolet region at 235 nm. The alginate lyase was specific for guluronic acidrich alginate preparations. Propylene glycol esters of alginate and O-acetylated bacterial alginates were poorly degraded by the lyase compared with unmodified polysaccharide. The guluronate-specific lyase activity was applied in an enzymatic method to detect mannuronan C-5 epimerase in three different mucoid (alginate-synthesizing) strains of Pseudomonas aeruginosa. This enzyme which converts polymannuronate to alginate could not be demonstrated either extracellularly or intracellularly in all strains suggesting the absence of a polymannuronate-modifying enzyme in P. aeruginosa.Abbreviations poly(ManA) (1–4)--D-mannuronan - poly(GulA) (1–4)--L-guluronan - TBA 2-thiobarbituric acid  相似文献   

2.
Marine Vibrio sp. 510 was chosen as a parent strain for screening high producers of alginate lyase using the complex mutagenesis of Ethyl Methanesulphonate and UV radiation treatments. The mutant strain Vibrio sp. 510-64 was selected and its alginate lyase activity was increased by 3.87-fold (reaching 46.12 EU/mg) over that of the parent strain. An extracellular alginate lyase was purified from Vibrio sp. 510-64 cultural supernatant by successive fractionation on DEAE Sepharose FF and two steps of Superdex 75. The purified enzyme yielded a single band on SDS-PAGE with the molecular weight of 34.6 kDa. Data of the N-terminal amino acid sequence indicated that this protein might be a novel alginate lyase. The substrate specificity results demonstrated that the alginate lyase had the specificity for poly G block.  相似文献   

3.
A bacterium, Sphingomonas sp. strain A1, can incorporate alginate into cells through a novel ABC (ATP-binding cassette) transporter system specific to the macromolecule. The transported alginate is depolymerized to di- and trisaccharides by three kinds of cytoplasmic alginate lyases (A1-I [66 kDa], A1-II [25 kDa], and A1-III [40 kDa]) generated from a single precursor through posttranslational autoprocessing. The resultant alginate oligosaccharides were degraded to monosaccharides by cytoplasmic oligoalginate lyase. The enzyme and its gene were isolated from the bacterial cells grown in the presence of alginate. The purified enzyme was a monomer with a molecular mass of 85 kDa and cleaved glycosidic bonds not only in oligosaccharides produced from alginate by alginate lyases but also in polysaccharides (alginate, polymannuronate, and polyguluronate) most efficiently at pH 8.0 and 37 degrees C. The reaction catalyzed by the oligoalginate lyase was exolytic and thought to play an important role in the complete depolymerization of alginate in Sphingomonas sp. strain A1. The gene for this novel enzyme consisted of an open reading frame of 2,286 bp encoding a polypeptide with a molecular weight of 86,543 and was located downstream of the genes coding for the precursor of alginate lyases (aly) and the ABC transporter (algS, algM1, and algM2). This result indicates that the genes for proteins required for the transport and complete depolymerization of alginate are assembled to form a cluster.  相似文献   

4.
A novel halophilic alginate-degrading microorganism was isolated from rotten seaweed and identified as Isoptericola halotolerans CGMCC5336. The lyase from the strain was purified to homogeneity by combining of ammonium sulfate fractionation and anion-exchange chromatography with a specific activity of 8409.19 U/ml and a recovery of 25.07%. This enzyme was a monomer with a molecular mass of approximately 28 kDa. The optimal temperature and pH were 50 °C and pH 7.0, respectively. The lyase maintained stability at neutral pH (7.0–8.0) and temperatures below 50 °C. Metal ions including Na+, Mg2+, Mn2+, and Ca2+ notably increased the activity of the enzyme. With sodium alginate as the substrate, the Km and Vmax were 0.26 mg/ml and 1.31 mg/ml min, respectively. The alginate lyase had substrate specificity for polyguluronate and polymannuronate units in alginate molecules, indicating its bifunctionality. These excellent characteristics demonstrated the potential applications in alginate oligosaccharides production with low polymerisation degrees.  相似文献   

5.
In order to investigate the catalytic properties of alginate lyase from Pseudomonas aeruginosa CF1/M1, a clinical isolate, regarding the capability to perform β-elimination on oligomannuronates of defined length (2–9), the alginate lyase was purified from periplasmic extracts. A purification method for unsaturated and saturated oligomannuronates applying anionic exchange chromatography on a FPLC apparatus was established. The alginate lyase showed the highest activity, when hexamers were provided as substrate. This indicated that the alginate lyase best accommodates a chain of six alginate residues in the active center. As a minimum chain length, the pentameric oligomannuronate was still accepted as substrate. Mannuronate oligomers shorter than the pentamer were not accepted as substrate for alginate lyase. Furthermore, oligomer pattern analysis of polymannuronate which was subjected to β-elimination by alginate lyase revealed that the trimer is the most abundant oligomer. These data indicated that β-elimination and cleavage occurred at mannuronic acid residue no. 3 of the accommodated hexameric alginate chain.  相似文献   

6.
A marine bacterium was isolated from seaweeds for its ability to degrade alginate. Analysis of 16S ribosomal DNA sequence and chemotaxonomic characterizations revealed that the strain belongs to Streptomyces. The alginate lyase gene of Streptomyces sp. ALG-5 was cloned by using PCR with the specific primer designed from homologous nucleotide sequences. The consensus sequences of N-terminal YXRSELREM and C-terminal YFKAGXYXQ were conserved in the ALG-5 alginate lyase gene. The recombinant alginate lyase was purified by using Ni-Sepharose affinity chromatography. The alginate lyase appears to be poly-guluronate lyase degrading poly-G block preferentially than poly-M block. The degraded products were determined to be di-, tri-, tetra- and pentasaccharides by using BioGel P-2 gel filtration chromatography and ionization mass spectroscopy method.  相似文献   

7.
A strain of Erwinia aroideae produced an extracellular pectolytic enzyme under growth conditions with pectin or pectic acid as the inducer. This strain also produced a pectin lyase when nalidixic acid is added to a culture medium. The pectolytic enzyme produced under the growth conditions was purified approximately 40-fold from the culture fluid by carboxy- methyl cellulose and Sephadex G-75 gel column chromatographies. The purified enzyme was almost homogeneous on sodium dodecyl sulfate polyacrylamide gel electrophoresis, having a molecular weight of about 36,000 to 38,000. This enzyme, with optimal activity at pH 9.0 to 9.2, produced reaction products which had a strong absorption at 230 nm indicating a lyase type of the reaction. The enzyme activity was markedly stimulated by calcium ion and completely inhibited by cobalt and mercuric ions and by ethylenediaminetetraacetate. Pectic acid or pectin with lower methoxyl content was a good substrate for this enzyme, while no significant activity was observed when pectin with higher methoxyl content was used as a substrate. It was concluded that the enzyme produced under the normal growth conditions is an endo-pectate lyase and differs from the pectin lyase induced by nalidixic acid.  相似文献   

8.
The root elongation activity of unsaturated oligomeric uronates from alginate on carrot and rice plants was investigated. Unsaturated oligomeric uronates were prepared by digesting polymannuronate (PM) and polyguluronate (PG) with an alginate lyase purified from Pseudoalteromonas sp. strain No. 272. The root elongation activity was measured by elongation in length of carrot- and rice-excised root incubated in the B5-medium containing 0.8% agar in the dark. PM and PG showed no activity, but the enzymatic digestion mixtures of PG had promoting activity on roots of both plants at a final concentration of 0.5 mg/ml. The maximum activity was obtained at 0.75 mg/ml. The dependence of activity on degree of polymerization of the uronates was tested and the pentamer was most active, but the mechanism of the action of unsaturated uronates on the cells remains to be solved.  相似文献   

9.
Production of a thick exopolysaccharide coat (alginate) by mucoid strains ofPseudomonas aeruginosa has been shown to contribute to the pathogenicity and persistence of these bacteria in the lungs of patients with cystic fibrosis. Previous studies have shown that some mucoidP. aeruginosa strains produce an enzyme(s) capable of degrading this alginate coat. In this study, an alginate lyase from mucoidP. aeruginosa strain WcM#2 was isolated and characterized. Lyase production was enhanced by the addition of 0.2–0.3m NaCl to the growth media. The lyase was eluted from an alginate-Sepharose affinity column with 0.5m NaCl, which can serve as a simple one-step purification protocol for obtaining semi-pure functional alginate lyase. Fractionation of the enzyme preparation on a Sephadex G-75 sizing column showed that the enzyme has an apparent molecular weight of 40,000, whereas sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) suggested a molecular weight of approximately 43,000. The affinity-purified enzyme had a pH optimum of 9.0, its activity was enhanced in the presence of 0.3m NaCl, and it showed substrate specificity for polymannuronic acid blocks. These results demonstrate the presence of a mannuronan-specific alginate lyase inP. aeruginosa that differs in several respects from previous reports ofP. aeruginosa alginate lyases.  相似文献   

10.
A bacterium, Azotobacter chroococcum 4A1M, isolated from a soil sample, produced an alginate-decomposing enzyme in the culture broth. The enzyme was purified to an electrophoretically homogeneous state. The purified enzyme showed maximum activity at pH 6.0 and 60°C;it was stable up to 60°C at pH 6.0 and activated by Ca2+ and inhibited strongly by Hg2+. The molecular mass of the enzyme was estimated to be 23 kDa by sodium dodecyl sulfate/polyacrylamide gel electrophoresis and 24 kDa by gel filtration. Therefore, the enzyme was considered to be monomeric. The NH2-terminal amino acid sequence was determined to be H2N-Ala-Ser-Ile-Ala-Ile-Thr-Asn-Pro-Gly-Phe. The enzyme reacted only on the polymannuronate block of alginic acid, and two main reaction products were obtained when short-chain polymannuronate was used as a substrate. The degrees of polymerization of the two products were three and two respectively.  相似文献   

11.
随着大型褐藻生产燃料乙醇以及褐藻寡糖重大药用价值的发现,褐藻胶裂解酶成为国内外多个领域的研究重点。文中对解藻酸弧菌上与褐藻胶降解相关的5个基因分别进行克隆表达,通过SDS-PAGE和酶活性定量测定,发现该基因簇中的4个基因有降解褐藻胶活性。对酶活最高的rAlgV3进行了诱导条件的优化、酶蛋白纯化及酶性质研究,发现优化诱导条件后重组酶rAlgV3的酶活由2.34×10~4 U/L上升为1.68×10~5 U/L,比优化前提高了7.3倍;对酶性质进行表征发现该酶在4–70℃均有活性,最适反应温度为40℃,在4–20℃酶相对稳定;该酶在pH 6.5-9.0环境下均有较高的酶活,最适pH为8.0;pH稳定性好,在pH 4.5–9.5环境下可以稳定存在;适量的NaCl浓度和Fe~(2+)、Fe~(3+)等离子具有促进酶活的作用,SDS和Cu~(2+)离子可明显抑制酶活力。对该酶的底物特性的研究发现,该酶不仅可以降解褐藻胶中的Poly-M片段,也能降解Poly-G片段,具有广泛底物特性;其降解海藻酸钠主要释放二糖和三糖,是一种内切酶。该酶对于第三代燃料乙醇的发展及褐藻寡糖的生产具有重要作用。  相似文献   

12.
Østgaard  Kjetill 《Hydrobiologia》1993,255(1):513-520
The action of alginate lyases may be easily followed in a UV-spectrophotometer, since each cut of the alginate chain will create an unsaturated unit at the non-reducing end with a strong absorbance at 230 nm. During prolonged incubation, this absorbance will approach an apparent endpoint level that reflects the initial substrate concentration. On this basis, a standardized assay has been developed. A combination of purified mannuronate lyase from Haliotis tuberculata and purified guluronate lyase from Klebsiella pneumoniae is applied to get quantitative concentration estimates that do not depend on alginate composition. The production of alginate in Azotobacter vinelandii is included as an example of application. Most important, by applying both enzymes alone and in combination, the block composition of the alginate may be estimated. Data for a series of widely different alginates have been compared with those obtained by NMR.  相似文献   

13.
The alyPEEC gene encoding alginate lyase from marine bacterium Pseudoalteromonas elyakovii IAM 14594 was subcloned into pBAD24 with arabinose promoter and sequenced, and overexpressed in TOP10 strain of E. coli after arabinose induction. Expression levels of alyPEEC gene in E. coli cells were over 39.6-fold higher than those in P. elyakovii IAM 14594 cells. The molecular mass of purified alginate lyase from the engineered E. coli cells was estimated to be 32.0 kDa. Optimum pH and temperature of the alginate lyase activity were 7.0 and 30 °C, respectively. The enzyme was unstable on heating and in acidic and alkaline solution. The enzyme activity was stimulated by the MgCl2, NaCl, KCl, CaCl2, BaCl2 and MnCl2, but was inhibited by the addition of 1.0 mM of EGTA, EDTA, SDS, ZnSO4, AgNO3, and CoCl2. All the alginate, polyM and polyG could be converted into oligosaccharides with more than tetrasaccharides by the purified recombinant alginate lyase, suggesting that the recombinant alginate lyase produced by the engineered E. coli has highly potential application in seaweed genetics, food and pharmaceutical industries.  相似文献   

14.
Enzymatic degradation of alginate by marine fungi   总被引:4,自引:0,他引:4  
Schaumann  K.  Weide  G. 《Hydrobiologia》1990,(1):589-596
A total of 72 pre-selected strains of 19 species of marine fungi were tested for their ability to decompose sodium alginate, calcium alginate or freshly prepared calcium alginate gel. Active alginate decomposition was evident in 18 strains (25% of total tested). These belong to only three different species: Asteromyces cruciatus, Corollospora intermedia, and Dendryphiella salina. In broth culture, decomposition of sodium alginate by the two deuteromycetes was followed by gravimetric, electrometric, viscometric, photometric and chromatographic methods in order to characterize the alginase enzyme system and its degradation products. The alginase enzyme complex consisted of at least two different enzyme components: the already known alginate lyase (eliminase) and a new endo-alginate hydrolase. In summary, a model is presented on the alginase-mediated structural and molecular decomposition of sodium alginate by marine fungi.  相似文献   

15.
We isolated a new marine bacteria, which displayed alginate-depolymerizing activity in plate assays, from seawater in Mihonoseki Harbor, Japan. Analysis of the 16S ribosomal RNA gene sequence of one of the isolates proved that this alginate-depolymerizing bacterium belonged to the genus Vibrio and it was named Vibrio sp. O2. The alginate lyase genes of Vibrio sp. O2 were cloned and expressed in Escherichia coli. Two alginate lyase-producing clones, pVOA-A4 and pVOA-B5, were obtained. The alginate lyase gene alyVOA from pVOA-A4 was composed of an 858-bp open reading frame (ORF) encoding 285 amino acid residues, while alyVOB from pVOA-B5 was composed of an 828-bp ORF encoding 275 amino acid residues. The degree of identity between the deduced amino acid sequences of AlyVOA or AlyVOB and Photobacterium sp. ATCC43367 alginate poly(ManA)lyase AlxM was 92.3% or 32.6%, respectively. Alginate lyase consensus regions corresponding to the sequences YFKAGXYXQ and RXELR were observed in all three of these sequences. AlyVOA and AlyVOB both degraded polymannuronate in plate assays and were therefore confirmed to be poly(β-D-mannuronate)lyases.  相似文献   

16.
Lysis of alginates and of their saturated and unsaturated fragments was monitored by 1H NMR spectroscopy. AlxM(B) alginate lyase performs beta-elimination on the mannuronic acid (M) residues. It does not cleave the guluronic acid (G) sequences, nor the M-G or the G-M diads. In consequence, it is a true mannuronate lyase. The end product of the reaction is O-(4-deoxy-alpha-L-ery-thro-hex-4-enopyranosyl-uronic acid)-(1->(4)-O-(beta-D-mannopyranosyluronic acid)-(1->4)-O-beta-D-mannpyranuronic acid. Viscosity measurements made during degradation of a polymannuronate alginate showed that AlxM(B) behaves as an endo-enzyme. HPLC analysis of the degradation products of oligomannuronates and oligoalginates suggested that the beta-elimination requires the interaction of the enzyme with at least three sequential mannuronic acid residues. The catalytic site may possess 5 sub-sites and accommodate pentamers with different M/G ratio. Kinetic measurements showed that the specificity constant Vm/Km increased with the number of mannuronic acid residues. AlxM(B) may be reversibly inhibited by heteropolymeric blocks in a competitive manner.  相似文献   

17.
Thermostable β‐galactosidase from Bacillus coagulans RCS3 was purified by successive column chromatography using DEAE‐cellulose and Sephadex G‐50. Immobilization of the purified enzyme was studied with DEAE‐cellulose and calcium alginate. The efficiency of β‐galactosidase retention was 87 % with DEAE‐cellulose (17 mg protein/mL of matrix) and 80 % with calcium alginate (2.2 mg protein/g bead). Comparative studies of immobilization displayed a shift in the optimum temperature from 65 °C to 70 °C provoked by DEAE‐cellulose, although no effect was observed with calcium alginate. The heat inactivation curve revealed an improvement in the stability (t1/2 of 14.5 h for the immobilized enzyme as compared to 2 h for the free enzyme at 65 °C) in a calcium alginate system. This immobilized enzyme has a wide pH stability range (6.5–11). β‐Galactosidase immobilized by DEAE‐cellulose and calcium alginate allowed a 57 and 70 % lactose hydrolysis, respectively, to be achieved within 48 h after repeated use for twenty times.  相似文献   

18.
An alginate lyase with high specific enzyme activity was purified from Vibrio sp. YKW-34, which was newly isolated from turban shell gut. The alginate lyase was purified by in order of ion exchange, hydrophobic and gel filtration chromatographies to homogeneity with a recovery of 7% and a fold of 25. This alginate lyase was composed of a single polypeptide chain with molecular mass of 60 kDa and isoelectric point of 5.5–5.7. The optimal pH and temperature for alginate lyase activity were pH 7.0 and 40 °C, respectively. The alginate lyase was stable over pH 7.0–10.0 and at temperature below 50 °C. The alginate lyase had substrate specificity for both poly-guluronate and poly-mannuronate units. The kcat/Km value for alginate (heterotype) was 1.7 × 106 s−1 M−1. The enzyme activity was completely lost by dialysis and restored by addition of Na+ or K+. The optimal activity exhibited in 0.1 M of Na+ or K+. This enzyme was resistant to denaturing reagents (SDS and urea), reducing reagents (β-mercaptoethanol and DTT) and chelating reagents (EGTA and EDTA).  相似文献   

19.
In the presence of a partially purified preparation of tyrosine phenol lyase, tyrosine is formed in solutions containing glycine, formaldehyde and phenol. The enzyme preparation also catalysed the splitting of allothreonine to glycine and acetaldehyde. An enzyme which is different from tyrosine phenol lyase was shown to be responsible for this aldolase reaction. When an enzyme preparation with a higher specific activity of tyrosine phenol lyase, but without aldolase activity, was used the formation of tyrosine from glycine, formaldehyde and phenol was not observed. It is assumed that the first stage of the process is the formation of serine from glycine and formaldehyde catalysed by the enzyme responsible for the aldolase reaction. Serine in its turn is converted to tyrosine by tyrosine phenol lyase.  相似文献   

20.
An oligogalacturonate transeliminase (oligogalacturonate lyase) was isolated from the cell extract of Erwinia aroideae. This enzyme was purified by adsorption on columns of calcium phosphate on cellulose, treatment with Duolite CS-101 and DEAE-cellulose chromatography. It cleaved the first glycosidic linkage from the reducing end of the substrate molecule, the product found in the reaction mixture being 4-deoxy-5-keto-d-fructuronic acid. It attacked preferentially the short-chain uronides. The enzyme preparation showed only a slight activity toward high molecular pectic acid. The pH optimum was at 7.0. Calcium ion had no effect on the enzyme activity. Unsaturated oligogalacturonates were degraded more rapidly than oligogalacturonates having no unsaturated galacturonic acid residue. For this reason it might be appropriate to call this enzyme unsaturated oligogalacturonate transeliminase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号