首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the process of capacitation, spermatozoa go through a whole set of signaling cascade events in order to become fully competent at fertilizing the egg. An increase in sperm protein tyrosine phosphorylation has been described during this final maturational event in different animal species as well as in humans. Although the phosphotyrosine content of sperm protein is modulated by cAMP, Ca(2+), BSA, oxygen derivatives, and cholesterol, no protein tyrosine kinase (PTK) nor the phosphotyrosine protein phosphatase (PTPase) directly involved in the control of the phosphotyrosine content of sperm protein has been identified. Therefore, the goal of the present study was to identify the tyrosine kinases putatively responsible for the increases in sperm protein phosphotyrosine content. In the present study, we show that the src-related tyrosine kinase c-yes is present in the head of human spermatozoa in both membranes and Triton X-100-insoluble extracts. Our hypothesis was that c-yes is a tyrosine kinase responsible for at least some of the capacitation-induced increase in protein tyrosine phosphorylation. When spermatozoa were previously incubated in the presence of 3-isobutyl-1-methylxanthine or 1,2-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid, treatments known to increase the phosphotyrosine content of human sperm proteins, an increase in the kinase activity of immunoprecipitated yes was measured using enolase as a substrate. These results suggest that cAMP activates while Ca(2+) inhibits human sperm c-yes kinase activity.  相似文献   

2.
3.
SRC-related tyrosine kinases are suggested to play a role in the increase of sperm protein phosphotyrosine content that occurs during capacitation. In our laboratory, we previously demonstrated that the SRC-related tyrosine kinase YES1 (also known as c-YES) is present in human spermatozoa. However, since it is negatively regulated by Ca(2+), whose intracellular concentration increases during capacitation, another kinase would most likely be involved in the capacitation-related increase in sperm protein tyrosine phosphorylation. The present study represents the first direct assessment of SRC tyrosine kinase activity in ejaculated mammalian sperm. By immunohistochemistry on human testis sections, it is clearly shown that SRC is expressed during spermatogenesis, mainly in round and elongating spermatids. Using an indirect immunofluorescence approach, SRC is detected in the acrosomal region of the head and in the sperm flagellum of ejaculated sperm. This tyrosine kinase is associated with the plasma membrane and with cytoskeletal elements, as suggested by its partial solubility in nonionic detergents. Despite its partial solubility, SRC kinase activity was assayed after immunoprecipitation using acid-denatured enolase as a substrate. It is clearly demonstrated that SRC activity is inhibited by SU6656 and PP1, selective SRC family tyrosine kinase inhibitors, and activated in a Ca(2+)-dependent manner. Furthermore, it is shown that SRC is activated in a cAMP/PRKA-dependent manner; SRC coimmunoprecipitates with the catalytic subunit of the cAMP-dependent protein kinase (PRKAC) and is phosphorylated by this latter kinase, resulting in an increase in enolase phosphorylation. All these results support the involvement of the tyrosine kinase SRC in the increase in sperm protein phosphotyrosine content observed during capacitation.  相似文献   

4.
Protein tyrosine phosphorylation is a key event accompanying sperm capacitation. Although this signaling cascade generates an array of tyrosine-phosphorylated polypeptides, their molecular characterization is still limited. It is necessary to differentiate the localization of the tyrosine-phosphorylated proteins in spermatozoa to understand the link between the different phosphorylated proteins and the corresponding regulated sperm function. cAMP plays a pivotal role in the regulation of tyrosine phosphorylation. The intracellular cAMP levels were raised in goat spermatozoa by the addition of the phosphodiesterase inhibitor, IBMX in conjugation with caffeine. Tyrosine phosphorylation was significantly up-regulated following treatment with these two reagents. Treatment of caudal spermatozoa with IBMX and caffeine, time dependent up-regulated phosphorylation of the protein of molecular weights 50 and 200 kDa was observed. Increased phosphorylation was observed with a combination of IBMX and caffeine treatment. Tyrosine phosphorylation in caput spermatozoa was not affected significantly under these conditions. The expression level of tyrosine kinase in sperm was examined with specific inhibitors and with anti-phosphotyrosine antibody. The indirect immunofluorescence staining was carried out on ethanol permeabilized sperm using anti-phosphotyrosine antibody. Western blot analysis was done using two separate PKA antibodies: anti-PKA catalytic and anti-PKA RIα. Almost no difference was found in the intracellular presence of the PKA RIα and RIIα subunits in caput and caudal epididymal spermatozoa. However, the catalytic subunit seemed to be present in higher amount in caudal spermatozoa. The results show that caprine sperm displays an enhancement of phosphorylation in the tyrosine residues of specific proteins under in vitro capacitation conditions.  相似文献   

5.
Mammalian spermatozoa acquire functionality during epididymal maturation and ability to penetrate and fertilize the oocyte during capacitation. The aim of this study was to investigate the impact of epididymal maturation, ejaculation and capacitation on phosphotyrosine content of sperm proteins. Western blot, immunocytochemical and flow cytometry analyses demonstrated that epididymal maturation in vivo is associated with a progressive loss of phosphotyrosine residues of the sperm head followed by a subtle increase after in vitro capacitation. As cells pass from caput to cauda epididymis, tyrosine phosphorylation becomes confined to a triangular band over the posterior part of midacrosome region, whereas in vitro capacitation causes a spread labeling over the whole head. Different bands with phosphotyrosine residues were detected during epididymal maturation and after in vitro capacitation: 1) 93, 66 and 45 kDa bands with specific phosphotyrosine expression in immature spermatozoa; 2) 76, 23 and 12 kDa bands with specific phosphotyrosine expression in mature spermatozoa, being significantly increased in their expression after in vitro capacitation; 3) 49, 40, 37, 30, 26 and 25 kDa constitutive bands that increased their phosphotyrosine expression after maturation and/or in vitro capacitation; and 4) 28 and 20 kDa bands with a specific phosphotyrosine expression in in vitro capacitated spermatozoa. These results provided integral novel data of expression and location of phosphotyrosine residues during epididymal maturation, ejaculation and in vitro capacitation of boar spermatozoa. Two new constitutive proteins bands of 26 and 25 kDa with phosphotyrosine residues were also identified.  相似文献   

6.
To fertilize the oocyte, mammalian spermatozoa must undergo capacitation and acrosome reaction. These events are believed to be associated with various biochemical changes primarily mediated by cAMP, Ca2+ and protein kinases. But the precise signaling mechanisms governing sperm function are not clear. To study this, we used pentoxifylline (PF), a sperm motility stimulant and a cAMP-phosphodiesterase inhibitor, during capacitation and acrosome reaction of hamster spermatozoa. PF induced an early onset of sperm capacitation and its action involved modulation of sperm cell signaling molecules viz, cAMP, [Ca2+]i and protein kinases. The PF-induced capacitation was associated with an early and increased total protein phosphorylation coupled with changes in the levels of reactive oxygen species. Protein kinase (PK)-A inhibitor (H-89) completely inhibited phosphorylation of a 29 kDa protein while PK-C inhibitor (staurosporine) did not inhibit phosphorylation. Interestingly, PF induced protein tyrosine phosphorylation of a set of proteins (Mr 45-80 K) and a greater proportion of PF-treated spermatozoa exhibited protein tyrosine phosphorylation, compared to untreated controls (82 + 9% vs 34 +/- 10%; p < 0.001); tyrosine-phosphorylated proteins were localized specifically to the mid-piece of the sperm. The profile of protein tyrosine phosphorylation was inhibitable by higher concentrations (> 0.5 mM) of tyrosine kinase inhibitor, tyrphostin A47. However, at lower (0.1-0.25 mM) concentrations, the compound interestingly induced early sperm capacitation and protein tyrosine phosphorylation, like PF. These results show that protein tyrosine phosphorylation in the mid-piece segment (mitochondrial sheath) appears to be an early and essential event during PF-induced capacitation and a regulated level of tyrosine phosphorylation of sperm proteins is critical for capacitation of hamster spermatozoa.  相似文献   

7.
Spermatozoa require a preparatory process called capacitation to fertilize mature oocytes. Two events related to capacitation of mammalian spermatozoa are an increase in intracellular Ca(2+) and protein tyrosine phosphorylation. The sites that regulate intracellular Ca(2+) concentration are plasma membrane and mitochondria. There are different systems for mitochondrial Ca(2+) influx and efflux. Our aim was to study the involvement of mitochondrial Ca(2+) cycle during heparin-induced capacitation in cryopreserved bovine spermatozoa. Samples were incubated at 38°C for 45 min, in TALP medium, in the presence of: (a) heparin (H), a well known capacitation inducer; (b) H+CGP 37157, a specific inhibitor of mitochondrial Ca(2+) efflux; (c) H+RU 360, a specific inhibitor of Ca(2+) influx to the mitochondria and (d) H+CGP 37157+RU 360. In every treatment, capacitation (by CTC), progressive motility (by optical microscopy), viability (by the eosin/nigrosin technique) and protein tyrosine phosphorylation (by Western Immuno-blotting), were evaluated. The addition of CGP 37157 (20 μM) decreased progressive motility (p<0.05), without affecting capacitation or protein tyrosine phosphorylation, indicating the importance of calcium efflux for maintaining progressive motility. RU 360 (5 μM) significantly reduced capacitation without affecting progressive motility, sperm viability or protein tyrosine phosphorylation, showing that inhibition of the mitochondrial calcium uptake, negatively affect the capacitation process. The addition of both inhibitors showed the effect of RU 360. According with these results, there would exist a differential participation of the income and outcome mitochondrial calcium carriers, in the capacitation process. In conclusion, this research demonstrates the importance of normal mitochondrial calcium cycle in the achievement of sperm capacitation and the maintenance of progressive motility in cryopreserved bovine spermatozoa.  相似文献   

8.
Calcium (Ca(2+)) signals, produced by the opening of plasma membrane entry channels, regulate a number of functions in spermatozoa such as capacitation and motility. The mechanisms of Ca(2+) removal from the sperm, required to restore resting [Ca(2+)](i), include plasma membrane Ca(2+)-dependent ATPase (PMCA) isoenzymes as well as a plasma membrane Na(+)-Ca(2+) exchanger. We have recently shown that bovine sperm PMCA is stimulated by PDC-109, a secretory protein of bovine seminal vesicles. To demonstrate the subcellular localization and regulation of bovine sperm PMCA, we have performed cell fractionation, enzyme activity determination and Western blotting studies of PMCA in spermatozoa removed from the cauda epididymidis of bull. Fractionation of sperm heads and tails resulted in a distinct association of ATPase activity with the tail membrane fraction. In vitro stimulation studies with PDC-109 using intact and fractionated sperm showed an increase in enzyme activity up to 105% in sperm tail membranes. Furthermore, thapsigargin inhibition did not alter the stimulatory effect of PDC-109 on ATPase activity, indicating that no sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA), but only PMCA isoenzymes are involved in this effect. Western blotting studies using a polyvalent PMCA antibody showed the exclusive presence of a 135 kDa band in the tail plasma membrane fraction. To elucidate whether or not the stimulatory effect was a direct one or indirectly mediated through PKA and PKC activation, PKA and PKC inhibitors, respectively, were used in the Ca(2+)-ATPase activity assays, which was followed by PDC-109 stimulation. The stimulatory effect of PDC-109 on PMCA was still observed under these conditions, while no phosphotyrosine proteins could be detected by Western blotting in sperm extracts following PDC-109 treatment. Co-immunoprecipitation studies, PDC-109 affinity chromatography as well as overlay blots failed to show a strong association of both PMCA and PDC-109, pointing to an indirect, perhaps phospholipid-mediated effect.  相似文献   

9.
Elevation in cytoplasmic free Ca2+ concentration ([Ca2+]i) is a common mechanism in signaling events. An increased [Ca2+]i induced by GH, has been observed in relation to different cellular events. Little is known about the mechanism underlying the GH effect on Ca2+ handling. We have studied the molecular mechanisms underlying GH-induced rise in [Ca2+]i in BRIN-BD11 insulin-secreting cells. GH (500 ng/ml, 22 nm) induced a sustained increase in [Ca2+]i. The effect of GH on [Ca2+]i was prevented in the absence of extracellular Ca2+ and was inhibited by the ATP-sensitive K(+)-channel opener diazoxide and the voltage-dependent Ca(2+)-channel inhibitor nifedipine. However, GH failed to induce any changes in Ca2+ current and membrane potential, evaluated by patch-clamp recordings and by using voltage-sensitive dyes. When the intracellular Ca2+ pools had been depleted using the Ca(2+)-ATPase inhibitor thapsigargin, the effect of GH was inhibited. In addition, GH-stimulated rise in [Ca2+]i was completely abolished by ruthenium red, an inhibitor of mitochondrial Ca2+ transport, and caffeine. GH induced tyrosine phosphorylation of ryanodine receptors. The effect of GH on [Ca2+]i was completely blocked by the tyrosine kinase inhibitors genistein and lavendustin A. Interestingly, treatment of the cells with GH significantly enhanced K(+)-induced rise in [Ca2+]i. Hence, GH-stimulated rise in [Ca2+]i is dependent on extracellular Ca2+ and is mediated by Ca(2+)-induced Ca2+ release. This process is mediated by tyrosine phosphorylation of ryanodine receptors and may play a crucial role in physiological Ca2+ handling in insulin-secreting cells.  相似文献   

10.
We have investigated the restoration of [Ca(2+)](i) in human platelets following the discharge of the intracellular Ca(2+) stores. We found that the plasma membrane Ca(2+)-ATPase is the main mechanism involved in Ca(2+) extrusion in human platelets. Treatment of platelets with the farnesylcysteine analogs, farnesylthioacetic acid and N-acetyl-S-geranylgeranyl-l-cysteine, inhibitors of activation of Ras proteins, accelerated the rate of decay of [Ca(2+)](i) to basal levels after activation with thapsigargin combined with a low concentration of ionomycin, indicating that Ras proteins are involved in the negative regulation of Ca(2+) extrusion. Rho A, which is involved in actin polymerization, was not responsible for this effect. Consistent with this, the actin polymerization inhibitors, cytochalasin D and latrunculin A, did not alter the recovery of [Ca(2+)](i). Activation of human platelets with thapsigargin and ionomycin stimulated the tyrosine phosphorylation of the plasma membrane Ca(2+)-ATPase, a mechanism that was inhibited by farnesylcysteine analogs, suggesting that Ras proteins could regulate Ca(2+) extrusion by mediating tyrosine phosphorylation of the plasma membrane Ca(2+)-ATPase. Treatment of platelets with LY294002, a specific inhibitor of phosphatidylinositol 3- and phosphatidylinositol 4-kinase, resulted in a reduction in the rate of recovery of [Ca(2+)](i) to basal levels, suggesting that the products of these kinases are involved in stimulating Ca(2+) extrusion in human platelets.  相似文献   

11.
In mammals, acquisition of fertilization competence of spermatozoa is dependent on the phenomenon of sperm capacitation. One of the critical molecular events of sperm capacitation is protein tyrosine phosphorylation. In a previous study, we demonstrated that a specific epidermal growth factor receptor (EGFR)‐tyrosine kinase inhibitor, tyrphostin‐A47, inhibited hamster sperm capacitation, accompanied by a reduced sperm protein tyrosine phosphorylation. Interestingly, a high percentage of tyrphostin‐A47‐treated spermatozoa exhibited circular motility, which was associated with a distinct hypo‐tyrosine phosphorylation of flagellar proteins, predominantly of Mr 45,000–60,000. In this study, we provide evidence on the localization of capacitation‐associated tyrosine‐phosphorylated proteins to the nonmembranous, structural components of the sperm flagellum. Consistent with this, we show their ultrastructural localization in the outer dense fiber, axoneme, and fibrous sheath of spermatozoa. Among hypo‐tyrosine phosphorylated major proteins of tyrphostin‐A47‐treated spermatozoa, we identified the 45 kDa protein as outer dense fiber protein‐2 and the 51 kDa protein as tektin‐2, components of the sperm outer dense fiber and axoneme, respectively. This study shows functional association of hypo‐tyrosine‐phosphorylation status of outer dense fiber protein‐2 and tektin‐2 with impaired flagellar bending of spermatozoa, following inhibition of EGFR‐tyrosine kinase, thereby showing the critical importance of flagellar protein tyrosine phosphorylation during capacitation and hyperactivation of hamster spermatozoa. Mol. Reprod. Dev. 77: 182–193, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Capacitation is a prerequisite for successful fertilization by mammalian spermatozoa. This process is generally observed in vitro in defined NaHCO3-buffered media and has been shown to be associated with changes in cAMP metabolism and protein tyrosine phosphorylation. In this study, we observed that when NaHCO3 was replaced by 4-(2-hydroxyethyl)1-piperazine ethanesulfonic acid (HEPES), hamster sperm capacitation, measured as the ability of the sperm to undergo a spontaneous acrosome reaction, did not take place. Addition of 25 mM NaHCO3 to NaHCO3-free medium in which spermatozoa had been preincubated for 3.5 h, increased the percentage of spontaneous acrosome reactions from 0% to 80% in the following 4 h. Addition of anion transport blockers such as 4,4'-diiso thiocyano-2, 2'-stilbenedisulfonate (DIDS) or 4-acetomido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS) to the NaHCO3-containing medium inhibited the acrosome reaction, with maximal inhibition at 600 microM, and with an EC50 of 100 microM. Increasing either extracellular or intracellular pH did not induce the acrosome reaction in NaHCO3-free medium. In contrast, addition of 500 microM dibutyryl cAMP (dbcAMP), alone or together with 100 microM 1-methyl-3-isobutylxanthine (IBMX), induced the acrosome reaction in spermatozoa incubated in NaHCO3-free medium. These compounds also partially reversed the inhibition of the acrosome reaction caused by the DIDS or SITS in complete medium. In contrast to these results, IBMX or dbcAMP did not induce acrosome reactions in cells incubated in Ca2+-free medium. When hamster sperm were incubated in the absence of NaHCO3 or in the presence of NaHCO3 and DIDS, cAMP concentrations were significantly lower than the values obtained from sperm incubated in complete medium. Protein tyrosine phosphorylation has also been shown to be highly correlated with the onset of capacitation in many species. During the first hour of capacitation, an increase in protein tyrosine phosphorylation was observed in complete medium. In the absence of NaHCO3, the increase in protein tyrosine phosphorylation was delayed for 45 min, and this delay was overcome by the addition of dbcAMP and IBMX. The induction of the acrosome reaction by calcium ionophore A23187 in NaHCO3-free medium was delayed 2 h, as compared with control medium. This delay was not observed in the presence of dbcAMP and IBMX. Taken together, these results suggest that a cAMP pathway may mediate the role of NaHCO3 in the capacitation of hamster spermatozoa and that protein tyrosine phosphorylation is necessary but not sufficient for complete capacitation.  相似文献   

13.
Capacitation is a mandatory process for the acquisition of mammalian sperm fertilization competence and involves the activation of a complex and still not fully understood system of signaling pathways. Under in vitro conditions, there is an increase in both protein tyrosine phosphorylation (pTyr) and intracellular Ca2+ levels in several species. In human sperm, results from our group revealed that pTyr signaling can be blocked by inhibiting proline-rich tyrosine kinase 2 (PYK2). Based on the role of PYK2 in other cell types, we investigated whether the PYK2-dependent pTyr cascade serves as a sensor for Ca 2+ signaling during human sperm capacitation. Flow cytometry studies showed that exposure of sperm to the PYK2 inhibitor N-[2-[[[2-[(2,3-dihydro-2-oxo-1 H-indol-5-yl)amino]-5-(trifluoromethyl)-4-pyrimidinyl]amino]methyl]phenyl]- N-methyl-methanesulfonamide hydrate (PF431396) produced a significant and concentration-dependent reduction in intracellular Ca 2+ levels during capacitation. Further studies revealed that PF431396-treated sperm exhibited a decrease in the activity of CatSper, a key sperm Ca 2+ channel. In addition, time course studies during capacitation in the presence of PF431396 showed a significant and sustained decrease in both intracellular Ca 2+ and pH levels after 2 hr of incubation, temporarily coincident with the activation of PYK2 during capacitation. Interestingly, decreases in Ca 2+ levels and progressive motility caused by PF431396 were reverted by inducing intracellular alkalinization with NH 4Cl, without affecting the pTyr blockage. Altogether, these observations support pTyr as an intracellular sensor for Ca 2+ entry in human sperm through regulation of cytoplasmic pH. These results contribute to a better understanding of the modulation of the polymodal CatSper and signaling pathways involved in human sperm capacitation.  相似文献   

14.
Calcium influx is required for the mammalian sperm acrosome reaction (AR), an exocytotic event occurring in the sperm head prior to fertilization. We show here that thapsigargin, a highly specific inhibitor of the microsomal Ca(2+)-Mg(2+)-ATPase (Ca(2+) pump), can initiate acrosomal exocytosis in capacitated bovine and ram spermatozoa. Initiation of acrosomal exocytosis by thapsigargin requires an influx of Ca(2+), since incubation of cells in the absence of added Ca(2+) or in the presence of the calcium channel blocker, La(3+), completely inhibited thapsigargin-induced acrosomal exocytosis. ATP-Dependent calcium accumulation into nonmitochondrial stores was detected in permeabilized sperm in the presence of ATP and mitochondrial uncoupler. This activity was inhibited by thapsigargin. Thapsigargin elevated the intracellular Ca(2+) concentration ([Ca(2+)](i)), and this increase was inhibited when extracellular Ca(2+) was chelated by EGTA, indicating that this rise in Ca(2+) is derived from the external medium. This rise of [Ca(2+)](i) took place first in the head and later in the midpiece of the spermatozoon. However, immunostaining using a polyclonal antibody directed against the purified inositol 1,4,5-tris-phosphate receptor (IP(3)-R) identified specific staining in the acrosome region, in the postacrosome, and along the tail, but not in the midpiece region. No staining in the acrosome region was observed in sperm without acrosome, indicating that the acrosome cap was stained in intact sperm. The presence of IP(3)-R in the anterior acrosomal region as well as the induction, by thapsigargin, of intracellular Ca(2+) elevation in the acrosomal region and acrosomal exocytosis, implicates the acrosome as a potential cellular Ca(2+) store. We suggest here that the cytosolic Ca(2+) is actively transported into the acrosome by an ATP-dependent, thapsigargin-sensitive Ca(2+) pump and that the accumulated Ca(2+) is released from the acrosome via an IP(3)-gated calcium channel. The ability of thapsigargin to increase [Ca(2+)](i) could be due to depletion of Ca(2+) in the acrosome, resulting in the opening of a capacitative calcium entry channel in the plasma membrane. The effect of thapsigargin on elevated [Ca(2+)](i) in capacitated cells was 2-fold higher than that in noncapacitated sperm, suggesting that the intracellular Ca pump is active during capacitation and that this pump may have a role in regulating [Ca(2+)](i) during capacitation and the AR.  相似文献   

15.
Mammalian sperm must undergo a process known as capacitation before fertilization can take place. A key intracellular event that occurs during capacitation is protein tyrosine phosphorylation. The objective of this study was to investigate and visualize protein tyrosine phosphorylation patterns in human sperm during capacitation and interaction with the zona pellucida. The presence of specific patterns was also assessed in relation to the fertilizing capacity of the spermatozoa after in vitro fertilization. Protein tyrosine phosphorylation was investigated by immunofluorescence. Phosphorylation increased significantly with capacitation and was localized mainly to the principal piece of human sperm. Following binding to the zona pellucida, the percentage of sperm with phosphotyrosine residues localized to both the neck and the principal piece was significantly higher in bound sperm than in capacitated sperm in suspension. When the percentage of principal piece-positive sperm present after capacitation was <7%, fertilization rates after in vitro fertilization were reduced. Different compartments of human spermatozoa undergo a specific sequence of phosphorylation during both capacitation and upon binding to the zona pellucida. Tyrosine phosphorylation in the principal and neck piece may be considered a prerequisite for fertilization in humans.  相似文献   

16.
Despite considerable advances in our understanding of the molecular mechanisms regulating eutherian sperm function, there is a paucity of such knowledge for the Metatheria. In eutherian spermatozoa, the attainment of functional competence is associated with a redox-regulated, cAMP-mediated tyrosine phosphorylation cascade, activated during capacitation. In this report we investigate whether tammar wallaby (Macropus eugenii) spermatozoa possess a similar signal transduction pathway. Western blot analysis of phosphotyrosine expression in caudal and ejaculated populations of tammar spermatozoa revealed that elevation of intracellular cAMP levels, but not exposure to oxidants or NADPH, induced a dramatic increase in the overall level of tyrosine phosphorylation. Washed, ejaculated spermatozoa exhibited more pronounced increases in tyrosine phosphorylation than unwashed sperm populations. Localisation of tyrosine phosphorylation by immunocytochemistry showed that phosphotyrosine residues were principally located along the tammar sperm flagellum, and occasionally at a small region of the sperm head, adjacent to the acrosome. Associated with the tyrosine phosphorylation of tammar spermatozoa, was a change in sperm head conformation to a T-shaped orientation, further implying the importance of these pathways to normal tammar sperm function. Redox activity, as detected by lucigenin-dependent chemiluminescence, was stimulated by NADPH in caudal sperm preparations but not ejaculated spermatozoa. However, neither sperm population responded to treatment with NADPH with changes in intracellular cAMP or tyrosine phosphorylation. In conclusion, tammar spermatozoa possess the same cAMP-mediated, tyrosine phosphorylation-dependent signal transduction cascade that has been associated with capacitation in eutherian spermatozoa. However in Metatherian spermatozoa we could find no evidence that this pathway was redox regulated.  相似文献   

17.
Comparative studies of Ca2+-uptake by guinea pig spermatozoa were performed with fresh epididymal sperm and with cells preincubated in a chemically defined, Ca2+-free medium for capacitation. Calcium uptake was negligible in fresh spermatozoa, but increased dramatically after 20 min of incubation at 37 degrees C in the presence of pyruvate and lactate. Spermatozoa incubated in the absence of these substrates accumulated only 34% as much 45Ca2+ as was taken up by cells in complete medium. The monosaccharides glucose, fructose, and mannose and the nonmetabolizable sugars 2-deoxyglucose and sucrose inhibited the enhancement of Ca2+-permeability. In the presence of 6 mM sucrose 45Ca2+ uptake was not influenced by external sodium chloride concentration between 0 mM and 145 mM. The respiratory activity of the capacitated spermatozoa not only was higher than that of uncapacitated cells, but it was stimulated by Ca2+. No effect of Ca2+ on respiration of fresh spermatozoa was detected. An increase in calcium uptake was associated with increasing pH of the medium. It is possible that a regulatory mechanism through the calcium permeability of the plasma membrane of guinea pig spermatozoa exists and controls the development of physiological events related with the fertilization process. The sugar composition, the availability of the energy substrates lactate and pyruvate, and the pH of the reproductive tract fluids could play an important role in the accessibility of Ca2+ into the cells in vivo, as has been demonstrated in vitro. The enhancement of calcium permeability during the preincubation could be a useful indicator to verify if capacitation has occurred.  相似文献   

18.
Capacitation confers on the spermatozoa the competence to fertilize the oocyte. At the molecular level, a cyclic adenosine monophosphate (cAMP) dependent protein tyrosine phosphorylation pathway operates in capacitated spermatozoa, thus resulting in tyrosine phosphorylation of specific proteins. Identification of these tyrosine‐phosphorylated proteins and their function with respect to hyperactivation and acrosome reaction, would unravel the molecular basis of capacitation. With this in view, 21 phosphotyrosine proteins have been identified in capacitated hamster spermatozoa out of which 11 did not identify with any known sperm protein. So, in the present study attempts have been made to ascertain the role of one of these eleven proteins namely glycerol‐3‐phosphate dehydrogenase 2 (GPD2) in hamster sperm capacitation. GPD2 is phosphorylated only in capacitated hamster spermatozoa and is noncanonically localized in the acrosome and principal piece in human, mouse, rat, and hamster spermatozoa, though in somatic cells it is localized in the mitochondria. This noncanonical localization may imply a role of GPD2 in acrosome reaction and hyperactivation. Further, enzymatic activity of GPD2 during capacitation correlates positively with hyperactivation and acrosome reaction thus demonstrating that GPD2 may be required for sperm capacitation.  相似文献   

19.
Capacitation has been correlated with the activation of a cAMP-PKA-dependent signaling pathway leading to protein tyrosine phosphorylation. The ability to exhibit this response to cAMP matures during epididymal maturation in concert with the ability of the spermatozoa to capacitate. In this study, we have addressed the mechanisms by which spermatozoa gain the potential to activate this signaling pathway during epididymal maturation. In a modified Tyrode's medium containing 1.7 mM calcium, caput spermatozoa had significantly higher [Ca2+]i than caudal cells and could not tyrosine phosphorylate in response to cAMP. However, in calcium-depleted medium both caput and caudal cells could exhibit a cAMP-dependent phosphorylation response. The inhibitory effect of calcium on tyrosine phosphorylation was also observed in caudal spermatozoa using thapsigargin, a Ca(2+)-ATPase inhibitor that increased [Ca2+]i and precipitated a corresponding decrease in phosphotyrosine expression. We also demonstrate that despite the activation of tyrosine phosphorylation in caput spermatozoa, these cells remain nonfunctional in terms of motility, sperm-egg recognition and acrosomal exocytosis. These results demonstrate that the signaling pathway leading to tyrosine phosphorylation in mouse spermatozoa is negatively regulated by [Ca2+]i, and that maturation mechanisms that control [Ca2+]i within the spermatozoon are critically important during epididymal transit.  相似文献   

20.
A heteromeric integral membrane protein, Na+/K+ATPase is composed of two polypeptides, alpha and beta, and is active in many cell types, including testis and spermatozoa. It is a well-known ion transporter, but binding of ouabain, a specific inhibitor of Na+/K+ATPase, to Na+/K+ATPase in somatic cells initiates responses that are similar to signaling events associated with bovine sperm capacitation. The objectives of the present study were to demonstrate the presence of Na+/K+ATPase in bovine sperm and to investigate its role in the regulation of bovine sperm capacitation. The presence of Na+/K+ATPase in sperm from mature Holstein bulls was demonstrated by immunoblotting and immunocytochemistry using a monoclonal antibody developed in mouse against the beta 1 polypeptide of Na+/K+ATPase. Binding of ouabain to Na+/K+ATPase inhibited motility (decreased progressive motility, average path velocity, and curvilinear velocity) and induced tyrosine phosphorylation and capacitation but did not increase intracellular calcium levels in spermatozoa. Furthermore, binding of ouabain to Na+/K+ATPase induced depolarization of sperm plasma membrane. Therefore, binding of ouabain to Na+/K+ATPase induced sperm capacitation through depolarization of sperm plasma membrane and signaling via the tyrosine phosphorylation pathway without an appreciable increase in intracellular calcium. To our knowledge, this is the first report concerning the signaling role of Na+/K+ATPase in mammalian sperm capacitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号